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In this article, we investigate the consistency of parameter estimates obtained from least-squares identification
with a quadratic parameter constraint. For generality, we consider infinite impulse-response systems with
coloured input and output noise. In the case of finite data, we show that there always exists a possibly indefinite
quadratic constraint depending on the noise realisation that results in a constrained optimisation problem that
yields the true parameters of the system when a persistency condition is satisfied. When the noise covariance
matrix is known to within a scalar multiple, we prove that solutions of the quadratically constrained least-squares
(QCLs) estimator with a semidefinite constraint matrix are both unbiased and consistent in the sense that the
averaged problem and limiting problem produce, respectively, unbiased and true (with probability 1) estimators.
In addition, we provide numerical results that illustrate these properties of the QCLS estimator.
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1. Introduction

Least squares is undoubtedly one of the most widely
developed, extensively applied and generally useful
techniques in science and engineering (Draper and
Smith 1981; Lawson and Hanson 1995; Bjoérck 1996).
In its simplest form, least squares seeks ‘approximate
solutions’ to 4x = b when this equation has no solution
per se due to inherent inconsistency or due to errors in
the regressor matrix A or the output vector b. More
precisely, least squares seeks a vector x that minimises
the Euclidean norm || 4x — b||», which can be viewed as
seeking the smallest residual w in the equation
Ax=b+w.

In a stochastic setting, where 4, b or w are random
variables, the solution X to the least-squares problem is
also a random variable. In this case, questions of
interest concern the unbiasedness and consistency of the
least-squares estimator X, where unbiasedness refers to
the situation in which the expected value of % is the true
value x.4e, While consistency refers to the convergence,
with probability 1, of X = Xy—Xue as the number N of
data points used to construct 4 and b increases without
bound. Although unbiasedness and consistency are
independent conditions, consistency is usually obtained
by constructing an unbiased estimator whose variance
converges to zero as the amount of available data
increases without bound. The best linear unbiased

estimator (BLUE) has been extensively studied; see,
for example, Campbell and Meyer (1991, chap. 6).

In system identification, least squares is the key
tool for estimating the coefficients of time-series and
state-space models (Hsia 1977; Séderstréom and Stoica
1989; Juang 1993; van Overschee and de Moor 1996;
Ljung 1999). For time-series models, a difficulty arises
from the fact that the components of the residual w are
past values of the process noise, while the entries of the
regressor matrix A include past values of the output.
Consequently, the residual is correlated with the
regressor, resulting in a biased estimator x. This case
is not addressed by the classical theory of BLUE.
Hence, time-series estimation poses difficulties that
transcend the central results of classical linear estima-
tion theory.

In time-series identification, correlation between
the regressor matrix and residual is absent in two very
special cases, namely, when the time-series model has
an equation error with known spectrum (Soéderstrom
and Stoica 1989, pp. 66, 187; Ljung 1999, p. 205) and
when the dynamics are finite impulse response. As
shown in Ljung (1999, p. 205), when the time-series
model has an equation error with known spectrum, the
time-series model can be written using the notation of
Ljung (1999) as

A(q) y(1) = B(Qu(?) + «(q)e(1),
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where q is the backward shift operator, 4(q) and B(q)
are unknown polynomials in q, «(q) is a known filter
and e(7) is white filter. Then the time-series model can
be rewritten as

A(q) ye(t) = B(@ug(1) + e(1),

where yr(n)=k"N@(0) and up()=k"'(@u(r). By
pre-filtering the data to obtain yp(f) and wup(?),
standard least-squares techniques can be applied to
estimate the time-series model.

Alternatively, consider an errors-in-variables time-
series model in which the input u(7) and the output y(7)
are corrupted by coloured noise «i(q)ei(f) and
K-(q)es(1), respectively, where e;(f) and e,(7) are white
and «(q) and «»(q) are colouring filters. The time-series
model can then be written as

A(q) y(t) = B(q)u(t) + A(q)k1(q)e1(t) + B(q)k2(q)ea(2).

In this case, it follows that the equation error is
A(q)x1(q)e(t) + B(q)xa(q)ex(t). Now, even if the colour-
ing filters «x1(q) and «»(q) are known, the spectrum of
the equation error remains unknown since A(g) and
B(q) are unknown. Therefore the pre-filtering tech-
nique can no longer be applied. Further details on
these cases are given in Section 5.

The issue of bias in time-series model identification
is well known, and the relevant literature is extensive.
An carly, pivotal contribution is the Koopmans—Levin
(KL) method (Levin 1964), in which knowledge of the
noise statistics is used to reduce the bias in the
estimates of the model coefficients. This technique
hinges on the minimisation of a ratio of quadratic
forms, which in turn leads to the solution of a
generalised eigenvalue problem, for which the general-
ised eigenvector provides the parameter estimates. The
KL method is further investigated in Smith and Hilton
(1967), Aoki and Yue (1970), Sagara and Wada (1977),
Zhdanov and Katsyuba (1979), Fernando and
Nicholson (1985) and Zheng (2002b).

Since identification of a transfer function entails
estimation of the coefficients of the numerator and
denominator polynomials, scaling is needed to remove
the inherent ambiguity due to a ratio of polynomials.
The most obvious scaling is to scale both polynomials
so that the denominator polynomial is monic.
However, alternative constraints can be enforced. For
example, a constraint on the norm of the coefficients
can be used to scale the numerator and denominator
coefficients (Furuta and Paquet 1970; Regalia 1994;
Zhang and Feng 1995). If the norm constraint involves
a quadratic form, then the resulting quadratically
constrained least squares (QCLS) estimation problem
can be solved using Lagrange multipliers, as pursued in
Lemmerling and de Moor (2001), van Pelt and

Bernstein (2001) and Yeredor and de Moor (2004).
The resulting optimality conditions have the form of a
generalised eigenvalue problem, in which the general-
ised eigenvector is an estimate of the transfer function
coefficients.

The above discussion suggests that the KL. method
can be viewed as the consequence of a particular QCLS
optimisation problem. A careful examination of the
literature on unbiasedness and consistency shows that
this linkage has been largely overlooked, resulting in a
fragmented collection of approaches to this problem.
Related techniques for removing the bias in least-
squares identification include James, Souter, and
Dixon (1972), Akashi (1975), Merhav (1975),
Soderstrom (1981), Zheng and Feng (1989), de Moor,
Gevers, and Goodwin (1994), Zheng (1998, 1999,
2002a) and Guo and Billings (2007). Finally, the
instrumental variable method (Wong and Polak 1967;
Soderstrom and Stoica 1981; Stoica and Soderstrom
1982) provides yet another approach to this problem.
Recent works, such as Lemmerling and de Moor
(2001), Soderstrom, Soverini, and Mahata (2002),
Zheng (2002a), Yeredor and de Moor (2004), Chen
(2007), Hong, Soderstrom, and Zheng (2007), Mahata
(2007), Soderstrom (2007) and Agiiero and Goodwin
(2008) suggest continued interest in unbiased and
consistent estimators.

Errors-in-variables identification problems can be
classified as either functional or structural (Agiiero and
Goodwin 2008). When the true input to the system is
an arbitrary deterministic signal, the identification
problem is called a functional problem, whereas a
structural problem arises when the true input to the
system is a stochastic, usually white noise, signal. For
the structural case, results on consistency and unbiased-
ness are available (see e.g. Soderstrom et al. 2002;
Mahata 2007), but few proofs of consistency are
available for the functional case. Moreover, in the
structural case, the noise covariance can be estimated
from the input data; however, in the functional case it
is typically assumed that the noise covariance matrix is
known. For instance, for the functional problem, Hong
et al. (2007) show that the estimates are asymptotically
Gaussian distributed (unbiased but not consistent),
when the covariance matrix is known to within two
unknown  parameters.  Additionally,  Kukush,
Markovsky, and Huffel (2005) show that when the
covariance matrix is known to within a scalar multiple
and the data matrices satisfy certain structural
constraints, structured total least squares provides
consistent estimates. A detailed discussion on all of
these cases is provided in Soderstrom (2007).

In this article, we focus on the functional case, and
we assume that the autocovariance matrix of the noise
is known to within a scalar multiple. Moreover, the
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algorithm derived in this article is closely related to the
KL method, bias-compensation methods and the
Frisch scheme (Koopmans 1937; Levin 1964; Aoki
and Yue 1970; Fernando and Nicholson 1985; Zheng
1998, 2002a; Hong, Soderstrom, and Zheng 2006;
Mahata 2007; Soderstrém 2007). However, the novel
features of this article include an alternative formula-
tion of the above-mentioned methods, and, more
importantly, this alternative formulation allows us to
derive unbiasedness and consistency results for the
functional case.

The first objective of this article is accomplished by
the above discussion, that is, to point out that the KL
method can be viewed as a special case of QCLS
estimation. With this realisation in mind, our objective
is then to characterise the solution set of an appropri-
ate quadratically constrained quadratic programming
problem. Because of space constraints, the details of
this development are provided in Palanthandalam-
Madapusi, van Pelt, and Bernstein (2009), with only
the key results quoted for use herein. We note,
however, that, unlike earlier work based on Lagrange
multipliers and necessary conditions, we provide nec-
essary and sufficient conditions for the existence of
solutions along with a complete characterisation of the
solution set directly in terms of the properties of matrix
pencils.

Next, we consider an errors-in-variables SISO
ARMAX identification problem with minimal assump-
tions on the structure of the model and the nature of
the noise. For this problem, we show that there exists a
possibly indefinite quadratic constraint on the system
coefficients such that the resulting solution of the
optimisation problem yields the true coefficients. This
analysis, as well as all persistency conditions, is entirely
deterministic.

The existence of a quadratic constraint that leads to
the true parameter values provides a framework for
understanding the success of the KL algorithm.
However, the constraint matrix in the deterministic
formulation depends on the sensor errors (noise) and
thus is unknowable. We therefore assume the noise
signal to be stochastic and ergodic, and replace the
indefinite QCLS constraint with a positive-semidefinite
constraint based on the noise covariance. Under the
assumption that this noise covariance is known to
within a multiplicative constant, we prove that solu-
tions of this modified QCLS problem are both unbi-
ased and consistent in the sense that the averaged
problem and limiting problem produce, respectively,
unbiased and true (with probability 1) estimators. In
addition, we provide numerical results that suggest
that the QCLS estimator is unbiased and consistent in
the standard sense.

The main objective of this article is to provide the
missing foundation for the KL method and its numer-
ous variants in the literature, while providing a
complete development of unbiasedness and consistency
in a precise sense. The essential idea of estimating the
transfer function coefficients by means of constrained
optimisation is given an intuitively compelling foun-
dation, thus linking, clarifying and extending the prior
literature.

1.1 Notation

q ! is the backward shift operator, 0,, is the n x n zero
matrix, I, is the n x n identity matrix, R” is the set of
real nx 1 column vectors and R"*™ is the set of real
n x m matrices. For 4 e R"*", rank A is the rank of A4,
R(A) is the range of A, N(A) is the null space of 4,
def A4 is the defect (nullity) of A, An.x(A) is the largest
eigenvalue of 4, An(A) is the smallest eigenvalue of 4
and A" is the Moore—Penrose generalised inverse of A4.
Furthermore, diag(q;) is the diagonal matrix with
diagonal entries @;. For symmetric matrices 4 and B,
A> B means that 4 — B is positive definite, and 4 > B
means that 4 — B is positive semidefinite.

2. Null-space condition

Consider the single-input, single-output system

aoyo(k) + aryolk — 1)+ -+ + a,yo(k — n)
= bouo(k) + brug(k — 1) + - - - + byug(k — n), (1)

where (k) is the system input and y(k) is the system
output. By defining the backward shift operator q~'
and the polynomials

Aq 2w +aq + -+ aq” 2
and
B ) 2by+big” + -+ bg 3)

(1) can be rewritten as

Aq™; 9) yolk) = Blg™"; D)uo(k), “
where the system parameter vector 9 € R*"2 is
92 [ag-ay bo---b,]". 5)

We assume that the polynomials A(q~';®) and
B(q"';9) are coprime, that is, (1) is a minimal
representation. Furthermore, we assume that ay#0,
which is equivalent to the assumption that (1) is causal.
Hence v #0.
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Next, defining the n-th-order proper transfer func-
tion G(q~'; 9) by

1A Bl@h0)
G(q ;)= m» (6)
we have
yo(k) = G(q~"; Duo(k). (7

Remark 2.1: Note that G(q~';9)=G(q""; n?) for all
nonzero n€R. This nonuniqueness of the system
parametrisation can be removed by choosing n=1/ay
so that the first component of n# is unity. Although
this normalisation yields a unique system parametrisa-
tion, we choose not to do this in order to facilitate the
following analysis.

Next, assuming the system input wug(k) and the
system output yo(k) are available for k=0, ..., /, where

[>n, we define the noise-free regression matrix @y €
R(!—n+1)><(2n+2) by

¢o(n)
S (8)
¢ (1)
where the noise-free regression vector ¢o(k) € R+ is
o) = [3o(k) -+ yolk=n) —uo(k) -+ —uo(k—m)]".
)
With this notation, (1) can be written as
®y0 = 0, (10)

which is equivalent to the null-space condition
¥ € N(®y). (11)

Finally, define the positive-semidefinite matrix
M,y e RHDxCm2) g

My 2 %zpqujo, (12)

Note that rank My=rank ®;, N(My)=N(®,) and
def My=def @, (Bernstein 2005). Therefore, the null-
space condition (11) is equivalent to

S N(Mo) (13)
Next, partition @, as
Dy =[Py P2 |, (14)

where @y, e R and @y, € RC-"D*@HD  apnq
partition ¢ as

ao
5= [ 5], (15)

where ¢ € R?"*!. Then the null-space condition (11) is
equivalent to

ay®y; + Poad =0, (16)

which implies that @, = —a;' P20 € R(Poa) = R(Dy),
and thus rank @y =rank ®,. Hence, &y =
@02@8}@01 = @0(1’3—@01 and

1
[_ o0, } e N(dy). (17)

The following result characterises N (D).

Proposition 2.2:  Let {uo(k)},_, and {yo(k)},_, satisfy
(7). Then

_ +
¢g _ B 1¢0T1 (¢02¢0Tz) N (18)
B, — B O P01 0, (Por®y,)

where
A T T+ 19)
B=1+ &) (Pa®,) " Por. (
Furthermore,

N(®g) = R(lns2 — D§ Do)

g B~ (@901)"
R D1 — P Pon
—B by, + B~ 9, Por
X (D ®1)"
(20)
Proof: See Bernstein (2005, Fact 6.4.26). Ol

Next, note that the null-space condition (11)
uniquely determines ¥ up to a scalar factor if N(®)
is one dimensional, that is, if def®,=1. Noting that
rank @+ def &y =2n + 2, the following definition con-
siders this case.

Definition 2.3: The input sequence {uo(k)}fczo is
persistently exciting for G(q~';9) if rank &y =2n+ 1.

Note that, given {ug(k)};=, such that {uo(k)}/{,:1 is
persistently exciting for G(q~';v), it follows that, for
all /> [, {uo(k)}i,=1 is persistently exciting for G(q~"; 9).

Proposition 2.4:  Let {uo(k)}._, and {yo(k)}\_, satisfy
(7). Then the following statements are equivalent:

(1) {uo(k)}ffzo is persistently exciting for G(q™'; 9).
(i1) rank My=2n+1.
(i) defMy=1.
(iv) rank @o=2n+1.
(v) defdy=1.
(vi) rank @pp=2n+1.
(vil) def®g,=0.
(viii) PP, > 0.
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In this case, it follows that /> 3n, &, = (@1,®,,) ' @,
@32@02 = 12”+] and

1
N(@g) = N(Mop) = R([_%%l D =R®). (1)
Note that R(¢) ={c?:c e R}.

Suppose that {uo(k)}fc=0 is persistently exciting
for G(q~';9) so that N(Py) =R(9). Then G(q~';9) =
G(q~';0) for all 8eN(Pp)\{0}=R(®)\{0}, and
G(q~'; ) is determined uniquely up to an arbitrary
scaling by the null-space condition (11), which is
characterised by (21).

3. Errors-in-variables formulation

Next, we assume that the system output yy(k) is
corrupted by output noise w(k) so that the measured
output y(k) is given by

2(k) = yo(k) + w(k). (22)
Hence
y(k) = G(q"; up(k) + w(k). (23)

Furthermore, suppose that the system input ug(k) is
uncertain so that the measured input u(k) is given by

u(k) = ug(k) + v(k), 24)

where v(k) is input noise. Then (23) can be written as
the errors-in-variables model

(k) = G@™ s Muk) — G5 D)k + w(k).  (25)

Remark 3.1: We make no assumptions on w(k) and
v(k) until Section 10. Since w(k) need not be white, (25)
can represent a Box—Jenkins model. By setting v(k) =0
and w(k) = H(q ")w(k), where H(q™') is a stable
transfer function and w(k) is zero-mean and white, it
follows that (25) becomes the Box—Jenkins model

y(k) = G(@™"; Mu(k) + H(q™)(k). (26)

We write (25) in regression form as

A" 9) y(k) = B@™; 9yulk)
= A" 9)w(k) — B@™ s (k) 27)

which can be rewritten as
o' (k) = v (k)o, (28)

[RZH—O—Z i

where the regression vector ¢(k) e S

SR E [y yk —n)  —u(k) - —ulk —m)]" (29)

and the noise vector y(k) € R*"*? is defined as
W)= [wil)--wik —n) —v(ke)--—v(k—m]".  (30)
Furthermore, note that
p(k) = ¢po(k) + Y(k). (3D

Henceforth, we consider a finite measured output
sequence {y(k)}fczo generated by (25) with measured
input sequence {u(k)}fczo and noise sequences {w(k)}ﬁ(=0
and {v(k)}ézo. Assuming />n, we define the noisy
regression matrix ® € RU="+DxCn+2) py

o' (n)
o2 (32)
o' ()
and the noise matrix ¥ € RU="D>@n+2) 1y
¥ (n)
palo (33)
YD)
It then follows from (28) that
o9 = Po. (34)
Since
DY =, (35)

it follows that (34) is equivalent to (10). However,
note that

B & N(P) (36)

if and only if Y##0. Now, partition @ =[®; ®,],
where @, e R and ¢, e RU="+D*C+D and define
Me R(2n+2)x(2n+2) by

Al

M= 7¢T<p. (37)

Next, we consider the following definition.

Definition 3.2: The input sequence {uo(k)}i:0 and the
noise sequences {w(l’c)}f(:0 and {v(k)}f(:0 are jointly
persistently exciting for G(q~'; ) if rank & =2n+2.

The assumption that {UO(k)}ir:() is persistently
exciting for G(q~';®) and the assumption that
{uo(k)}e_o» {w(k)Yi_y and {v(k)}._, are jointly persis-
tently exciting for G(q~';¥) are independent, that is,
one does not imply the other.

Proposition 3.3: Let {u(k)}i,:o and {y(k)}i,zo satisfy
(25). Then the following statements are equivalent:

() {uo(k)}i—g W) Yh—gs and {W(k)Y_y are jointly
persistently exciting for G(q~'; ).
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(i) rank M =2n+2.
(iii) def M =0.

(iv) M>0.

(v) rank @ =2n+2.
(vi) def®=0.

In this case, [ >3n+1.

4. Errors-in-variables least squares
In this section, we review the standard least-squares
problem to provide a framework for QCLS identifica-
tion. Consider the model G(q~"; 0) of G(q~'; 9), where
the model parameter vector 6 € R*"*? is
T
92[90“'9;1 Opst - Oongr | (38)

and where Remark 2.1 is also valid for 6. Note that the
definition of 6 assumes that the system order n is
known. We partition 6 as

o
"] o

where 6 € R+,

In the noise-free case, ¥ satisfies @y =0 (see (10)).
Hence, when noise is present, we seek 6 that minimises
||®0]». Here we fix 6, and consider the standard least-
squares cost

JO) 2 163 = 160®) + D26]3. (40)

The standard least-squares problem is thus

min J(6). (41)

96R2n+1
All solutions to (41) are given by the following result.

Proposition 4.1:  Assume that {u(k)},_, and {y(k)};_,
satisfy (25). Then 6 is a global minimiser of J(0) if and
only if there exists € € R such that

0= —00P3 P + (L1 — D3 D2)E. (42)
In this case,
J0) = GO} (i1 — 9207) D). (43)
If, in addition, {uo(k)}fczo, {w(k)}f€=0 and {v(k)}f(=0 are
Jjointly persistently exciting for G(q~';9), then
0=—0)dF P, = —eo(dﬁgdiz)_ld%@l (44)
is the unigue minimiser of (40).
Proof: Note that
J(0) = [160®1 + ©,0113
= 160D + D263 + G DT DL 0T D) — DT DT D,
= @20 + 003 P13 + BT (I_p1 — P2PF) 1.

Since 3P| (I1_y41 — @7 )Py is independent of 6 and
||4520+90<D245+<I>1||2 is nonnegative, all global mini-
misers of J(6) satisfy | B0 + 90452?;%51 ||2 =0. Thus 0
is a global minimiser of J(¢) if and only if
0= —60pPFd, +v, where ve N (d,). Since N(Py) =
R(Ly+1 — @5 P,), all global minimisers of J() are of
the form (42) with minimum value given by (43).
Finally, assume that {uo(k)}fc=0 and {w(k)}ffzo are
jointly persistently exciting for G(q~';®). Then, since
rank @, =2n+ 1, it follows that &, = I,4, and (42)
specialises to (44). ]

5. Correlation between the regressor and noise
vectors

First, partition ¥ =[¥, ¥,], where ¥, e R"™"*! and
¥, e RU"+D*CmD Then, as noted in Ljung (1999,
p. 205), the asymptotic error in the least-squares
estimate is due to correlation between @, and Y.
Since, for all k, y(k) and w(k) are correlated, and u(k)
and v(k) correlated, it follows that &, and ¥, are
generally correlated for the system (25). However,
under the two special cases discussed in the following
subsections, this correlation disappears. As noted in
Soderstrom and Stoica (1989, pp. 66, 187), both of
these cases are extremely specialised.

5.1 White equation error

Consider the white equation-error model

(k) = G(q~"; (k) + Y w(k), — (45)

1

@9
where w(k) is white. The model (45) is obtained as a
special case of (25) by setting v(k)=0 and replacing
w(k) by T 1 5 w(k). Writing (45) in the time-series
form yields
aoy(k) +ay(k — 1)+ -+ ayy(k —n)

= bou(k) + byutk — 1)+ - - + byu(k — n) + w(k), (46)

and thus it follows that, ¥, =0 and hence &, and ¥,
are uncorrelated.

5.2 Finite impulse response

A related case is the finite impulse-response model

Bq~';9)
ag

y(k) = u(k) + w(k), (47)

which is a special case of (25) with v(k)=0 and
A(q~";9)=1. Again, writing (47) in the time-series
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form yields
agy(k) = bou(k) +biu(k — 1)+ - - + byu(k —n)+aow(k),
(48)

and thus it follows that ¥, =0 and hence ®, and ¥,
are uncorrelated. Note that w(k) need not be white.
However, if w(k) is white, then (48) is obtained as a
special case of (46) by setting aj=a,=---=a,=0.

6. Quadratically constrained least squares

Since the standard least-squares solutions may be
biased, we now develop an alternative approach to
estimating ¢. Instead of fixing gy in (38), we minimise
the least-squares cost (40) subject to a quadratic
constraint on 6. Hence, we consider the generalised
least-squares cost

1 1 ~
TO2 19013 = 100%1 + 0013, (49)

which is identical to (40) except that in (49) there is an
additional factor of 1// and the argument is 6 € R*" 2,
Using (37), it follows that (49) can be rewritten as

J(©6) = 6" M. (50)

Since M is positive semidefinite it follows that 7 is
convex on R+, Furthermore, 7 is strictly convex on
R>"*2if and only if M is positive definite (see Bernstein
2005, p. 320).

Next, let NeR®+2*C+2) pe symmetric, and
define the parameter constraint set D(N') by

DIN)2 {6 e R¥™2: TN = 1). (51)
The QCLS problem is then given by
,oin J (). (52)

Note that D(N) is closed and symmetric, that is,
60eD(N) if and only if —6€D(N). Furthermore,
D(N)# & if and only if A.(N)>0. Next, define the
solution set W(N) by

W(N)2 {6 € DIN) : J(60) = ,min J@). (53)

W(N) is closed and symmetric. Furthermore, If
W(N)+# & then the QCLS problem (52) has at least
two solutions. In particular, # € R*"™ solves the QCLS
problem (52) if and only if —6 does.

Define Ny s € RZHxCr+2) py

1 0 0
AlO 0 :

Nis=| L (54)
0O -+ --- 0

With N=N;g it can be seen that solutions of the
QCLS problem (52) are solutions of the standard least-
squares problem (41) with qy=41. Although Nig is
positive semidefinite, we do not require that N be
positive semidefinite.

7. Existence and uniqueness of QCLS problem

Let 4, BeR’*”. Then the matrix pencil P4 p(s) is
defined by

PA’B(S)éA — sB. (55)

Furthermore, define the characteristic polynomial
X4.58(5) by

x4.5(5) 2 det(4 — sB). (56)

The pair (A4, B) is regular if x4 p(s) is not the zero
polynomial. The roots of x4 pz(s) are the generalised
eigenvalues of (A, B). Furthermore, if A>0, B is
symmetric, and (A4, B) is regular, then all generalised
eigenvalues of (A4,B) are real (Palanthandalam-
Madapusi et al. 2009).

Next, define

S2{a=0:aN < M} (57)

and omax 2 max S, and note that S=][0, amax]. The
following result concerns properties of oy ax.

Proposition 7.1:  Assume lpax(N)>0. Then the fol-
lowing statements hold.

(1) If N<M, then o> 1.
(11) omax is a generalised eigenvalue of (M, N).

Furthermore, assume that am.x>0 and (M,N) is
regular. Then the following statements hold.

(i) Let oy, a5 € (0, otmax). Then
0 =def(M — a; N) = def(M — aaN) < def(M — oax N).
(58)

(V) @max IS the smallest positive generalised eigen-
value of (M, N).

Proof: See Palanthandalam-Madapusi et al. (2009).[]

Thus M — oy N has a nontrivial-null space. The
following result considers existence of solutions to (52).

Theorem 7.2: Assume Arya(N)>0. Then, for all
0eD(N),

j(e) > Omax- (59)
Furthermore, 6 € D(N) satisfies
\7(9) = Omax (60)
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if and only if 0 e N(M — apyax N)ND(N). Finally,
W(N) = N(M — ttmax N ) N D(N). (61)

Proof: See Palanthandalam-Madapusi et al. (2009).[]

Corollary 7.3:  Assume M >0 and hyax(N)>0. Then

,in J(0) = dmax, (62)

and thus (52) has a solution.

8. Choosing N in QCLS
Define AM e R(2n+2)><(2n+2) by

AME M — M. (63)

Note that AM < M and

AM = % (@Td — Bl dy), (64)

which may be indefinite. In the noise-free case AM =0,
and thus D(AM) = #. In the noisy case, however, AM
may be nonzero. For the rest of this subsection we
consider the case N=AM.

Proposition 8.1:  Assume *pax(AM)>0. Then o,y > 1.
Furthermore, if {uo(k)}f(=0 is persistently exciting, and
{uo(k)}i:o, {w(k)}fczo and {v(k)}f€=0 are jointly persis-
tently exciting, then om.x=1 is the smallest positive
generalised eigenvalue of (M,AM).

Proof: Since AM < M, it follows from Proposition 7.1
that oy, > 1. Next, since N(M)NN(AM)={0} and
rank My=rank (M —AM)=2n+1<2n+2=rank M

it follows that def(M) =0< 1 =def(M,) = def(M — AM)
and thus Proposition 7.1 with N=AM in (58) implies
that apc=1. O

The following result gives conditions under which
the QCLS problem correctly identifies G(q~"; ).

Theorem 8.2:  Assume that hya.x(AM)>0, {uo(k)}f(=0 is
persistently exciting for G(q~';9), and {Uo(k)}fc:o,
{w(k)},lczo and {"(k)};c:() are jointly persistently exciting

for G(q~';9). Then

1
WAM) = {i, / 7 AMﬁﬁ} . (65)

w(k) w(k)w(k — 1)
Wik — 1) W2 (k)

A

ww —

Proof: From Proposition 8.1, it follows that ¢, = 1.
Next, since M >0, it follows from Corollary 7.3 that
W(AM) # . Furthermore, it follows from Theorem
7.2 that W(AM) = N (M) N D(AM) # . Furthermore,
since M >0, M = My+AM and 9" M, 9 =0, it follows
that ' AM9>0. Hence, since def My=1, it follows
from (13) that (65) holds. U

Note that if M >0, then N(M)NN(AM)=/{0}.
Thus, if rank My=2n+1 and M >0, then Theorem 8.2
implies that G(q~';9) =G(q~';0) for all € W(AM).

However, the choice N=AM is not possible in
practice since AM is not known. In the next section,
we consider the QCLS problem with an approximation
N~AM.

9. Unbiasedness of QCLS

It was shown in Section 8 that, if N=AM and M >0,
then the QCLS problem has exactly two solutions 6,
both of which satisfy G(q~';0)=G(q™'; ¥). However,
since AM is not known, we cannot set N=AM in
practice. In this section, we choose an alternative but
closely related value of N and show that the resulting
QCLS solution is unbiased.

For the remainder of the article, we assume that
{w(k)}p2, and {v(k)};2, are stationary and have zero
mean and finite second moments. Furthermore,
we assume that {w(k)}7Z, and {v(k)};2, are jointly
ergodic random processes in the sense that, for all p,
0€{0,1,2} and for all i, E[w?(i)’(i)] = lim/oe § x
S o WP (k) wpl.

For convenience, define the positive-semidefinite
matrix R e R®"F2*Cn+2) 1y

REE[Y (wk)],

where n <k <I. However, note that since w(k) and
v(k) are stationary, R is independent of k. Next,
partition R as

wa - va
R= ; (66)
—R w R vy
where R,,, € R“TD*0HD s given by

w(k)w(k — n)

wlk)w(k —n+1)
, (67)

wkywk —n) wkwk—-—n+1) --- w2 (k)
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while R,, e R“HD*0+D anq R, e ROTD*0HD gre
defined analogously.
Next, using @ = &5+ ¥, AM has the form

AM = % (27D — D] D)

(Do + V) (P + ) — BF By)

~] — o~ —

=—(D0¥+ ¥ dy+ P'Y). (68)
Proposition 9.1:  Assume that {yo(k)}fczo and {uo(k)}ézo
are bounded. Then

E[AM] =R (69)
and
E[M] = My + R. (70)

Proof: The result follows from (68) and the fact
that, for all continuous functions [f:R— R,

E[ Y10/ (k)] = ELf (w(k))]. O
Let 7n>0. Then, define &max 4 max{a >0 :
anR < E[M]}.

Definition 9.2: Let N=nR. Then QCLS is an unbiased
generator of ¥ if

N(E[M] = @maxnR = R(D). (71)

Definition 9.2 states that QCLS with N=nR is an
unbiased generator of ¥ if QCLS with M replaced by
[E[M] yields the estimated parameter vector be R(V).
That is, the averaged QCLS problem with the con-
straint matrix set to a scalar multiple of the covariance
matrix yields the true parameter vector. We have the
following unbiasedness result.

Proposition 9.3:  Assume that {yo(k)},_, and {uo(k)}s_,
are bounded and satisfy (25). Furthermore, assume that
{uo(k)}f&,:0 is persistently exciting for G(q~';9), assume
that {”O(k)}izo, {w(k)}i:o and {v(k)}i:o are jointly
persistently  exciting for G(q~';9), and assume
Mo+ R>0. Then, for all n>0, QCLS with N=nR is
an unbiased generator of V.

Proof: From Proposition 9.1, it follows that
E[M]=My+ R. Next, since My>0, R>0 and
My+ R>0, it follows from cogredient simultancous
diagonalisation of M, and R (Rao and Mitra 1971,
Theorem 6.2.3, p. 122) that there exists
S e R 2x@n+2) quch that SM,S"T and SRST are
diagonal. Next, for i=1,...,2n+2, let m;>0 and
r;> 0 denote the diagonal entries of SM,S™ and SRS™,
respectively. Hence S(M,+ R)S" = diag(m; + ;). Since
My+ R is positive definite, it follows that m;+r;>0
for all i=1,...,2n+2. Furthermore, since {“0}5(=0 is
persistently exciting, it follows from (21) that
N(My)=R() and def My=1, and thus exactly one

m; is zero. For convenience, assume m; = 0. Next, since
SE[M]ST =diag(m;+r;), nSRS"=diag(yr), and
m; =0, it follows from Proposition 7.1 that
Omax = 1/n.  Finally, N([E[M] — Amax1R) = N(M0+
R — R) = N(My) = R(®). Ol

Corollary 9.4:  Assume that {yo(k)}f(=0 and {uo(k)}izo
are bounded and satisfy (25). Furthermore, assume that
{uo(k)}f(=0 is persistently exciting for G(q~';9), assume
that {ug(k)Y_, (w(k)Ye_y, and {w(k)}._, are jointly
persistently exciting for G(q~'; ), let n>0, and
assume My+ R>0. Then amax = 1/n.

Let 6 be a solution of the QCLS problem with M
and N =nR, where n>0. Since M is a random variable,
it follows that 6 is a random variable. We note that the
traditional notion of unbiasedness is defined in terms
of 6 and states that

E[0] = +—=—=1" (72)

10. Consistency of QCLS

In this section, we write My, M, AM,, é; and oy for
My, M, AM, 6 and Omax, Tespectively, to indicate the
dependence on /. We then let / tend to infinity and
show that the resulting QCLS solution is consistent.

Lemma 10.1:  Let {x(k)};2, C R, assume there exists

B>0 such that, for all szn, 0<x(k)y<pB, let

K<{n,n+1,...}, and define K, = KN{n,...,[}. Then,
1
lim — x(k) = 1.
Jim ZI;K,W(k)x(k) 0 wp (73)

Proof: Write IC={k,k,,...}. Next, suppose that IC
has a finite number of elements. Then, since w(k) has a
finite second moment, it follows that the ) ek,
w(k)x(k) is finite and hence (73) holds. Next, suppose
that IC has an infinite number of elements. Letting / be
the number of elements in /C;, it follows that

i i
_g ;w(ki) < —% ;w(k,-)x(k,-) < %;’Clw(k)x(k)
i gl d
<D o wlkx(k)| < %> wiky)|.
i=1 i=1

Therefore, it follows that
1< 1
—p|lim = “w(ky)| < lim - " w(k)x(k)
=00 [ =7 [=o0 lke}C,
L
lim =y " w(ky)

l—o0 | i1

<B
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Furthermore, since {w(k)};-, is stationary and ergodic,
it follows that {w(k;)};°, is stationary and ergodic.
Hence

0 = —BlEWE| = Jim 13 wik)x(k) = AJERRN| =

kE/C/
|

Lemma 10.2:  Assume that {yo(k)}7~, and {uo(k)}72,
are bounded. Then

1
hm EP@I)OT =0 wpl. (74)

Proof: The (1,1) entry 'I/<I)0T is Zi:n w(k) yo(k).
Next, let
Kt 2 {k : k > n and sign(yo(k)) = 1}
and
K_2 {k : k = n and sign(yo(k)) = —

Furthermore, define I/ A K. Nn{n,...,I[} and
K,— 2 K_n{n,....I}. Then, it follows that

/
D owl)yolk) = Y wlk)yolk) = Y wk)l yo(k)l-
k=n kel kel -
Using Lemma 10.1, it follows that

lim lZw(k) yo(k) = lim n Z w(k) yo(k)

k=n kel +

— lim 1,2 w(k)| vo(k)| =0 wpl.
(EK/

A similar argument holds for the remaining entries
of Ya;. O

Proposition  10.3:  Assume  that {yo(k)}32, and
{uo(k)}32, are bounded. Then

lim AM; =R wpl. (75)
I—00

Proof: It follows from (68), (66), Lemma 10.2 and the
fact that w(k) and v(k) are jointly ergodic that

lim AM, = lim l[avwrur DY+
=00 I—o00 [
T e T _
_[15?07[5(/ Y] =E[y(n) y(m)]=R wpl. O

For the following development we consider
My e R H2x+2) defined by

Mo2 lim My, (76)
[— 00

when the limit exists.

Proposition 10.4: /\/lo exists if and only if, for all
0<k<n, lim_oq Zk 0 uo(k)uo(k +K),  limoed
Yo oyo(k)yo(k + 1), im0 335 yo(K)ug(k + ) and
im0 1 7 Zk o Uo(k) yo(k + k) exist.

Proposition 10.4 shows that M, exists if and only if
the given autocorrelations exist.

Lemma 10.5: Given {U()(k)}k 20, assume that there
exists | > 3n such that {uo(k)}, —o s pervzvtently exciting
for G(q~Y;9). Then, for all 1> 1, {uo(k)Yo_y is persis-
tently exciting for G(q~ L 9).

Next, let {uo(k)}2,20 be persistently exciting for
G(q " v). Then using Lemma 10.5, it follows that
{uo(O), ...,up(l), 0,0,...} is persistently exciting for
G(q_ 9¥) and thus it follows from (21) that, for all
I>1, N (My,)=R(9). Furthermore, for the input
{uo(0), ..., up(1), 0, 0,...}, the stability of G(q~';®)
implies that vo(k) = 0 as k— oo. It thus follows that
My=0 and hence N (M) =R ?£R()=N(M,,)
forall / > I Hence, in this case, for all / > l: N(MO,,) 1S
a proper subset of N (M).

More generally, if M, exists, then, for all /> 3n,
N(My) SN (M,). However, the above example shows
that N'(Mo) =N (M) is not true in general. Thus we
have the following definition. For convenience, for
k>n, let 05,1, be the second smallest singular value
Po(x)
of :
$o(x 4 3n)

Definition 10.6: The input sequence {ug(k)}je, is
infinitely persistently exciting for G(q~';9) if there
exists £ >0 such that, for all k >n, 62,,1,.>¢.

The following result is immediate.

Proposition 10.7:  If {ug(k)};2, is infinitely persistently
exciting for G(q~';®¥), then the following statements
hold:

(i) For all «>n, {ug(x +k)}", is persistently
exciting for G(q~'; 9).

(i) For all #eR*"? such that 6¢ R(9), there
exists &>0 such that, for all «k>n,

Bo(x)
: o > ep.
¢0(K+3I’l) 2
Lemma 10.8: Assume that M, exists and that
{ug(k)}i2, is infinitely persistently —exciting  for
G(q~";9). Then, for all [ > 3n,

N(Mo) = N (My,). (77)
and thus

N(Mp) = R®). (78)
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Proof: Since ¥ € N (M, ) for all /> 3n, it follows that
¥ € N(M,). Hence, for all />3n, N(Mg) 2N (M,)).
Conversely, since {ug(k)};2, is infinitely persistently
exciting, it follows that, for all /> 3n and x> n,

$o(K)
N(Mog) =N : =R@®). (79
¢o(k + 3n)

Next, let 6 € R*"™2 be such that 0 ¢ (M) for all /> 3n.
Then it follows from (79) that, for all x>0,
$o(k)
: 0 #0. Next, for all />3n, we have
$o(x + 3n)

6" M0 = 6" (Sio o) ¢>0(k)>9_ Ly 12, where
e = ¢>O(k)9 Smce {ug(k)}72, 1s Infinitely persistently
exciting and 6 ¢ R(?) , it follows from Proposition 10.7
that there exists g,>0 such that, for all «>n,

#0(©) ’

2 : 0| > &2, and thus, for all
Polk + 3 ],

1v>0, ﬁzzn% r7 > 3. 1t then follows that 6T M6 =

hml—>oo 9 M() 19 = llml—>oo IZk -0 k ;;;1 > 0. Since
M >0, it follows that 6 ¢ N'(M,). U

Definition 10.9: QCLS with N=nR is a consistent
generator of ¥ if the following three conditions are
satisfied:

(1) My = hm,_,Oo M; wpl exists.
(i) WaoIR) £ N (Mo — tmar 0ot R) N D(1R) # B,
where max 0o = max{o>0:anR < M.}
(111) N(Moo - amax,oonR) = R(ﬂ)

Definition states that QCLS with N=nR is a
consistent generator of ¢, if the limiting problem exists,
has a solution and yields the estimated parameter
vector On € R(V).

Lemma 10.10:  Assume M, exists and that {yo(k)}e,
and {ug(k)}72, are bounded and satisfy (25).
Furthermore, for all 1>3n, assume that {uo(k)}f(:0 is
persistently exciting for G(q~';9), and {uo(k)}f(:oa
{w(k)};l(:0 and {v(k)}f(:0 are jointly persistently exciting

for G(q~';9). Then, M, exists and is given by

Proof: Proposition 10.3 implies that lim,
M]Zliml_)ooMo’l—}—lim]_)ooAM]:Mo+R Wpl O

Next, we have the following consistency result.

Theorem 10.11:  Assume M exists and that {yy(k)};2
and {ug(k)}72, are bounded and satisfy (25).
Furthermore, for all 1>3n, assume that {uo(k)}f(=0 is

infinitely persistently exciting for G(q~';0), assume
{uo(k)Ye o, (WUN._y and {v(k)}._, are jointly persis-
tently exciting for G(q~';9), let n>0, and assume that
Moo>0. Then QCLS with N=nR is a consistent
generator of ¥.

Proof: From Theorem 7.2, it follows that 0, satisfies
(Ml - amax,/nR)él =0. (81)

Next, using Lemma 10.10 and Corollary 7.3, it follows
that Mo=My+R>0 and W, # . Furthermore,
since M, and R are positive semidefinite, it follows by
cogredient simultaneous diagonalisation of M, and R
(Rao and Mitra 1971, Theorem 6.2.3, p. 122) that there
exists S e R 2xCm+2) quch that SMoST and SRST
are diagonal. Next, for i=1,...,2n42, let m;>0 and
r;> 0 denote the diagonal entries of SM,ST and SRS™,
respectively. Hence S(M,+R)S" =diag(m;+r;). Since
Mo+ R is positive definite, it follows that m;+r;>0
for all i=1,...,2n+2. Furthermore, since {uo}p, is
infinitely persistently exciting, it follows from Lemma
10.8 that N(My)=R(®) and def My=1, and thus
exactly one m; is zero. For convenience, assume 71, = 0.
Next, since SM ST =diag(m; +r;), nSRST = diag(nr,),
and m; =0, it follows from Proposition 7.1 that
Cmax.0o = 1/n. Finally, since N (M, — tmax.co NR) =
N(My+R—R)=N(M,), it follows from Lemma
10.8 that N (Mo — 0max.conR) = R(¥) and thus QCLS
with N=nR is consistent. L]

We note that Theorem 10.11 holds for arbitrary
n>0. Hence, in practice, R need only be known to
within a scalar multiple.

The traditional notion of consistency states that

A s
0> +t—— as [— oo. (82)

VTR

Numerical simulations given below suggest that QCLS
with N=nR is consistent in this sense.

11. An analytical example illustrating consistency

In this section, we illustrate that when the noise
statistics are known, QCLS with N =nR is a consistent
generator of ¥, whereas the standard least-squares
estimator is generally not consistent.

Consider the first-order strictly proper stable
system

biq”!
)

Gq ', ma: "
(@ ) ap +aq

(83)

where, in accordance with Remark 2.1, 9 =[ao a; b;]",

0=[60 61 621" and ¢(k)=[(k) y(k—1) —u(k—1D]".
Furthermore, assume that the noise sequence w(k) is
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white, v(k) =0 and let the input sequence {uo(k)}fc:0 bea
realisation of a zero-mean white noise sequence
with variance o2. The measured output {y(k)},/€=0 is
given by (22).

Next, note that the standard least-squares error can
be written as

-1
80, = (1/90)9,—(1/%)19_(%45;@2) %qsgw, (84)

so that the asymptotic standard least-squares bias 86
is given by
8900_ llm 86, = R7'q, (85)

where R is defined by (66) and
g = lim 1@5 Py
_ [ aoE[ y(k — Dw(k)] + a1 E[ y(k — Dw(k — 1)] }
| —aoE[utk — Dw(k)] — a1 Elu(k — Dw(k — 1] |
(86)

Furthermore, computing the expectations in R and
(86) we have

Furthermore, we define the signal-to-noise ratio ¢ by

éJ > k) Z w2(k), (95)

so that

E[y2(k)] bio?
llir& \/[E[wz(k)] - \/(ag —a})ol +1 )

Therefore, using (96), (94) becomes

8650 = [%] (97)

Note that the estimate of by is consistent, while the
estimate of a; is biased.

Next, using QCLS identification, we assume that
R, is known to within a scalar multiple. Since
R, = 0; I,1+1 in this example, and we choose

1 0 0
=lo 1 0] (98)
00 0

2 _ bio, 2
ELy (k)] = a—a o ®7) Using Theorem 7.2 and Corollary 7.3 we write
E[ y(k — Du(k — 1)] = 0, (88) (M — amax V)6 = 0. (99)
We note that
E[ y*(k)] E[ y(k) y(k — 1)] —E[y(k)u(k — 1)]
ll_ifgoM = | E[y()y(k—1)] E[y*(k — 1)] —E[y(k — Du(k —1)] |- (100)
—E[y(Ku(k — 1)]  —E[y(k — Du(k — 1)] E[u*(k — 1)]

E[ (k)] = oy, (89)
E[y(k — Dw(k)] =0, (90)
E[y(k — Dw(k — )] = o7, O1)
E[u(k — Dw(k)] = 0, (92)
E[u(k — )w(k — 1)] = 0. (93)

Substituting (87)—(93) into R and (86), it follows that
(85) becomes

; b;a: +02 0 - a0 aol(ai—a?)
80 = a—at w |: 1 i| —(b +(a 2)0,2,‘) )
0 o 0 0

94)

Noting E[y*(k — 1)]= E[y*(k)] and

_ b2 2
ELy(k) yk — 1)] = ao(;’;i_‘“ﬂ (101)
0 1
2 2
ELoutk - 1] = 7L, (102)

we substitute (87)~(93), (101) and (102) into (100) and
(99). It then follows that 6., satisfies

2 z )
(a}ilay + O'ﬁv — Omax a[)(‘;lb a‘) }()1106“
_ 2 2 2 7 A
ao((;lél’*l:%) (ab a + 0\1 @max 0 Oo0 = 0.
2
(103)
Solving (103) for oy,.x, We obtain
e = 0%, OF Gy = 02 4+ AT+ (104

ay(ag—ay)
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-0.08 -0.16
x  QCLS solution
—0.2875 O Standard LS solution |1 ~0.09 -0.18
True parameter value
-0.288 R 1 -0.1 -0.2
— [a\] ™
B —0.2885 8 -0.11 8 -0.22
£ £ £
S N IS IS
g 0.289 ; -0.12 5 ; -0.24
-0.2895 -0.13 -0.26 -
X
-0.29 « 1 -0.14 g -0.28
X
QCLS LS QCLS LS QCLS LS
0.31 -0.24
0.08 x %
0.3 —0.26
0.07 % o X X
< © 0.29 N 2 © %
£ 0.06 o) Z & —0.28 o
= £ 0.8 i £
S o005 X s X s %
o X o i o -0.3 X
0.04 - 0.27 .
0.03 0.26 —0.32
O
QCLS LS QCLS LS QCLS LS

Figure 1. Numerical example. Comparison of estimates of system parameters obtained using standard least squares and using
QCLS, for /=1000. The large x and O represent the average of the estimates over 50 runs for the QCLS and standard
least-squares solutions, respectively. The averages of the QCLS estimates over 50 runs are close to the true parameter values,

which suggests that the QCLS solutions are unbiased.

Furthermore, since the system is stable, a; <ay, and

Do (Pt o
thus % > 0. Hence dmax = 02. By substituting

Umax 1into (103) and solving for 6 we obtain
O = 29, (105)

where a is a nonzero scalar. Therefore, using Remark
2.1, it follows that G(q~'; ®¥) = G(q~"; ). Hence, in
accordance with Theorem 10.11, QCLS with N=nR is
a consistent generator of .

12. A numerical example illustrating unbiasedness
and consistency

Consider the stable transfer function

—02+q ' —q?
1-0.5q7!-0.9q 2%’

where 9 =[—1 —0.5-0.90.2 1 —1]" and 6 =16, 6, 65 6,4
s 66]". We construct {uo(k)}f(=0 to the sum of two

Gl 9) = —

(106)

sinusoids at frequencies 27 rad/s and 1.5z rad/s as well
as a realisation of a zero-mean white noise sequence
with standard deviation 1. The input {Mo(k)}i:o is
corrupted by white noise v(k) with standard deviation
0.04, while the output {yo(k)}izo is corrupted by white
noise w(k) with standard deviation 0.4. Thus the noise
covariance matrix R is

016 0 0 0 0 0
0 016 0 0 0 0
R_| 0 0 016 0 0 0
1l o 0 0 0006 0 0
0 0 0 0 00016 0
0 0 0 0 0  0.0016
(107)

Since we use N=R in the QCLS problem, the
normalised parameter vector is

1
= 5T R

—[—0.2888 —0.1444 —0.25990.0577 0.2888 —0.2888]".
(108)
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Figure 2. Numerical example. Comparison of estimates of system parameters obtained using standard least squares and using
QCLS, as a function of the amount of data. It is seen that the QCLS estimates converge to the true parameters as / becomes large.

We set /=1000, perform 50 runs with different
realisations of w(k) and v(k) and compute the QCLS
estimates as determined by Theorem 7.2 along with the
standard least-squares estimates. Since standard least
squares is equivalent to normalising 0; to £1, we scale
the least-squares estimates so that ; matches the first
component of . Figure 1 shows that the averages of
QCLS estimates over the 50 runs are close to the true
parameter, indicating that the QCLS estimates are
unbiased.

Next, we vary / from 50 to 8 x 10° and compute the
QCLS solutions as determined by Theorem 7.2. We
compare these estimates to parameter estimates

obtained by standard least-squares. Figure 2 shows a
comparison between the QCLS estimates and the
standard least-squares estimates of all six parameters
for increasing /. It is seen that the QCLS estimates
converge to the true parameters as / becomes large.

13. Conclusions

In this article, we investigated the consistency of
parameter estimates obtained from least-squares
identification with a quadratic parameter constraint.
For generality, we considered infinite impulse-response
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systems with coloured and possibly correlated input and
output noise. In the case of finite data, we showed that
there always exists a possibly indefinite quadratic
constraint depending on the noise realisation that
results in a generator that yields the true parameters
of the system when a persistency condition is satisfied.
When the noise covariance matrix is known to within a
scalar multiple, we showed that the QCLSs estimator
with a semidefinite constraint matrix yields is unbiased
and consistent in the sense that the averaged
problem and limiting problem produce, respectively,
unbiased and true (with probability 1) estimators. We
thus provided the missing foundation for the KL
method and its numerous variants in the literature,
while providing a complete development of unbiased-
ness and consistency in a precise sense. Future work will
investigate whether the QCLS estimator is unbiased and
consistent in the traditional sense.
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