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In this article, we investigate the consistency of parameter estimates obtained from least-squares identification
with a quadratic parameter constraint. For generality, we consider infinite impulse-response systems with
coloured input and output noise. In the case of finite data, we show that there always exists a possibly indefinite
quadratic constraint depending on the noise realisation that results in a constrained optimisation problem that
yields the true parameters of the system when a persistency condition is satisfied. When the noise covariance
matrix is known to within a scalar multiple, we prove that solutions of the quadratically constrained least-squares
(QCLs) estimator with a semidefinite constraint matrix are both unbiased and consistent in the sense that the
averaged problem and limiting problem produce, respectively, unbiased and true (with probability 1) estimators.
In addition, we provide numerical results that illustrate these properties of the QCLS estimator.
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1. Introduction

Least squares is undoubtedly one of the most widely
developed, extensively applied and generally useful

techniques in science and engineering (Draper and
Smith 1981; Lawson and Hanson 1995; Björck 1996).

In its simplest form, least squares seeks ‘approximate
solutions’ to Ax¼ b when this equation has no solution

per se due to inherent inconsistency or due to errors in
the regressor matrix A or the output vector b. More

precisely, least squares seeks a vector x that minimises
the Euclidean norm kAx� bk2, which can be viewed as

seeking the smallest residual w in the equation
Ax¼ bþw.

In a stochastic setting, where A, b or w are random

variables, the solution x̂ to the least-squares problem is
also a random variable. In this case, questions of

interest concern the unbiasedness and consistency of the
least-squares estimator x̂, where unbiasedness refers to

the situation in which the expected value of x̂ is the true
value xtrue, while consistency refers to the convergence,

with probability 1, of x̂ ¼ x̂N–xtrue as the number N of
data points used to construct A and b increases without

bound. Although unbiasedness and consistency are
independent conditions, consistency is usually obtained

by constructing an unbiased estimator whose variance
converges to zero as the amount of available data

increases without bound. The best linear unbiased

estimator (BLUE) has been extensively studied; see,
for example, Campbell and Meyer (1991, chap. 6).

In system identification, least squares is the key
tool for estimating the coefficients of time-series and
state-space models (Hsia 1977; Söderström and Stoica
1989; Juang 1993; van Overschee and de Moor 1996;
Ljung 1999). For time-series models, a difficulty arises
from the fact that the components of the residual w are
past values of the process noise, while the entries of the
regressor matrix A include past values of the output.
Consequently, the residual is correlated with the
regressor, resulting in a biased estimator x̂: This case
is not addressed by the classical theory of BLUE.
Hence, time-series estimation poses difficulties that
transcend the central results of classical linear estima-
tion theory.

In time-series identification, correlation between
the regressor matrix and residual is absent in two very
special cases, namely, when the time-series model has
an equation error with known spectrum (Söderström
and Stoica 1989, pp. 66, 187; Ljung 1999, p. 205) and
when the dynamics are finite impulse response. As
shown in Ljung (1999, p. 205), when the time-series
model has an equation error with known spectrum, the
time-series model can be written using the notation of
Ljung (1999) as

AðqÞ yðtÞ ¼ BðqÞuðtÞ þ �ðqÞeðtÞ,
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where q is the backward shift operator, A(q) and B(q)
are unknown polynomials in q, �(q) is a known filter
and e(t) is white filter. Then the time-series model can
be rewritten as

AðqÞ yFðtÞ ¼ BðqÞuFðtÞ þ eðtÞ,

where yF(t)¼ �
�1(q)y(t) and uF(t)¼ �

�1(q)u(t). By
pre-filtering the data to obtain yF(t) and uF(t),
standard least-squares techniques can be applied to
estimate the time-series model.

Alternatively, consider an errors-in-variables time-
series model in which the input u(t) and the output y(t)
are corrupted by coloured noise �1(q)e1(t) and
�2(q)e2(t), respectively, where e1(t) and e2(t) are white
and �1(q) and �2(q) are colouring filters. The time-series
model can then be written as

AðqÞ yðtÞ ¼ BðqÞuðtÞ þ AðqÞ�1ðqÞe1ðtÞ þ BðqÞ�2ðqÞe2ðtÞ:

In this case, it follows that the equation error is
A(q)�1(q)e1(t)þB(q)�2(q)e2(t). Now, even if the colour-
ing filters �1(q) and �2(q) are known, the spectrum of
the equation error remains unknown since A(q) and
B(q) are unknown. Therefore the pre-filtering tech-
nique can no longer be applied. Further details on
these cases are given in Section 5.

The issue of bias in time-series model identification
is well known, and the relevant literature is extensive.
An early, pivotal contribution is the Koopmans–Levin
(KL) method (Levin 1964), in which knowledge of the
noise statistics is used to reduce the bias in the
estimates of the model coefficients. This technique
hinges on the minimisation of a ratio of quadratic
forms, which in turn leads to the solution of a
generalised eigenvalue problem, for which the general-
ised eigenvector provides the parameter estimates. The
KL method is further investigated in Smith and Hilton
(1967), Aoki and Yue (1970), Sagara and Wada (1977),
Zhdanov and Katsyuba (1979), Fernando and
Nicholson (1985) and Zheng (2002b).

Since identification of a transfer function entails
estimation of the coefficients of the numerator and
denominator polynomials, scaling is needed to remove
the inherent ambiguity due to a ratio of polynomials.
The most obvious scaling is to scale both polynomials
so that the denominator polynomial is monic.
However, alternative constraints can be enforced. For
example, a constraint on the norm of the coefficients
can be used to scale the numerator and denominator
coefficients (Furuta and Paquet 1970; Regalia 1994;
Zhang and Feng 1995). If the norm constraint involves
a quadratic form, then the resulting quadratically
constrained least squares (QCLS) estimation problem
can be solved using Lagrange multipliers, as pursued in
Lemmerling and de Moor (2001), van Pelt and

Bernstein (2001) and Yeredor and de Moor (2004).
The resulting optimality conditions have the form of a
generalised eigenvalue problem, in which the general-
ised eigenvector is an estimate of the transfer function
coefficients.

The above discussion suggests that the KL method
can be viewed as the consequence of a particular QCLS
optimisation problem. A careful examination of the
literature on unbiasedness and consistency shows that
this linkage has been largely overlooked, resulting in a
fragmented collection of approaches to this problem.
Related techniques for removing the bias in least-
squares identification include James, Souter, and
Dixon (1972), Akashi (1975), Merhav (1975),
Söderström (1981), Zheng and Feng (1989), de Moor,
Gevers, and Goodwin (1994), Zheng (1998, 1999,
2002a) and Guo and Billings (2007). Finally, the
instrumental variable method (Wong and Polak 1967;
Söderström and Stoica 1981; Stoica and Soderstrom
1982) provides yet another approach to this problem.
Recent works, such as Lemmerling and de Moor
(2001), Söderström, Soverini, and Mahata (2002),
Zheng (2002a), Yeredor and de Moor (2004), Chen
(2007), Hong, Söderström, and Zheng (2007), Mahata
(2007), Söderström (2007) and Agüero and Goodwin
(2008) suggest continued interest in unbiased and
consistent estimators.

Errors-in-variables identification problems can be
classified as either functional or structural (Agüero and
Goodwin 2008). When the true input to the system is
an arbitrary deterministic signal, the identification
problem is called a functional problem, whereas a
structural problem arises when the true input to the
system is a stochastic, usually white noise, signal. For
the structural case, results on consistency and unbiased-
ness are available (see e.g. Söderström et al. 2002;
Mahata 2007), but few proofs of consistency are
available for the functional case. Moreover, in the
structural case, the noise covariance can be estimated
from the input data; however, in the functional case it
is typically assumed that the noise covariance matrix is
known. For instance, for the functional problem, Hong
et al. (2007) show that the estimates are asymptotically
Gaussian distributed (unbiased but not consistent),
when the covariance matrix is known to within two
unknown parameters. Additionally, Kukush,
Markovsky, and Huffel (2005) show that when the
covariance matrix is known to within a scalar multiple
and the data matrices satisfy certain structural
constraints, structured total least squares provides
consistent estimates. A detailed discussion on all of
these cases is provided in Söderström (2007).

In this article, we focus on the functional case, and
we assume that the autocovariance matrix of the noise
is known to within a scalar multiple. Moreover, the
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algorithm derived in this article is closely related to the

KL method, bias-compensation methods and the

Frisch scheme (Koopmans 1937; Levin 1964; Aoki

and Yue 1970; Fernando and Nicholson 1985; Zheng

1998, 2002a; Hong, Söderström, and Zheng 2006;

Mahata 2007; Söderström 2007). However, the novel

features of this article include an alternative formula-

tion of the above-mentioned methods, and, more

importantly, this alternative formulation allows us to

derive unbiasedness and consistency results for the

functional case.
The first objective of this article is accomplished by

the above discussion, that is, to point out that the KL

method can be viewed as a special case of QCLS

estimation. With this realisation in mind, our objective

is then to characterise the solution set of an appropri-

ate quadratically constrained quadratic programming

problem. Because of space constraints, the details of

this development are provided in Palanthandalam-

Madapusi, van Pelt, and Bernstein (2009), with only

the key results quoted for use herein. We note,

however, that, unlike earlier work based on Lagrange

multipliers and necessary conditions, we provide nec-

essary and sufficient conditions for the existence of

solutions along with a complete characterisation of the

solution set directly in terms of the properties of matrix

pencils.
Next, we consider an errors-in-variables SISO

ARMAX identification problem with minimal assump-

tions on the structure of the model and the nature of

the noise. For this problem, we show that there exists a

possibly indefinite quadratic constraint on the system

coefficients such that the resulting solution of the

optimisation problem yields the true coefficients. This

analysis, as well as all persistency conditions, is entirely

deterministic.
The existence of a quadratic constraint that leads to

the true parameter values provides a framework for

understanding the success of the KL algorithm.

However, the constraint matrix in the deterministic

formulation depends on the sensor errors (noise) and

thus is unknowable. We therefore assume the noise

signal to be stochastic and ergodic, and replace the

indefinite QCLS constraint with a positive-semidefinite

constraint based on the noise covariance. Under the

assumption that this noise covariance is known to

within a multiplicative constant, we prove that solu-

tions of this modified QCLS problem are both unbi-

ased and consistent in the sense that the averaged

problem and limiting problem produce, respectively,

unbiased and true (with probability 1) estimators. In

addition, we provide numerical results that suggest

that the QCLS estimator is unbiased and consistent in

the standard sense.

The main objective of this article is to provide the
missing foundation for the KL method and its numer-
ous variants in the literature, while providing a
complete development of unbiasedness and consistency
in a precise sense. The essential idea of estimating the
transfer function coefficients by means of constrained
optimisation is given an intuitively compelling foun-
dation, thus linking, clarifying and extending the prior
literature.

1.1 Notation

q
�1 is the backward shift operator, 0n is the n� n zero

matrix, In is the n� n identity matrix, R
n is the set of

real n� 1 column vectors and R
n�m is the set of real

n�m matrices. For A2R
n�m, rankA is the rank of A,

R(A) is the range of A, N (A) is the null space of A,
defA is the defect (nullity) of A, �max(A) is the largest
eigenvalue of A, �min(A) is the smallest eigenvalue of A
and Aþ is the Moore–Penrose generalised inverse of A.
Furthermore, diag(ai) is the diagonal matrix with
diagonal entries ai. For symmetric matrices A and B,
A4B means that A�B is positive definite, and A�B
means that A�B is positive semidefinite.

2. Null-space condition

Consider the single-input, single-output system

a0y0ðkÞ þ a1y0ðk� 1Þ þ � � � þ any0ðk� nÞ

¼ b0u0ðkÞ þ b1u0ðk� 1Þ þ � � � þ bnu0ðk� nÞ, ð1Þ

where u0(k) is the system input and y0(k) is the system
output. By defining the backward shift operator q�1

and the polynomials

Aðq�1;#Þ ¼
D
a0 þ a1q

�1 þ � � � þ anq
�n ð2Þ

and

Bðq�1;#Þ ¼
D
b0 þ b1q

�1 þ � � � þ bnq
�n, ð3Þ

(1) can be rewritten as

Aðq�1;#Þ y0ðkÞ ¼ Bðq�1;#Þu0ðkÞ, ð4Þ

where the system parameter vector #2R
2nþ2 is

#¼
D

a0 � � � an b0 � � � bn
� �T

: ð5Þ

We assume that the polynomials A(q�1;#) and
B(q�1;#) are coprime, that is, (1) is a minimal
representation. Furthermore, we assume that a0 6¼ 0,
which is equivalent to the assumption that (1) is causal.
Hence # 6¼ 0.
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Next, defining the n-th-order proper transfer func-
tion G(q�1;#) by

Gðq�1;#Þ ¼
D Bðq�1;#Þ

Aðq�1;#Þ
, ð6Þ

we have

y0ðkÞ ¼ Gðq�1;#Þu0ðkÞ: ð7Þ

Remark 2.1: Note that G(q�1;#)¼G(q�1; �#) for all
nonzero �2R. This nonuniqueness of the system
parametrisation can be removed by choosing �¼ 1/a0
so that the first component of �# is unity. Although
this normalisation yields a unique system parametrisa-
tion, we choose not to do this in order to facilitate the
following analysis.

Next, assuming the system input u0(k) and the
system output y0(k) are available for k¼ 0, . . . , l, where
l� n, we define the noise-free regression matrix F02

R
(l�nþ1)�(2nþ2) by

F0¼
D

�T0 ðnÞ

..

.

�T0 ðl Þ

2
664

3
775, ð8Þ

where the noise-free regression vector �0(k)2R
2nþ2 is

�0ðkÞ¼
D

y0ðkÞ � � � y0ðk�nÞ �u0ðkÞ � � � �u0ðk�nÞ
� �T

:

ð9Þ

With this notation, (1) can be written as

F0# ¼ 0, ð10Þ

which is equivalent to the null-space condition

# 2 N F0ð Þ: ð11Þ

Finally, define the positive-semidefinite matrix
M02R

(2nþ2)�(2nþ2) by

M0¼
D 1

l
FT

0F0: ð12Þ

Note that rankM0¼ rankF0, N (M0)¼N (F0) and
defM0¼ defF0 (Bernstein 2005). Therefore, the null-
space condition (11) is equivalent to

# 2 N M0ð Þ: ð13Þ

Next, partition F0 as

F0 ¼ F01 F02

� �
, ð14Þ

where F012R
l�nþ1 and F022R

(l�nþ1)�(2nþ1), and
partition # as

# ¼
a0
~#

� �
, ð15Þ

where ~# 2 R
2nþ1. Then the null-space condition (11) is

equivalent to

a0F01 þ F02
~# ¼ 0, ð16Þ

which implies that F01 ¼ �a
�1
0 F02

~# 2 R F02ð Þ ¼ R F0ð Þ,

and thus rankF02¼ rankF0. Hence, F01 ¼

F02Fþ02F01 ¼ F0Fþ0 F01 and

1
�Fþ02F01

� �
2 N F0ð Þ: ð17Þ

The following result characterises N (F0).

Proposition 2.2: Let fu0ðkÞg
l
k¼0 and fy0ðkÞg

l
k¼0 satisfy

(7). Then

Fþ0 ¼
��1FT

01 F02FT
02

� �þ
Fþ02 � �

�1Fþ02F01FT
01 F02FT

02

� �þ
" #

, ð18Þ

where

�¼
D
1þ FT

01 F02FT
02

� �þ
F01: ð19Þ

Furthermore,

N F0ð Þ ¼ R I2nþ2 �Fþ0 F0

� �

¼ R

��1 ���1 Fþ02F01

� �T

���1Fþ02F01

I2nþ1 �Fþ02F02

þ��1Fþ02F01

� Fþ02F01

� �T
8><
>:

9>=
>;

2
66664

3
77775

0
BBBB@

1
CCCCA:

ð20Þ

Proof: See Bernstein (2005, Fact 6.4.26). œ

Next, note that the null-space condition (11)

uniquely determines # up to a scalar factor if N (F0)

is one dimensional, that is, if defF0¼ 1. Noting that

rankF0þ defF0¼ 2nþ 2, the following definition con-

siders this case.

Definition 2.3: The input sequence fu0ðkÞg
l
k¼0 is

persistently exciting for G(q�1;#) if rankF0¼ 2nþ 1.

Note that, given fu0ðkÞg
1
k¼1 such that fu0ðkÞg

l̂
k¼1 is

persistently exciting for G(q�1;#), it follows that, for

all l � l̂, fu0ðkÞg
l
k¼1 is persistently exciting for G(q�1;#).

Proposition 2.4: Let fu0ðkÞg
l
k¼0 and fy0ðkÞg

l
k¼0 satisfy

(7). Then the following statements are equivalent:

(i) fu0ðkÞg
l
k¼0 is persistently exciting for G(q�1;#).

(ii) rankM0¼ 2nþ 1.
(iii) defM0¼ 1.
(iv) rankF0¼ 2nþ 1.
(v) defF0¼ 1.
(vi) rankF02¼ 2nþ 1.
(vii) defF02¼ 0.
(viii) F02FT

02 4 0.
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In this case, it follows that l� 3n, Fþ02 ¼ ðF
T
02F02Þ

�1FT
02,

Fþ02F02 ¼ I2nþ1 and

NðF0Þ ¼ N M0ð Þ ¼ R
1

�Fþ02F01

� �� 	
¼ R #ð Þ: ð21Þ

Note that R(#)¼ {c# : c2R}.

Suppose that fu0ðkÞg
l
k¼0 is persistently exciting

for G(q�1;#) so that N (F0)¼R(#). Then G(q�1;#)¼
G(q�1; �) for all � 2N (F0) \ {0}¼R(#) \ {0}, and
G(q�1;#) is determined uniquely up to an arbitrary
scaling by the null-space condition (11), which is
characterised by (21).

3. Errors-in-variables formulation

Next, we assume that the system output y0(k) is
corrupted by output noise w(k) so that the measured
output y(k) is given by

yðkÞ ¼ y0ðkÞ þ wðkÞ: ð22Þ

Hence

yðkÞ ¼ Gðq�1;#Þu0ðkÞ þ wðkÞ: ð23Þ

Furthermore, suppose that the system input u0(k) is
uncertain so that the measured input u(k) is given by

uðkÞ ¼ u0ðkÞ þ vðkÞ, ð24Þ

where v(k) is input noise. Then (23) can be written as
the errors-in-variables model

yðkÞ ¼ Gðq�1;#ÞuðkÞ � Gðq�1;#ÞvðkÞ þ wðkÞ: ð25Þ

Remark 3.1: We make no assumptions on w(k) and
v(k) until Section 10. Since w(k) need not be white, (25)
can represent a Box–Jenkins model. By setting v(k)� 0
and wðkÞ ¼ Hðq�1Þ ~wðkÞ, where H(q�1) is a stable
transfer function and ~wðkÞ is zero-mean and white, it
follows that (25) becomes the Box–Jenkins model

yðkÞ ¼ Gðq�1;#ÞuðkÞ þHðq�1Þ ~wðkÞ: ð26Þ

We write (25) in regression form as

Aðq�1;#Þ yðkÞ � Bðq�1;#ÞuðkÞ

¼ Aðq�1;#ÞwðkÞ � Bðq�1;#ÞvðkÞ, ð27Þ

which can be rewritten as

�TðkÞ# ¼  TðkÞ#, ð28Þ

where the regression vector �(k)2R
2nþ2 is

�ðkÞ ¼
D

yðkÞ � � � yðk� nÞ �uðkÞ � � � �uðk� nÞ
� �T

ð29Þ

and the noise vector  (k)2R
2nþ2 is defined as

 ðkÞ¼
D

wðkÞ � � �wðk�nÞ �vðkÞ � � ��vðk�nÞ
� �T

: ð30Þ

Furthermore, note that

�ðkÞ ¼ �0ðkÞ þ  ðkÞ: ð31Þ

Henceforth, we consider a finite measured output

sequence fyðkÞglk¼0 generated by (25) with measured

input sequence fuðkÞglk¼0 and noise sequences fwðkÞglk¼0
and fvðkÞglk¼0. Assuming l� n, we define the noisy

regression matrix F2R
(l�nþ1)�(2nþ2) by

F¼D
�TðnÞ

..

.

�Tðl Þ

2
64

3
75 ð32Þ

and the noise matrix C2R
(l�nþ1)�(2nþ2) by

C¼D
 TðnÞ

..

.

 Tðl Þ

2
664

3
775: ð33Þ

It then follows from (28) that

F# ¼ C#: ð34Þ

Since

F�C ¼ F0, ð35Þ

it follows that (34) is equivalent to (10). However,

note that

# 62 N Fð Þ ð36Þ

if and only if C# 6¼ 0. Now, partition F¼ [F1 F2],

where F12R
l�nþ1 and F22R

(l�nþ1)�(2nþ1), and define

M2R
(2nþ2)�(2nþ2) by

M¼
D 1

l
FTF: ð37Þ

Next, we consider the following definition.

Definition 3.2: The input sequence fu0ðkÞg
l
k¼0 and the

noise sequences fwðkÞglk¼0 and fvðkÞglk¼0 are jointly

persistently exciting for G(q�1;#) if rankF¼ 2nþ 2.

The assumption that fu0ðkÞg
l
k¼0 is persistently

exciting for G(q�1;#) and the assumption that

fu0ðkÞg
l
k¼0, fwðkÞg

l
k¼0 and fvðkÞglk¼0 are jointly persis-

tently exciting for G(q�1;#) are independent, that is,

one does not imply the other.

Proposition 3.3: Let fuðkÞglk¼0 and fyðkÞglk¼0 satisfy

(25). Then the following statements are equivalent:

(i) fu0ðkÞg
l
k¼0, fwðkÞg

l
k¼0, and fvðkÞg

l
k¼0 are jointly

persistently exciting for G(q�1;#).
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(ii) rankM¼ 2nþ 2.
(iii) defM¼ 0.
(iv) M40.
(v) rankF¼ 2nþ 2.
(vi) defF¼ 0.

In this case, l� 3nþ 1.

4. Errors-in-variables least squares

In this section, we review the standard least-squares
problem to provide a framework for QCLS identifica-
tion. Consider the model G(q�1; �) of G(q�1;#), where
the model parameter vector � 2R

2nþ2 is

�¼
D
�0 � � � �n �nþ1 � � � �2nþ1
� �T

, ð38Þ

and where Remark 2.1 is also valid for �. Note that the
definition of � assumes that the system order n is
known. We partition � as

� ¼
�0
~�

� �
, ð39Þ

where ~� 2 R
2nþ1.

In the noise-free case, # satisfies F0#¼ 0 (see (10)).
Hence, when noise is present, we seek � that minimises
kF�k2. Here we fix �0 and consider the standard least-
squares cost

Jð ~�Þ ¼
D
kF�k22 ¼ k�0F1 þ F2

~�k22: ð40Þ

The standard least-squares problem is thus

min
~�2R2nþ1

Jð ~�Þ: ð41Þ

All solutions to (41) are given by the following result.

Proposition 4.1: Assume that fuðkÞglk¼0 and fyðkÞglk¼0
satisfy (25). Then ~̂� is a global minimiser of Jð ~�Þ if and
only if there exists �2R

2nþ1 such that

~̂� ¼ ��0Fþ2 F1 þ I2nþ1 � Fþ2 F2

� �
�: ð42Þ

In this case,

Jð ~̂�Þ ¼ �20F
T
1 Il�nþ1 � F2Fþ2
� �

F1: ð43Þ

If, in addition, fu0ðkÞg
l
k¼0, fwðkÞg

l
k¼0 and fvðkÞglk¼0 are

jointly persistently exciting for G(q�1;#), then

~̂� ¼ ��0Fþ2 F1 ¼ ��0 FT
2F2

� ��1
FT

2F1 ð44Þ

is the unique minimiser of (40).

Proof: Note that

Jð ~�Þ ¼ k�0F1 þ F2
~�k22

¼ k�0F1 þ F2
~�k22 þ �

2
0F

T
1F2Fþ2 F1 � �

2
0F

T
1F2Fþ2 F1

¼ kF2ð ~� þ �0Fþ2 F1Þk
2
2 þ �

2
0F

T
1 Il�nþ1 � F2Fþ2
� �

F1:

Since �20F
T
1 Il�nþ1 � F2Fþ2
� �

F1 is independent of ~� and
kF2

~� þ �0F2Fþ2 F1k
2
2 is nonnegative, all global mini-

misers of Jð ~�Þ satisfy kF2
~� þ �0F2Fþ2 F1k

2
2 ¼ 0. Thus ~̂�

is a global minimiser of Jð ~�Þ if and only if

~̂� ¼ ��0Fþ2 F1 þ 	, where 	2N (F2). Since NðF2Þ ¼

RðI2nþ1 � Fþ2 F2Þ, all global minimisers of Jð ~�Þ are of
the form (42) with minimum value given by (43).
Finally, assume that fu0ðkÞg

l
k¼0 and fwðkÞglk¼0 are

jointly persistently exciting for G(q�1;#). Then, since
rankF2¼ 2nþ 1, it follows that Fþ2 F2 ¼ I2nþ1, and (42)
specialises to (44). œ

5. Correlation between the regressor and noise

vectors

First, partition C¼ [C1 C2], where C12R
l�nþ1 and

C22R
(l�nþ1)�(2nþ1). Then, as noted in Ljung (1999,

p. 205), the asymptotic error in the least-squares
estimate is due to correlation between F2 and C2.
Since, for all k, y(k) and w(k) are correlated, and u(k)
and v(k) correlated, it follows that F2 and C2 are
generally correlated for the system (25). However,
under the two special cases discussed in the following
subsections, this correlation disappears. As noted in
Söderström and Stoica (1989, pp. 66, 187), both of
these cases are extremely specialised.

5.1 White equation error

Consider the white equation-error model

yðkÞ ¼ Gðq�1;#ÞuðkÞ þ
1

Aðq�1;#Þ
wðkÞ, ð45Þ

where w(k) is white. The model (45) is obtained as a
special case of (25) by setting v(k)� 0 and replacing
w(k) by 1

Aðq�1;#Þ
wðkÞ. Writing (45) in the time-series

form yields

a0yðkÞþa1yðk�1Þþ �� �þanyðk�nÞ

¼ b0uðkÞþb1uðk�1Þþ �� �þbnuðk�nÞþwðkÞ, ð46Þ

and thus it follows that, C2¼ 0 and hence F2 and C2

are uncorrelated.

5.2 Finite impulse response

A related case is the finite impulse-response model

yðkÞ ¼
Bðq�1;#Þ

a0
uðkÞ þ wðkÞ, ð47Þ

which is a special case of (25) with v(k)� 0 and
A(q�1;#)¼ 1. Again, writing (47) in the time-series
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form yields

a0yðkÞ ¼ b0uðkÞþb1uðk�1Þþ �� �þbnuðk�nÞþa0wðkÞ,

ð48Þ

and thus it follows that C2¼ 0 and hence F2 and C2

are uncorrelated. Note that w(k) need not be white.
However, if w(k) is white, then (48) is obtained as a
special case of (46) by setting a1¼ a2¼ � � � ¼ an¼ 0.

6. Quadratically constrained least squares

Since the standard least-squares solutions may be
biased, we now develop an alternative approach to
estimating #. Instead of fixing a0 in (38), we minimise
the least-squares cost (40) subject to a quadratic
constraint on �. Hence, we consider the generalised
least-squares cost

J ð�Þ ¼
D 1

l
kF�k22 ¼

1

l
k�0F1 þ F2

~�k22, ð49Þ

which is identical to (40) except that in (49) there is an
additional factor of 1/l and the argument is �2R

2nþ2.
Using (37), it follows that (49) can be rewritten as

J ð�Þ ¼ �TM�: ð50Þ

Since M is positive semidefinite it follows that J is
convex on R

2nþ2. Furthermore, J is strictly convex on
R

2nþ2 if and only if M is positive definite (see Bernstein
2005, p. 320).

Next, let N2R
(2nþ2)�(2nþ2) be symmetric, and

define the parameter constraint set D(N ) by

DðNÞ ¼
D
f� 2 R

2nþ2 : �TN� ¼ 1g: ð51Þ

The QCLS problem is then given by

min
�2DðNÞ

J ð�Þ: ð52Þ

Note that D(N ) is closed and symmetric, that is,
� 2D(N ) if and only if �� 2D(N ). Furthermore,
D(N ) 6¼1 if and only if �max(N )40. Next, define the
solution set W(N ) by

WðNÞ ¼
D
f� 2 DðNÞ : J ð�Þ ¼ min

�02DðNÞ
J ð�0Þg: ð53Þ

W(N ) is closed and symmetric. Furthermore, If
W(N ) 6¼1 then the QCLS problem (52) has at least
two solutions. In particular, � 2R

2nþ2 solves the QCLS
problem (52) if and only if �� does.

Define NLS2R
(2nþ2)�(2nþ2) by

NLS¼
D

1 0 � � � 0

0 0 ..
.

..

. . .
. ..

.

0 � � � � � � 0

2
66664

3
77775: ð54Þ

With N¼NLS it can be seen that solutions of the
QCLS problem (52) are solutions of the standard least-
squares problem (41) with a0¼�1. Although NLS is
positive semidefinite, we do not require that N be
positive semidefinite.

7. Existence and uniqueness of QCLS problem

Let A, B2R
p�p. Then the matrix pencil PA,B(s) is

defined by

PA,BðsÞ ¼
D
A� sB: ð55Þ

Furthermore, define the characteristic polynomial

A,B(s) by


A,BðsÞ ¼
D
detðA� sBÞ: ð56Þ

The pair (A,B) is regular if 
A,B(s) is not the zero
polynomial. The roots of 
A,B(s) are the generalised
eigenvalues of (A,B). Furthermore, if A40, B is
symmetric, and (A,B) is regular, then all generalised
eigenvalues of (A,B) are real (Palanthandalam-
Madapusi et al. 2009).

Next, define

S¼
D
f� � 0 : �N �Mg ð57Þ

and �max ¼
D
max S, and note that S ¼ [0,�max]. The

following result concerns properties of �max.

Proposition 7.1: Assume �max(N )40. Then the fol-
lowing statements hold:

(i) If N�M, then �max� 1.
(ii) �max is a generalised eigenvalue of (M,N ).

Furthermore, assume that �max40 and (M,N ) is
regular. Then the following statements hold:

(iii) Let �1,�22 (0, �max). Then

0 ¼ defðM� �1NÞ ¼ defðM� �2NÞ5 defðM� �maxNÞ:

ð58Þ

(iv) �max is the smallest positive generalised eigen-
value of (M,N ).

Proof: See Palanthandalam-Madapusi et al. (2009).œ

Thus M� �maxN has a nontrivial-null space. The
following result considers existence of solutions to (52).

Theorem 7.2: Assume �max(N )40. Then, for all
� 2D(N ),

J ð�Þ � �max: ð59Þ

Furthermore, � 2D(N ) satisfies

J ð�Þ ¼ �max ð60Þ

868 H.J. Palanthandalam-Madapusi et al.
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if and only if �2N (M� �max N )\D(N ). Finally,

WðNÞ ¼ N M� �maxNð Þ \ DðNÞ: ð61Þ

Proof: See Palanthandalam-Madapusi et al. (2009).œ

Corollary 7.3: Assume M40 and �max(N )40. Then

min
�2DðNÞ

J ð�Þ ¼ �max, ð62Þ

and thus (52) has a solution.

8. Choosing N in QCLS

Define DM2R
(2nþ2)�(2nþ2) by

DM¼D M�M0: ð63Þ

Note that DM�M and

DM ¼
1

l
FTF� FT

0F0

� �
, ð64Þ

which may be indefinite. In the noise-free case DM¼ 0,
and thus D(DM)¼1. In the noisy case, however, DM
may be nonzero. For the rest of this subsection we
consider the case N¼DM.

Proposition 8.1: Assume �max(DM)40. Then �max� 1.
Furthermore, if fu0ðkÞg

l
k¼0 is persistently exciting, and

fu0ðkÞg
l
k¼0, fwðkÞg

l
k¼0 and fvðkÞglk¼0 are jointly persis-

tently exciting, then �max¼ 1 is the smallest positive
generalised eigenvalue of (M,DM).

Proof: Since DM�M, it follows from Proposition 7.1
that �max� 1. Next, since N (M)\N (DM)¼ {0} and
rankM0¼ rank (M�DM)¼ 2nþ 152nþ 2¼ rankM
it follows that def(M)¼ 051¼ def(M0)¼ def(M�DM)
and thus Proposition 7.1 with N¼DM in (58) implies
that �max¼ 1. œ

The following result gives conditions under which
the QCLS problem correctly identifies G(q�1;#).

Theorem 8.2: Assume that �max(DM)40, fu0ðkÞg
l
k¼0 is

persistently exciting for G(q�1;#), and fu0ðkÞg
l
k¼0,

fwðkÞglk¼0 and fvðkÞglk¼0 are jointly persistently exciting
for G(q�1;#). Then

WðDMÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

#TDM#

r
#

( )
: ð65Þ

Proof: From Proposition 8.1, it follows that �max¼ 1.

Next, since M40, it follows from Corollary 7.3 that

W(DM) 6¼1. Furthermore, it follows from Theorem

7.2 thatW(DM)¼N (M0)\D(DM) 6¼1. Furthermore,

since M40, M¼M0þDM and #T M0 #¼ 0, it follows

that #T DM#40. Hence, since defM0¼ 1, it follows

from (13) that (65) holds. œ

Note that if M40, then N (M)\N (DM)¼ {0}.

Thus, if rankM0¼ 2nþ 1 and M40, then Theorem 8.2

implies that G(q�1;#)¼G(q�1; �) for all �2W(DM).
However, the choice N¼DM is not possible in

practice since DM is not known. In the next section,

we consider the QCLS problem with an approximation

N	DM.

9. Unbiasedness of QCLS

It was shown in Section 8 that, if N¼DM and M40,

then the QCLS problem has exactly two solutions �,
both of which satisfy G(q�1; �)¼G(q�1;#). However,

since DM is not known, we cannot set N¼DM in

practice. In this section, we choose an alternative but

closely related value of N and show that the resulting

QCLS solution is unbiased.
For the remainder of the article, we assume that

fwðkÞg1k¼0 and fvðkÞg1k¼0 are stationary and have zero

mean and finite second moments. Furthermore,

we assume that fwðkÞg1k¼0 and fvðkÞg1k¼0 are jointly

ergodic random processes in the sense that, for all �,

 2 {0, 1, 2} and for all i, E½w�ðiÞv
ðiÞ
 ¼ liml!1

1
l �Pl

k¼0 w
�ðkÞv
ðkÞ wp1.

For convenience, define the positive-semidefinite

matrix R2R
(2nþ2)�(2nþ2) by

R¼
D

E  TðkÞ ðkÞ
� �

,

where n� k� l. However, note that since w(k) and

v(k) are stationary, R is independent of k. Next,

partition R as

R ¼
Rww �Rwv

�Rvw Rvv

� �
, ð66Þ

where Rww2R
(nþ1)�(nþ1) is given by

Rww ¼
D

E

w2ðkÞ wðkÞwðk� 1Þ � � � wðkÞwðk� nÞ

wðkÞwðk� 1Þ w2ðkÞ � � � wðkÞwðk� nþ 1Þ

..

. ..
. . .

. ..
.

wðkÞwðk� nÞ wðkÞwðk� nþ 1Þ � � � w2ðkÞ

2
66664

3
77775, ð67Þ
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while Rvv2R
(nþ1)�(nþ1) and Rwv2R

(nþ1)�(nþ1) are
defined analogously.

Next, using F¼F0þC, DM has the form

DM ¼
1

l
FTF� FT

0F0

� �
¼

1

l
ðF0 þCÞTðF0 þCÞ � FT

0F0

� �
¼

1

l
FT

0CþCTF0 þCTC
� �

: ð68Þ

Proposition 9.1: Assume that fy0ðkÞg
l
k¼0 and fu0ðkÞg

l
k¼0

are bounded. Then

E DM½ 
 ¼ R ð69Þ

and

E M½ 
 ¼M0 þ R: ð70Þ

Proof: The result follows from (68) and the fact
that, for all continuous functions f :R!R,
E
�
1
l

Pl
k¼0 f ðwðkÞÞ

�
¼ E½ f ðwðkÞÞ
. œ

Let �40. Then, define ��max¼
D
maxf� � 0 :

��R � E½M
g.

Definition 9.2: Let N¼ �R. Then QCLS is an unbiased
generator of # if

N E½M
 � ��max�R ¼ R #ð Þ:ð ð71Þ

Definition 9.2 states that QCLS with N¼ �R is an
unbiased generator of # if QCLS with M replaced by
E[M] yields the estimated parameter vector �̂ 2 R #ð Þ:
That is, the averaged QCLS problem with the con-
straint matrix set to a scalar multiple of the covariance
matrix yields the true parameter vector. We have the
following unbiasedness result.

Proposition 9.3: Assume that fy0ðkÞg
l
k¼0 and fu0ðkÞg

l
k¼0

are bounded and satisfy (25). Furthermore, assume that
fu0ðkÞg

l
k¼0 is persistently exciting for G(q�1;#), assume

that fu0ðkÞg
l
k¼0, fwðkÞg

l
k¼0 and fvðkÞglk¼0 are jointly

persistently exciting for G(q�1;#), and assume
M0þR40. Then, for all �40, QCLS with N¼ �R is
an unbiased generator of #.

Proof: From Proposition 9.1, it follows that
E[M]¼M0þR. Next, since M0� 0, R� 0 and
M0þR40, it follows from cogredient simultaneous
diagonalisation of M0 and R (Rao and Mitra 1971,
Theorem 6.2.3, p. 122) that there exists
S2R

(2nþ2)�(2nþ2) such that SM0S
T and SRST are

diagonal. Next, for i¼ 1, . . . , 2nþ 2, let mi� 0 and
ri� 0 denote the diagonal entries of SM0S

T and SRST,
respectively. Hence S(M0þR)ST

¼ diag(miþ ri). Since
M0þR is positive definite, it follows that miþ ri40
for all i¼ 1, . . . , 2nþ 2. Furthermore, since fu0g

l
k¼0 is

persistently exciting, it follows from (21) that
N (M0)¼R(#) and defM0¼ 1, and thus exactly one

mi is zero. For convenience, assume m1¼ 0. Next, since
SE[M]ST

¼ diag(miþ ri), �SRST
¼ diag(�ri), and

m1¼ 0, it follows from Proposition 7.1 that
��max ¼ 1=�. Finally, N E M½ 
 � ��max�RÞ ¼ N M0þðð

R� RÞ ¼ N M0Þ ¼ R #ð Þð . œ

Corollary 9.4: Assume that fy0ðkÞg
l
k¼0 and fu0ðkÞg

l
k¼0

are bounded and satisfy (25). Furthermore, assume that
fu0ðkÞg

l
k¼0 is persistently exciting for G(q�1;#), assume

that fu0ðkÞg
l
k¼0, fwðkÞg

l
k¼0, and fvðkÞglk¼0 are jointly

persistently exciting for G(q�1;#), let �40, and
assume M0þR40. Then ��max ¼ 1=�:

Let �̂ be a solution of the QCLS problem with M
and N¼ �R, where �40. SinceM is a random variable,
it follows that �̂ is a random variable. We note that the
traditional notion of unbiasedness is defined in terms
of �̂ and states that

E½�̂
 ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�#TR#
p #: ð72Þ

10. Consistency of QCLS

In this section, we write M0,l, Ml, DMl, �̂l and �max,l for
M0, M, DM, �̂ and �max, respectively, to indicate the
dependence on l. We then let l tend to infinity and
show that the resulting QCLS solution is consistent.

Lemma 10.1: Let fxðkÞg1k¼n � R, assume there exists
�40 such that, for all k� n, 0� x(k)��, let
K� {n, nþ 1, . . .}, and define Kl ¼

D
K\ {n, . . . , l}. Then,

lim
l!1

1

l

X
k2Kl

wðkÞxðkÞ ¼ 0 wp1: ð73Þ

Proof: Write K¼ {k1, k2, . . .}. Next, suppose that K
has a finite number of elements. Then, since w(k) has a
finite second moment, it follows that the

P
k2Kl

w(k)x(k) is finite and hence (73) holds. Next, suppose
that K has an infinite number of elements. Letting l̂ be
the number of elements in Kl, it follows that

�
�

l̂

Xl̂
i¼1

wðkiÞ

������
������ � �

1

l

Xl̂
i¼1

wðkiÞxðkiÞ

������
������ �

1

l

X
k2Kl

wðkÞxðkÞ

�
1

l

Xl̂
i¼1

wðkiÞxðkiÞ

������
������ �

�

l̂

Xl̂
i¼1

wðkiÞ

������
������:

Therefore, it follows that

�� lim
l̂!1

1

l̂

Xl̂
i¼1

wðkiÞ

������
������ � lim

l!1

1

l

X
k2Kl

wðkÞxðkÞ

� � lim
l̂!1

1

l̂

Xl̂
i¼1

wðkiÞ

������
������:
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Furthermore, since fwðkÞg1k¼0 is stationary and ergodic,
it follows that fwðkiÞg

1
i¼1 is stationary and ergodic.

Hence

0 ¼ �� E½wðkÞ

�� �� � lim

l!1

1

l

X
k2Kl

wðkÞxðkÞ � � E½wðkÞ

�� �� ¼ 0

h

Lemma 10.2: Assume that fy0ðkÞg
1
k¼0 and fu0ðkÞg

1
k¼0

are bounded. Then

lim
l!1

1

l
CFT

0 ¼ 0 wp1: ð74Þ

Proof: The (1, 1) entry CFT
0 is

Pl
k¼n wðkÞ y0ðkÞ.

Next, let

Kþ ¼
D
fk : k � n and signð y0ðkÞÞ ¼ 1g

and

K� ¼
D
fk : k � n and signð y0ðkÞÞ ¼ �1g:

Furthermore, define Kl,þ ¼
D
Kþ\ {n, . . . , l} and

Kl,� ¼
D
K�\ {n, . . . , l}. Then, it follows that

Xl
k¼n

wðkÞ y0ðkÞ ¼
X
k2Kl,þ

wðkÞ y0ðkÞ �
X
k2Kl,�

wðkÞj y0ðkÞj:

Using Lemma 10.1, it follows that

lim
l!1

1

l

Xl
k¼n

wðkÞy0ðkÞ ¼ lim
l!1

1

l

X
k2Kl,þ

wðkÞy0ðkÞ

� lim
l!1

1

l

X
k2Kl,�

wðkÞjy0ðkÞj ¼ 0 wp1:

A similar argument holds for the remaining entries
of CFT

0 . œ

Proposition 10.3: Assume that fy0ðkÞg
1
k¼0 and

fu0ðkÞg
1
k¼0 are bounded. Then

lim
l!1

DMl ¼ R wp1: ð75Þ

Proof: It follows from (68), (66), Lemma 10.2 and the
fact that w(k) and v(k) are jointly ergodic that

lim
l!1

DMl¼ lim
l!1

1

l
CTCþFT

0CþCTF0

� �
¼ lim

l!1

1

l
CTC
� �

¼E  ðnÞT ðnÞ
� �

¼R wp1: h

For the following development we consider
M02R

(2nþ2)�(2nþ2) defined by

M0¼
D

lim
l!1

M0,l, ð76Þ

when the limit exists.

Proposition 10.4: M0 exists if and only if, for all
0� �� n, liml!1

1
l

Pl
k¼0 u0ðkÞu0ðkþ �Þ, liml!1

1
lPl

k¼0 y0ðkÞ y0ðkþ �Þ, liml!1
1
l

Pl
k¼0 y0ðkÞu0ðkþ �Þ and

liml!1
1
l

Pl
k¼0 u0ðkÞ y0ðkþ �Þ exist.

Proposition 10.4 shows thatM0 exists if and only if
the given autocorrelations exist.

Lemma 10.5: Given fu0ðkÞg
1
k¼0, assume that there

exists l̂ � 3n such that fu0ðkÞg
l̂
k¼0 is persistently exciting

for G(q�1;#). Then, for all l � l̂, fu0ðkÞg
l
k¼0 is persis-

tently exciting for G(q�1;#).

Next, let fu0ðkÞg
l̂
k¼0 be persistently exciting for

G(q�1;#). Then using Lemma 10.5, it follows that
fu0ð0Þ, . . . , u0ðl̂ Þ, 0, 0, . . .g is persistently exciting for
G(q�1;#) and thus it follows from (21) that, for all
l � l̂, N (M0,l)¼R(#). Furthermore, for the input
fu0ð0Þ, . . . , u0ðl̂ Þ, 0, 0, . . .g, the stability of G(q�1;#)
implies that y0(k)! 0 as k!1. It thus follows that
M0¼ 0 and hence N (M0)¼R

2nþ2
6¼R(#)¼N (M0,l)

for all l � l̂. Hence, in this case, for all l � l̂, N (M0,l) is
a proper subset of N (M0).

More generally, if M0 exists, then, for all l� 3n,
N (M0,l)�N (M0). However, the above example shows
that N (M0)¼N (M0,l) is not true in general. Thus we
have the following definition. For convenience, for
�� n, let 
2nþ1,� be the second smallest singular value

of

�0ð�Þ

..

.

�0ð�þ 3nÞ

2
64

3
75.

Definition 10.6: The input sequence fu0ðkÞg
1
k¼0 is

infinitely persistently exciting for G(q�1;#) if there
exists "40 such that, for all �� n, 
2nþ1,�4".

The following result is immediate.

Proposition 10.7: If fu0ðkÞg
1
k¼0 is infinitely persistently

exciting for G(q�1;#), then the following statements
hold:

(i) For all �� n, fu0ð�þ kÞg3nk¼0 is persistently
exciting for G(q�1;#).

(ii) For all � 2R
2nþ2 such that �=2R(#), there

exists "�40 such that, for all �� n,
�0ð�Þ

..

.

�0ð�þ 3nÞ

2
64

3
75�

�������
�������
2

4 "�.

Lemma 10.8: Assume that M0 exists and that
fu0ðkÞg

1
k¼0 is infinitely persistently exciting for

G(q�1;#). Then, for all l� 3n,

N M0ð Þ ¼ N M0,l

� �
, ð77Þ

and thus

N M0ð Þ ¼ R #ð Þ: ð78Þ
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Proof: Since #2N (M0,l) for all l� 3n, it follows that

#2N (M0). Hence, for all l� 3n, N (M0)8N (M0,l).

Conversely, since fu0ðkÞg
1
k¼0 is infinitely persistently

exciting, it follows that, for all l� 3n and �� n,

N M0,l

� �
¼ N

�0ð�Þ

..

.

�0ð�þ 3nÞ

2
64

3
75

0
B@

1
CA ¼ R #ð Þ: ð79Þ

Next, let � 2R
2nþ2 be such that � =2N (M0,l) for all l� 3n.

Then it follows from (79) that, for all �� 0,

�0ð�Þ

..

.

�0ð�þ 3nÞ

2
64

3
75� 6¼ 0. Next, for all l� 3n, we have

�TM0,l� ¼ �
T 1

l

Pl
k¼0 �0ðkÞ

T�0ðkÞ

 �

� ¼ 1
l

Pl
k¼0 r

2
k, where

rk ¼
D
�0(k)�. Since fu0ðkÞg

1
k¼0 is infinitely persistently

exciting and � =2R(#) , it follows from Proposition 10.7

that there exists "�40 such that, for all �� n,

P�þ3n
k¼� r2k ¼

�0ð�Þ

..

.

�0ð�þ 3nÞ

2
64

3
75�

�������
�������
2

2

4 "2� , and thus, for all

l040, 1
3nl0

P3nl0
k¼0 r

2
k 4

"2�
3n. It then follows that �TM0� ¼

liml!1 �
TM0,l� ¼ liml!1

1
l

Pl
k¼0 r

2
k �

"2�
3n 4 0. Since

M0� 0, it follows that � =2N (M0). œ

Definition 10.9: QCLS with N¼ �R is a consistent

generator of # if the following three conditions are

satisfied:

(i) M1 ¼
D
liml!1 Ml wp1 exists.

(ii) W1(�R) ¼
D
N (M1� �max,1�R)\D(�R) 6¼1,

where �max,1 ¼
D
max{�� 0 :��R�M1}.

(iii) N (M1��max,1�R)¼R(#).

Definition states that QCLS with N¼ �R is a

consistent generator of #, if the limiting problem exists,

has a solution and yields the estimated parameter

vector �̂1 2 R #ð Þ:

Lemma 10.10: Assume M0 exists and that fy0ðkÞg
1
k¼0

and fu0ðkÞg
1
k¼0 are bounded and satisfy (25).

Furthermore, for all l� 3n, assume that fu0ðkÞg
l
k¼0 is

persistently exciting for G(q�1;#), and fu0ðkÞg
l
k¼0,

fwðkÞglk¼0 and fvðkÞglk¼0 are jointly persistently exciting

for G(q�1;#). Then,M1 exists and is given by

M1 ¼M0 þ R: ð80Þ

Proof: Proposition 10.3 implies that liml!1

Ml¼ liml!1M0,lþ liml!1DMl¼M0þR wp1. œ

Next, we have the following consistency result.

Theorem 10.11: AssumeM0 exists and that fy0ðkÞg
1
k¼0

and fu0ðkÞg
1
k¼0 are bounded and satisfy (25).

Furthermore, for all l� 3n, assume that fu0ðkÞg
l
k¼0 is

infinitely persistently exciting for G(q�1;#), assume
fu0ðkÞg

l
k¼0, fwðkÞg

l
k¼0 and fvðkÞglk¼0 are jointly persis-

tently exciting for G(q�1;#), let �40, and assume that
M140. Then QCLS with N¼ �R is a consistent
generator of #.

Proof: From Theorem 7.2, it follows that �̂l satisfies

Ml � �max ,l�R
� �

�̂l ¼ 0: ð81Þ

Next, using Lemma 10.10 and Corollary 7.3, it follows
that M1¼M0þR40 and W1 6¼1. Furthermore,
sinceM0 and R are positive semidefinite, it follows by
cogredient simultaneous diagonalisation ofM0 and R
(Rao and Mitra 1971, Theorem 6.2.3, p. 122) that there
exists S2R

(2nþ2)�(2nþ2) such that SM0S
T and SRST

are diagonal. Next, for i¼ 1, . . . , 2nþ 2, let mi� 0 and
ri� 0 denote the diagonal entries of SM0S

T and SRST,
respectively. Hence S(M0þR)S

T
¼ diag(miþ ri). Since

M0þR is positive definite, it follows that miþ ri40
for all i¼ 1, . . . , 2nþ 2. Furthermore, since fu0g

1
k¼0 is

infinitely persistently exciting, it follows from Lemma
10.8 that N (M0)¼R(#) and defM0¼ 1, and thus
exactly one mi is zero. For convenience, assume m1¼ 0.
Next, since SM1S

T
¼ diag(miþ ri), �SRS

T
¼ diag(�ri),

and m1¼ 0, it follows from Proposition 7.1 that
�max,1¼ 1/�. Finally, since N (M1��max,1 �R)¼
N (M0þR�R)¼N (M0), it follows from Lemma
10.8 that N (M1� �max,1�R)¼R(#) and thus QCLS
with N¼ �R is consistent. œ

We note that Theorem 10.11 holds for arbitrary
�40. Hence, in practice, R need only be known to
within a scalar multiple.

The traditional notion of consistency states that

�̂l !�
#ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�#TR#
p as l!1: ð82Þ

Numerical simulations given below suggest that QCLS
with N¼ �R is consistent in this sense.

11. An analytical example illustrating consistency

In this section, we illustrate that when the noise
statistics are known, QCLS with N¼ �R is a consistent
generator of #, whereas the standard least-squares
estimator is generally not consistent.

Consider the first-order strictly proper stable
system

Gðq�1;#Þ ¼
D b1q

�1

a0 þ a1q�1
, ð83Þ

where, in accordance with Remark 2.1, #¼ [a0 a1 b1]
T,

�¼ [�0 �1 �2]
T and �(k)¼ [y(k) y(k� 1) �u(k� 1)]T.

Furthermore, assume that the noise sequence w(k) is
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white, v(k)� 0 and let the input sequence fu0ðkÞg
l
k¼0 be a

realisation of a zero-mean white noise sequence
with variance 
2u . The measured output fyðkÞglk¼0 is
given by (22).

Next, note that the standard least-squares error can
be written as

� ~�l¼
D

1=�0ð Þ ~̂�l � 1=a0ð Þ ~# ¼
1

l
FT

2F2

� 	�1
1

l
FT

2C#, ð84Þ

so that the asymptotic standard least-squares bias � ~�1
is given by

� ~�1¼
D

lim
l!1

� ~�l ¼ R�1q, ð85Þ

where R is defined by (66) and

q ¼ lim
l!1

1

l
FT

2C#

¼
a0E½ yðk� 1ÞwðkÞ
 þ a1E½ yðk� 1Þwðk� 1Þ


�a0E½uðk� 1ÞwðkÞ
 � a1E½uðk� 1Þwðk� 1Þ


� �
:

ð86Þ

Furthermore, computing the expectations in R and
(86) we have

E½ y2ðkÞ
 ¼
b21


2
u

a20 � a21
þ 
2w, ð87Þ

E½ yðk� 1Þuðk� 1Þ
 ¼ 0, ð88Þ

E½u2ðkÞ
 ¼ 
2u , ð89Þ

E½ yðk� 1ÞwðkÞ
 ¼ 0, ð90Þ

E½ yðk� 1Þwðk� 1Þ
 ¼ 
2w, ð91Þ

E½uðk� 1ÞwðkÞ
 ¼ 0, ð92Þ

E½uðk� 1Þwðk� 1Þ
 ¼ 0: ð93Þ

Substituting (87)–(93) into R and (86), it follows that

(85) becomes

� ~�1¼

b2
1

2u

a2
0
�a2

1

þ
2w 0

0 
2u

2
4

3
5
�1

a1

2
w

0

� �
¼

a1

2
w a2

0
�a2

1ð Þ
b2
1

2uþ a2

0
�a2

1ð Þ
2wð Þ

0

2
4

3
5:
ð94Þ

Furthermore, we define the signal-to-noise ratio & by

&¼
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl
k¼0

y2ðkÞ=
Xl
k¼0

w2ðkÞ

vuut , ð95Þ

so that

lim
l!1

& ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ y2ðkÞ


E½w2ðkÞ


s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21


2
u

ða20 � a21Þ

2
w

þ 1

s
: ð96Þ

Therefore, using (96), (94) becomes

� ~�1 ¼
1
&2

0

" #
: ð97Þ

Note that the estimate of b1 is consistent, while the

estimate of a1 is biased.
Next, using QCLS identification, we assume that

Rww is known to within a scalar multiple. Since

Rww ¼ 

2
wInþ1 in this example, and we choose

N ¼
1 0 0
0 1 0
0 0 0

2
4

3
5: ð98Þ

Using Theorem 7.2 and Corollary 7.3 we write

M� �maxNð Þ� ¼ 0: ð99Þ

We note that

Noting E[y2(k� 1)]¼ E[y2(k)] and

E½ yðkÞ yðk� 1Þ
 ¼
�a1b

2
1


2
u

a0 a20 � a21
� � , ð101Þ

E½ yðkÞuðk� 1Þ
 ¼
b21


2
u

a0
, ð102Þ

we substitute (87)–(93), (101) and (102) into (100) and
(99). It then follows that �̂1 satisfies

b2
1

2u

ða2
0
�a2

1
Þ
þ 
2w� �max

�a1b
2
1

2u

a0 a2
0
�a2

1ð Þ
�b1


2
u

a0

�a1b
2
1

2u

a0 a2
0
�a2

1ð Þ

b2
1

2u

ða2
0
�a2

1
Þ
þ 
2w� �max 0

�b1

2
u

a0
0 
2u

2
6664

3
7775�̂1 ¼ 0:

ð103Þ

Solving (103) for �max, we obtain

�max ¼ 

2
w, or �max ¼ 


2
w þ

b2
1

2u a2

0
þa2

1ð Þ
a2
0
a2
0
�a2

1ð Þ
: ð104Þ

lim
l!1

M ¼

E½ y2ðkÞ
 E½ yðkÞ yðk� 1Þ
 �E½ yðkÞuðk� 1Þ


E½ yðkÞ yðk� 1Þ
 E½ y2ðk� 1Þ
 �E½ yðk� 1Þuðk� 1Þ


�E½ yðkÞuðk� 1Þ
 �E½ yðk� 1Þuðk� 1Þ
 E½u2ðk� 1Þ


2
64

3
75: ð100Þ
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Furthermore, since the system is stable, a15a0, and

thus
b2
1

2u a2

0
þa2

1ð Þ
a2
0
a2
0
�a2

1ð Þ
4 0. Hence �max ¼ 


2
w. By substituting

�max into (103) and solving for �̂1 we obtain

�̂1 ¼
�0
a0
#, ð105Þ

where a0 is a nonzero scalar. Therefore, using Remark

2.1, it follows that Gðq�1;#Þ ¼ Gðq�1; �̂1Þ. Hence, in
accordance with Theorem 10.11, QCLS with N¼ �R is

a consistent generator of #.

12. A numerical example illustrating unbiasedness

and consistency

Consider the stable transfer function

Gðq�1;#Þ ¼
�0:2þ q�1 � q�2

�1� 0:5q�1 � 0:9q�2
, ð106Þ

where #¼ [�1 �0.5 �0.9 0.2 1 �1]T and �¼ [�1 �2 �3 �4
�5 �6]

T. We construct fu0ðkÞg
l
k¼0 to the sum of two

sinusoids at frequencies 2� rad/s and 1.5� rad/s as well
as a realisation of a zero-mean white noise sequence
with standard deviation 1. The input fu0ðkÞg

l
k¼0 is

corrupted by white noise v(k) with standard deviation
0.04, while the output fy0ðkÞg

l
k¼0 is corrupted by white

noise w(k) with standard deviation 0.4. Thus the noise
covariance matrix R is

R ¼

0:16 0 0 0 0 0
0 0:16 0 0 0 0
0 0 0:16 0 0 0
0 0 0 0:0016 0 0
0 0 0 0 0:0016 0
0 0 0 0 0 0:0016

2
6666664

3
7777775
:

ð107Þ

Since we use N¼R in the QCLS problem, the
normalised parameter vector is

#0¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

#TR#

r
#

¼ �0:2888 �0:1444 �0:2599 0:0577 0:2888 �0:2888½ 

T:

ð108Þ
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Figure 1. Numerical example. Comparison of estimates of system parameters obtained using standard least squares and using
QCLS, for l¼ 1000. The large � and * represent the average of the estimates over 50 runs for the QCLS and standard
least-squares solutions, respectively. The averages of the QCLS estimates over 50 runs are close to the true parameter values,
which suggests that the QCLS solutions are unbiased.
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We set l¼ 1000, perform 50 runs with different

realisations of w(k) and v(k) and compute the QCLS

estimates as determined by Theorem 7.2 along with the

standard least-squares estimates. Since standard least

squares is equivalent to normalising �1 to �1, we scale
the least-squares estimates so that �1 matches the first

component of #0. Figure 1 shows that the averages of

QCLS estimates over the 50 runs are close to the true

parameter, indicating that the QCLS estimates are

unbiased.
Next, we vary l from 50 to 8� 105 and compute the

QCLS solutions as determined by Theorem 7.2. We
compare these estimates to parameter estimates

obtained by standard least-squares. Figure 2 shows a

comparison between the QCLS estimates and the
standard least-squares estimates of all six parameters

for increasing l. It is seen that the QCLS estimates
converge to the true parameters as l becomes large.

13. Conclusions

In this article, we investigated the consistency of
parameter estimates obtained from least-squares

identification with a quadratic parameter constraint.

For generality, we considered infinite impulse-response
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Figure 2. Numerical example. Comparison of estimates of system parameters obtained using standard least squares and using
QCLS, as a function of the amount of data. It is seen that the QCLS estimates converge to the true parameters as l becomes large.
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systems with coloured and possibly correlated input and
output noise. In the case of finite data, we showed that
there always exists a possibly indefinite quadratic
constraint depending on the noise realisation that
results in a generator that yields the true parameters
of the system when a persistency condition is satisfied.
When the noise covariance matrix is known to within a
scalar multiple, we showed that the QCLSs estimator
with a semidefinite constraint matrix yields is unbiased
and consistent in the sense that the averaged
problem and limiting problem produce, respectively,
unbiased and true (with probability 1) estimators. We
thus provided the missing foundation for the KL
method and its numerous variants in the literature,
while providing a complete development of unbiased-
ness and consistency in a precise sense. Future work will
investigate whether the QCLS estimator is unbiased and
consistent in the traditional sense.
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Söderström, T., Soverini, U., and Mahata, K. (2002),
‘Perspectives on Errors-in-variables Estimation for
Dynamic Systems’, Signal Proceedings, 82, 1139–1154.
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