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Optimal output feedback for non-zero set point regulation: 
the discrete-time case 

WASSIM M. HADDAD? and DENNIS S. BERNSTEINS 

Optimal discrete-time static output feedback is considered for a non-zero set 
point problem with non-zero mean disturbances. The optimal control law consists 
of a closed-loop component for feeding back the measurements and a constant 
open-loop component which accounts for the non-zero set point and non-zero 
disturbance mean. An additional feature is the presence of state-, control- and 
measurement-dependent white noise. It is shown that in the absence of multipli- 
cative disturbances, the closed-loop controller can be designed independently of the 
open-loop control. 

Notation and definitions 
R, R'"" R', E real numbers, r x s real matrices, R r X 1 ,  expectation 

I,, ( )T n x n identity, transpose 
Kronecker product 

tr Z trace of square matrix Z 
asymptotically 

stable matrix matrix with eigenvalues in the open unit disk 
n, m, I ,  p positive integers 

x n-dimensional vector 
u, y m-, I-dimensional vectors 

A, Ai; B, Bi; C, Ci n x n matrices, n x m matrices, 1 x n matrices, i = 1, ..., p 
L, K r x n matrix, m x I matrix 

6, y, a r - ,  n-, m-dimensional vectors 
k discrete-time index 1, 2, ... 

v i (k)  unit variance white noise, i = 1, ..., p 
w , ( k ) ,  w , ( k )  n-dimensional, I-dimensional white noise processes 

V , ,  V, n x n covariance of w , ,  1 x 1 covariance of w,;  V, 3 0, V, 2 0 
V, ,  n x I cross-covariance of w , ,  w ,  

R , ,  R ,  r x r and m x m state and control weightings; R ,  >, 0, R ,  2 0 

R ,  r x m cross weighting; R ,  - R , , R ; '  R:, 2 0 
A,Ai  A + B K C , A i + B i K C + B K C i , i = l  ,..., p 

A [ , - A  
B B a + y  
ai Bia 
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8 W. M .  Haddad and D. S .  Bernstein 

For arbitrary m E R" and Q ,  P E Rn " "  define: 
P 

R,, A R ,  + B ~ P B  + C BTPB,, V,, 4 V2 + CQCT + f C i ( Q  + mmT)Cf 
i =  1 i = l  

I. Introduction 
The quadratic performance criterion 

expresses the desire to minimize deviations of the state x(k)  of the system 

x(k  + 1 )  = Ax(k) + Bu(k) + w(k)  ! 2) 

from the regulation point x =O.  As is well known (Kwakernaak and Sivan, 1972, 
pp. 504-509), the non-zero set point criterion 

N 
J .?=  1 [ ~ ( k )  - x l T ~ , [ x ( k )  - x i  + u T ( k ) ~ , u ( k )  

x = o  
(3) 

presents no additional difficulty so long as x(k)  and u(k) are replaced by x(k)  - i and 
u(k) - C ,  where C satisfies 

? = A i + B i i  ( 4 )  

Closer inspection, however, reveals that this approach is suboptimal. Specifically, 
the offset ii in the control may correspond to an unacceptably high level of control 
effort when CTR2ii is large. Hence (3) overlooks design tradeoffs concerning the 
control effort required for maintaining the non-zero regulation point x.  Moreover, 
such an approach is impossible when C satisfying ( 4 )  does not exist. 

A significant advance in extending the full-state-feedback LQR formulation to 
steady-state periodic tracking problems (and hence to the special case of non-zero 
set point regulation) was given by Artstein and Leizarowitz (1985).  Bernstein and 
Haddad (1987 b) generalize the results of Artstein and Leizarowitz (1985) for the non- 
zero set point regulation problem to include noisy and non-noisy measurements, 
weighted and unweighted controls, correlated plant/measurement noise, cross weight- 
ing, non-zero mean disturbances, and state-, control- and measurement-dependent 
multiplicative white noise. They consider the steady-state performance criterion 

J = lim E[(Lx( t )  - 6) 'R1(Lx( t )  -6) + 2 (Lx( t )  - 6 ) T R 1 2 u ( t )  + uT( t )R,u( t ) ]  ( 5 )  
r -m 
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8 Non-zero set point regulation 53 1 

where 6 is the non-zero regulation point. For full-state feedback with R,, = 0 and 
L= identity, Artstein and Leizarowitz (1985) show that for a constant offset control law 

K and a are given bv 

where P satisfies the Riccati equation 

with 

C A  BR;'BT 

Two features of the control law (6)-(8) are noteworthy. First, (6 )  consists of both a 
closed-loop feedback component Kx(t) and an open-loop component a: depending 
upon the regulation point 6. And, second (and more important), is the observation 
that the closed-loop control component is independent of the open-loop component. 
From a practical point of view this feature is quite useful since it implies that the 
feedback gain K can be determined without regard to the set point. Hence a change in 
the desired set point 6 during on-line operation does not necessitate re-solving the 
Riccati equation in real time; only a requires updating. For a new value of 6, a can 
readily be recomputed on-line via the matrix multiplication operation (8). In the 
presence of multiplicative disturbances, however, the independence of the closed-loop 
component from the open-loop component is lost. 

The purpose of the present paper is to provide a self-contained derivation of the 
optimality conditions for the non-zero set point problem in the discrete-time case. To 
obtain a realistic problem setting, we consider the case in which the full state is not 
available, but rather only noise-corrupted measurements of linear combinations of 
states. For greater design flexibility, we also allow the possibility for correlated plant 
and measurement noise. In addition, we consider the dual design feature, namely, 
cross weighting in the performance criterion. The presence of a non-zero constant 
plant disturbance in conjunction with zero-mean white plant disturbances, i.e. a non- 
zero mean disturbance, is also considered. Our results show that the presence of a 
non-zero constant disturbance component leads to an additional offset in the open- 
loop component of the control. Finally, in addition to the above generalizations we 
allow for the presence of multiplicative disturbances in the plant. The control law thus 
generalizes previous results involving state-, control- and measurement-dependent 
noise (Bernstein and Haddad 1987). As shown in Bernstein and Greeley (1986) and 
Haddad (1987), the multiplicative white noise model can be used for robustness with 
respect to plant parameter variations. 

2. Non-zero set point regulation 
2.1. Non-zero set point problem 

Given the nth-order controlled system 
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8 532 W. M .  Haddad and D. S. Bernstein 

with measurements 

where k = 1,2, ..., determine K and a such that the static output feedback controller 

minimizes the steady-state performance criterion 

J(K, a) !A lim E[(Lx(k) - S)TRl(Lx(k)  - S) + 2(Lx(k) -6)TR1,u(k) + uT(k)R,u(k)] 
k -m 

(12) 

Using the notation of 5 1 the closed-loop system (9)-(11) can be written as 

To analyse (13) define the second-moment and covariance matrices 

&k) !A E[x(k)xT(k)], Q(k) &(k) - mjk)mT(k) 

where m(k) E[x(k)]. It follows from (13) that o(k),  Q(k) and m(k) satisfy 

&k + 1) = A&k)AT + Am(k)BT + BmT(k)AT + BBT 

To consider the steady state, we restrict our consideration to the set of closed-loop 
second-moment stabilizing gains 

P 
K : 20 A" + A , @  2, is asymptotically stable 

i = l  I 
It follows from fundamental properties of Lyapunov equations that if K E S,, then 

2 is also asymptotically stable. Hence, for K E S,, & 4 lim &k), Q A lim Q(k) and 
k - m  k-m 

m !A lim m(k) exist and satisfy 
k - m  

m = A - ' B  (19) 

Note that since A is asymptotically stable, the inverse in (19) exists. For K E S,, it now 
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8 Non-zero set point regulation 533 

follows that J(K, a) is given by 

J ( K , a ) =  tr [ ( ~ + m m ~ ) a ]  + tr [KTR2KV2] +STR16-2mTLTRIL6 

+ 2mTLTRL2a- 2aTR12KCm- Z T R l 2 a  + 2mTCTKTR2a + aTR2a (20) 

Associated with Q is its dual P 2 0 which is the unique solution of 
P 

P = ATpA + 2 2rpAi + a 
i = 1  

(21) 

To  obtain closed-form expressions for the feedback gain K, we further restrict 
consideration to the set 

S: A {K E S,: RZs > 0, VZs 1 0  and Y, is invertible) 

where 

y,e BTA-TLTR, L A - ~ B + B ~ A - ~ L ~ R ~ ~ ( I , + K C A - ~ B )  

+ ( I ,  + KCA-'B)T~T2LA-'B + (1, + KCA-1B)TR2(1, + KCA-'B) 

Furthermore, we assume that 

i.e. for each i E { I ,  ..., p}, Bi and Ci are not both non-zero. Essentially, (22) expresses 
the condition that the control-dependent and measurement-dependent disturbances 
are independent. There are no constraints, however, on correlation with the state- 
dependent noise. For the statement of the main theorem define 

A,A B ~ A - ~ L ~ ( R ,  L +  R , ~ K c ) A - '  + ( I , +  K C A - ' B ) ~ ( R T ~  L +  R ~ K C ) A - ~  

Theorem 2.1 
Suppose K and a solve the non-zero set point problem with K E S:. Then there 

exist n x n Q, P 0 such that 

K = - R ; ~ ( B ~ P A Q C ~ +  P , , Q C ~ + B ~ P Q ~ ~ ) V Z ; ~  (23) 

a = -Y-  [ &Y + Q61 (24) 

and such that Q and P satisfy 
P 

Q = A Q A ~  + Vl + 1 [(A, + BiKC)Q(Ai + B ~ K C ) ~  + B,KV,K~BT + AimmTA'T 
i = 1  

+ BmTA' + AimsT + BiBT] 
+ (Qs + BK V2s)VZ; '(Qs + - Qs v2sQJ (25) 

P 

P =  ATPA + Rl + [(Ai+ BKC,)~P(A;+ BKC;) + CTKTR2KCi 
i s  1 

+ (P, + R2,KC)TR,1(Ps + R2sKC) - P:RZrP.] (26) 
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8 534 W. M .  Haddad and D. S .  Bernstein 

Proof 
The derivation of the necessary conditions is a straightforward application of the 

Lagrange multiplier technique. To optimize (20) over S: subject to the constraints 
(18) and (19), form the lagrangian 

where the Lagrange multipliers R,  20,A E R" and P E R n x "  are not all zero. Setting 
dL/dQ = 0 and using the second-moment stability assumption it follows that A, = 1 
without loss of generality. Thus the stationarity conditions are given by 

Using the definitions for Q , ,  and P,, along with (33), we obtain (23) and (24). 
Substituting the expressions for the optimal gains into (27) and (28) yields (25) and 
(26). 0 

Remark 1 
Because of the presence of 6 in (25) via m in both Q , ,  and V2',, and in (25) via 8 

(in m) and 6,  the closed-loop component of the control law (23) cannot be 
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8 Non-zero set point regulation 535 

determined independently of the open-loop component. As shown in the following 
section, independence is recovered when the multiplicative noise terms are absent. 

Remark 2 
To specialize Theorem 2.1 to the standard regulation problem, set 6 = 0  and y = 0  

yielding Theorem 2.1 of Bernstein and Haddad (1987 a). 

3. Specializations of Theorem 2.1 
A series of specializations of Theorem 2.1 is now given. We begin by deleting all 

multiplicative white noise terms, i.e. 

Ai,Bi ,Ci=O,  i = l ,  ..., p  (34) 

In this case the stabilizing set S, can be characterized by 

S = { K  : 3 is asymptotically stable) 

and, furthermore, S: becomes 

S+ A  { K  E S :  R2. > 0, VZo > 0 and Y, is invertible) 

where 

Y , A  B ~ A - ~ L ~ R , L A - ~ B +  B ~ A - ~ L ~ R , , ( I , +  K C A - I B )  

For the statement.of Corollary 3.1 define 

A,& BTA- 'LT(R1L+ R 1 2 K C ) A - '  + ( I , +  K C A - 1 B ) T ( R 1 2 L +  R 2 K C ) A - '  

Corollary 3.1 
Assume (34)  is satisfied and suppose K  and a solve the non-zero set point problem 

with K  E St. Then there exist n  x n  Q, P> 0  such that 

K = - R -  ,,I ( B ~ P A Q C ~  + R:,QC~ + B ~ P V ~ , ) V ~ ,  (35) 

a= - y - '  a C ~ Y  + Q61 (36) 

and such that Q  and P  satisfy 

Q = AQAT + Vl + (Q ,  + BKV2,)VG1 ( Q ,  + BK V2,IT - Qa VzaQaT (37) 

P = A ~ P A  + R~ + ( p a  + R~,Kc)~R, ' (P ,  + R,,KC) - P,TR,,P, (38) 

Finally, setting 
y = O ,  R 1 2 = 0 ,  V 1 2 = 0 ,  r = n ,  L = I ,  (39) 

we obtain the discrete-time version of Artstein and Leizarowitz (1985) for the case or 
output feedback. Define 

where 
Y ,  a B ~ A - ~ R ~ A - ~ B + ( I , +  K C A - ~ B ) ~ R , ( I , +  K C A - I B )  

Corollary 3.2 
Assume (34) and (39) are satisfied and suppose K  and a solve the non-zero set 
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8 536 Non-zero  se t  point regulation 

point problem with K EST. Then there exist n x n Q, Pa 0 such that 

K =  - R -  2: B ~ P A Q C ~  V; (40) 
a =  -y - -BTA-T 

1 R l 6  (41) 

and such that Q and P satisfy 

Q = AQAT + Vl + (AQCT + BKV2a)VG1(AQCT + BKV20)T 

- A Q C ~  V & Q A ~  (42) 

P =  A ~ P A  + R~ + ( B ~ P A  + R ~ , K C ) ~ R ~ ( B ~ P A  + R ~ , K C )  

- A ~ P B R ~ , B ~ P A  (43) 

4. Directions for further research 
The extension to  fixed-order dynamic compensation for non-zero set point 

regulation appears possible using the approach of Hyland and Bernstein (1984) 
and Haddad (1987). A generalization of Theorem 2.1 to  design periodic tracking 
controllers (either static or dynamic) via the parameter optimization approach is 
being developed. 
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