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We present a discrete-time adaptive control law for stabilization, command-following, and disturbance rejection

that is effective for systems that are unstable, multi-input/multi-output, and/or non-minimum phase. The adaptive

control algorithm includes guidelines concerning the modeling information needed for implementation. This

information includes the relative degree, the first nonzero Markov parameter, and the non-minimum-phase zeros.

Exceptwhen the plant has non-minimum-phase zeroswhose absolute value is less than the plant’s spectral radius, the

required zero information can be approximated by a sufficient number of Markov parameters. No additional

information about the poles or zeros need be known. We present numerical examples to illustrate the algorithm’s

effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and

saturation.

I. Introduction

U NLIKE robust control, which chooses control gains based on
a prior, fixed level of modeling uncertainty, adaptive control

algorithms tune the feedback gains in response to the true plant and
exogenous signals: that is, commands and disturbances. Generally
speaking, adaptive controllers require less prior modeling infor-
mation than robust controllers and thus can be viewed as highly
parameter-robust control laws. The price paid for the ability of
adaptive control laws to operate with limited prior modeling infor-
mation is the complexity of analyzing and quantifying the stability
and performance of the closed-loop system, especially in light of the
fact that adaptive control laws, even for linear plants, are nonlinear.

Stability and performance analysis of adaptive control laws often
entails assumptions on the dynamics of the plant. For example, a
widely invoked assumption in adaptive control is passivity [1], which
is restrictive and difficult to verify in practice. A related assumption is
that the plant is minimum phase [2,3], which may entail the same
difficulties. In fact, sampling may give rise to non-minimum-phase
zeros whether or not the continuous-time system is minimum phase
[4], which must ultimately be accounted for by any adaptive control
algorithm implemented digitally in a sampled-data control system.
Beyond these assumptions, adaptive control laws are known to be
sensitive to unmodeled dynamics and sensor noise [5,6], which
necessitates robust adaptive control laws [7].

In addition to these basic issues, adaptive control laws may entail
unacceptable transients during adaptation, which may be exac-
erbated by actuator limitations [8–10]. In fact, adaptive control under
extremely limited modeling information, such as uncertainty in the
signof thehigh-frequencygain [11,12],mayyielda transient response
that exceeds the practical limits of the plant. Therefore, the type and
quality of the available modeling information as well as the speed of
adaptation must be considered in the analysis and implementation of
adaptive control laws. These issues are stressed in [13].

Adaptive control laws have been developed in both continuous-
time and discrete-time settings. In the present paper, we consider
discrete-time adaptive control laws, since these control laws can be
implemented directly in embedded code for sampled-data control

systems without requiring an intermediate discretization step that
may entail loss of stability margins.

References on discrete-time adaptive control include [2,3,14–24].
In [2], a discrete-time adaptivecontrol lawwith guaranteed stability is
developed under a minimum-phase assumption. Extensions given
in [3] based on internal model control [25] and Lyapunov analysis
also invoke this assumption. To circumvent the minimum-phase
assumption, the zero annihilation periodic control law [23] uses
lifting to move all of the plant zeros to the origin. The drawback of
lifting, however, is the need for open-loop operation during
alternating data windows. An alternative approach, developed in
[14,15,17,18], is to exploit knowledge of the non-minimum-phase
zeros. In [14], knowledge of the non-minimum-phase zeros is used
to allow matching of a desired closed-loop transfer function,
recognizing that minimum-phase zeros can be canceled but not
moved, whereas non-minimum-phase zeros can neither be canceled
nor moved. In [15,18], knowledge of a diagonal matrix that contains
the non-minimum-phase zeros is used within a multi-input/multi-
output (MIMO)direct adaptivecontrol algorithm.Finally, knowledge
of the unstable zeros of a rapidly sampled continuous-time single-
input/single-output (SISO) system with a real non-minimum-phase
zero is used in [17].

Motivated by the adaptive control laws given in [3,24], the goal of
the present paper is to develop a discrete-time adaptive control law
that is effective for non-minimum-phase systems. In particular, we
present an adaptive control algorithm that extends the retrospective
cost optimization approach used in [24]. This extension is based on a
retrospective cost that includes controlweighting aswell as a learning
rate, which can be used to adjust the rate of controller convergence
and thus the transient behavior of the closed-loop system. Unlike
[24], which uses a gradient update, the present paper uses a Newton-
like update for the controller gains, as the closed-form solution to a
quadratic optimization problem.Nooffline calculations are needed to
implement the algorithm. A key aspect of this extension is the fact
that the required modeling information is the relative degree, the first
nonzero Markov parameter, and non-minimum-phase zeros, if any.
Exceptwhen theplant hasnon-minimum-phase zeroswhoseabsolute
value is less than the plant’s spectral radius, we show that the required
zero information can be approximated by a sufficient number of
Markov parameters from the control inputs to the performance
variables. No matching conditions are required on either the plant
uncertainty or disturbances.

The goal of the present paper is to develop the retrospective
correction filter (RCF) adaptive control algorithm and demonstrate
its effectiveness for handling non-minimum-phase zeros. To this
end, we consider a sequence of examples of increasing complexity,
ranging fromSISOminimum-phase plants toMIMOnon-minimum-
phase plants, including stable and unstable cases. We then revisit
these plants under offnominal conditions: that is, with uncertainty in
the required plant modeling data, unknown latency, sensor noise, and
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saturation. These numerical examples provide guidance into
choosing the design parameters of the adaptive control law in terms
of the learning rate, data window size, controller order, modeling
data, and control weightings. Preliminary versions of the present
paper are given in [26,27].

II. Problem Formulation

Consider the MIMO discrete-time system

x�k� 1� � Ax�k� � Bu�k� �D1w�k� (1)

y�k� � Cx�k� �D2w�k� (2)

z�k� � E1x�k� � E0w�k� (3)

where x�k� 2 Rn, y�k� 2 Rly , z�k� 2 Rlz , u�k� 2 Rlu , w�k� 2 Rlw ,
and k � 0. Our goal is to develop an adaptive output-feedback
controller underwhich the performancevariable z isminimized in the
presence of the exogenous signal w. In Eqs. (1–3), w can represent
either a command signal to be followed, an external disturbance to be

rejected, or both. For example, if D1 � 0 and E0 ≠ 0, then the
objective is to have the outputE1x follow the command signal�E0w.
On the other hand, if D1 ≠ 0 and E0 � 0, then the objective is
to reject the disturbance w from the performance variable E1x. The
combined command-following and disturbance-rejection problem is
addressed when D1 and E0 are suitably partitioned matrices. More
precisely, if D1 � �D11 0 �, E0 � � 0 E02 �, and

w�k� � w1�k�
w2�k�

� �

then the objective is to have E1x follow the command�E02w2 while
rejecting the disturbance D11w1. Finally, if D1 and E0 are zero
matrices, then the objective is output stabilization, that is, con-
vergence of z to zero.We assume that (A,B) is stabilizable, (A,C) and
(A,E1) are detectable, and that measurements of y and z are available
for feedback. If the command signal is included as a component
of y, then the adaptive controller has a feedforward architecture.
For disturbance-rejection problems, the controller does not require
measurements of the external disturbance w.

III. ARMAX Modeling

Consider the ARMAX representation of Eqs. (1) and (3), given by

z�k� �
Xn
i�1
��iz�k � i� �

Xn
i�1

�iu�k � i� �
Xn
i�0

�iw�k � i� (4)

where �1; . . . ; �n 2 R, �1; . . . ; �n 2 Rlz	lu , and �0; . . . ; �n 2 Rlz	lw .
We define the relative degree d � 1 as the smallest positive integer i
such that the ith Markov parameter Hi ≜ E1A

i�1B 2 Rlz	lu is non-
zero. Note that if d� 1, then H1 � �1, whereas if d � 2, then

�1 � 
 
 
 � �d�1 �H1 � 
 
 
 �Hd�1 � 0

and Hd � �d.

Letting the data window size p be a positive integer, we define the
extended performance vector Z�k� 2 Rplz and U1�k� 2 Rqclu by

Z�k�≜
z�k�
..
.

z�k � p� 1�

2
64

3
75; U1�k�≜

u�k � 1�
..
.

u�k � qc�

2
64

3
75 (5)

where qc ≜ n� p � 1. The data window size p has a small but
noticeable effect on transient behavior. Now Eq. (4) can bewritten in
the form

Z�k� �Wzw�zw�k� � BzuU1�k� (6)

where Wzw 2 Rplz	�qclz��qc�1�lw �, Bzu 2 Rplz	qclu , and �zw 2
Rqclz��qc�1�lw are given by

Wzw ≜

��1Ilz 
 
 
 ��nIlz 0lz	lz 
 
 
 0lz	lz �0 
 
 
 �n 0lz	lw 
 
 
 0lz	lw

0lz	lz
. .
. . .

. . .
. ..

.
0lz	lw

. .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0lz	lz
..
. . .

. . .
. . .

.
0lz	lw

0lz	lz 
 
 
 0lz	lz ��1Ilz 
 
 
 ��nIlz 0lz	lw 
 
 
 0lz	lw �0 
 
 
 �n

2
66664

3
77775 (7)

Bzu ≜

�1 
 
 
 �n 0lz	lu 
 
 
 0lz	lu

0lz	lu
. .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0lz	lu
0lz	lu 
 
 
 0lz	lu �1 
 
 
 �n

2
66664

3
77775 (8)

and

�zw�k�≜

z�k � 1�
..
.

z�k � p � n� 1�
w�k�
..
.

w�k � p � n� 1�

2
666666664

3
777777775

(9)

Note that Wzw includes modeling information about the plant poles
and exogenous input path, whereas Bzu includes modeling infor-
mation about the plant zeros. BothWzw and Bzu have block-Toeplitz
structure.

IV. Controller Construction

To formulate an adaptive control algorithm for Eqs. (1–3),we use a
strictly proper time-series controller of order nc such that the control
u�k� is given by

u�k� �
Xnc
i�1

Pi�k�u�k � i� �
Xnc
i�1

Qi�k�y�k � i� (10)

where Pi�k� 2 Rlu	lu and Qi�k� 2 Rlu	ly for all i� 1; . . . ; nc. The
controller order nc is determined by standard control guidelines in
terms of stabilization and disturbance rejection. The control (10) can
be expressed as

u�k� � ��k���k� (11)
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where

��k�≜ �Q1�k� 
 
 
 Qnc
�k� P1�k� 
 
 
 Pnc�k� �

2 Rlu	nc�lu�ly� (12)

is the controller gainmatrix, and the regressor vector��k� is given by

��k�≜

y�k � 1�
..
.

y�k � nc�
u�k � 1�

..

.

u�k � nc�

2
666666664

3
777777775
2 Rnc�lu�ly� (13)

We define the extended control vector U�k� 2 Rpclu by

U�k�≜
u�k � 1�

..

.

u�k � pc�

2
64

3
75 (14)

where pc � qc. Note that if pc � qc, then U�k� �U1�k�. From
Eq. (11), it follows that the extended control vector U�k� can be
written as

U�k� �
Xpc
i�1

Li��k � i���k � i� (15)

where

Li ≜
0�i�1�lu	lu
Ilu

0�pc�i�lu	lu

2
4

3
5 2 Rpclu	lu (16)

Next, we define the retrospective performance vector Ẑ��̂; k� 2 Rplz

by

Ẑ��̂; k�Wzw�zw�k� � BzuU1�k� � �Bzu�U�k� � Û��̂; k�� (17)

where �̂ 2 Rlu	nc�lu�ly� is the surrogate controller gain matrix, �Bzu 2
Rplz	pclu is the surrogate input matrix, and

Û��̂; k�≜
Xpc
i�1

Li�̂��k � i� (18)

is the recomputed extended control vector. Substituting Eq. (6) into
Eq. (17) yields

Ẑ��̂; k� � Z�k� � �Bzu�U�k� � Û��̂; k�� (19)

Note that the expression for Ẑ��̂; k� given by Eq. (19) does not
depend on either the exogenous signal w or the matrix Wzw, which
includes information about the open-loop poles aswell as the transfer
function fromw to z. Hence, we do not need to know this model data,
and whenw represents a disturbance, we do not need to assume that
w is known. However, whenw represents a command, thenw can be
viewed as an additional measurement y, and thus the controller has
feedforward action. The matrix �Bzu is discussed in Sec. VI.

Note that Eq. (19) can be rewritten as

Ẑ��̂; k� � f�k� �D�k�vec�̂ (20)

where

f�k�≜ Z�k� � �BzuU�k� 2 Rplz (21)

D�k�≜
Xpc
i�1

�T�k � i� � � �BzuLi� 2 Rplz	nclu�lu�ly� (22)

vec is the column-stacking operator, and� represents the Kronecker
product. Now consider the retrospective cost function

J��̂; k�≜ ẐT��̂; k�R1�k�Ẑ��̂; k� � 2ẐT��̂; k�R12�k�û��̂; k� 1�

� ûT��̂; k� 1�R2�k�û��̂; k� 1�

� tr�R3�k���̂ � ��k��TR4�k���̂ � ��k��� (23)

where R1�k� 2 Rplz	plz , R12�k� 2 Rplz	lu , R2�k� 2 Rlu	lu , R3�k� 2
Rnc�lu�ly�	nc�lu�ly�, R4�k� 2 Rlu	lu ,

R1�k� R12�k�
RT12�k� R2�k�

� �

is positive semidefinite, R3�k� and R4�k� are positive definite, and

û��̂; k�≜ �̂��k� (24)

Substituting Eq. (20) into Eq. (23) yields

J��̂; k� � �vec �̂�TM�k�vec �̂� bT�k�vec �̂� c�k� (25)

where

M�k�≜DT�k�R1�k�D�k� � 2DT�k���T�k� � R12�k��
� ���k��T�k�� � R2�k� � R3�k� � R4�k� (26)

b�k�≜ 2DT�k�R1�k�f�k� � 2���k� � RT12�k��f�k�
� 2�R3�k� � R4�k��vec ��k� (27)

c�k�≜ fT�k�R1�k�f�k� � tr�R3�k��T�k�R4�k���k�� (28)

SinceM�k� is positive definite, J��̂; k� has the strict globalminimizer
��k� 1� given by

��k� 1� � �1
2
vec�1�M�1�k�b�k�� (29)

Equation (29) is the adaptive control update law.Note that �Bzu (which
appears in f�k� and D�k�) must be specified in order to implement
Eq. (29). Furthermore, Eq. (29) requires the online inversion of a
positive-definite matrix of size nclu�lu � ly� 	 nclu�lu � ly�.

In the special case

R1�k�≜ Iplz ; R12�k�≜ 0plz	lu ; R2�k�≜ 0lu	lu (30)

R3�k�≜ ��k�Inc�lu�ly�; R4�k�≜ Ilu (31)

where ��k�> 0 is a scalar, Eqs. (26–28) become

M�k� �DT�k�D�k� � ��k�Inclu�lu�ly� (32)

b�k� � 2DT�k�f�k� � 2��k�vec ��k� (33)

c�k� � fT�k�f�k� � ��k�tr��T�k���k�� (34)

Using the matrix inversion lemma, it follows that

M�1�k� � ��1�k�Inclu�lu�ly�
� ��1�k�DT�k����k�Iplz �D�k�DT�k���1D�k� (35)

Consequently, in this case, the update law (29) requires the online
inversion of a positive-definite matrix of size plz 	 plz. We use the
weightings (30) and (31) for all of the examples in this paper. The
weighting parameter��k� introduced inEq. (31) is called the learning
rate, since it affects the convergence speed of the adaptive control
algorithm. As ��k� is increased, a higher weight is placed on the
difference between the previous controller coefficients and the
updated controller coefficients and, as a result, convergence speed is
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lowered. Likewise, as��k� is decreased, convergence speed is raised.
By varying ��k�, we can effect tradeoffs between transient perfor-
mance and convergence speed.

We define the retrospective performance variable ẑ 2 Rlz by

ẑ�k�≜ � Ilz 0lz	lz 
 
 
 0lz	lz �Ẑ���k�; k� (36)

In the particular case of z� y, using ẑ in place of y in the regressor
vector (13) yields faster convergence. Therefore, for z� y, we
redefine Eq. (13) as

��k�≜

ẑ�k � 1�
..
.

ẑ�k � nc�
u�k � 1�

..

.

u�k � nc�

2
666666664

3
777777775

(37)

The novel feature of the adaptive control algorithm given by
Eqs. (11) and (29) is the use of the RCF (19), as shown in Fig. 1 for
p� 1. RCF provides an inner loop to the adaptive control law by
modifying the extended performance vector Z�k� in terms of the
difference between the actual past control inputs U�k� and the
recomputed control inputs Û��̂; k�.

V. Markov-Parameter Polynomial

By recursively substituting Eq. (1) into Eq. (3), it follows that z�k�
can be represented by

z�k� � E1A
rx�k � r� �H1u�k � 1� �H2u�k � 2� � 
 
 


�Hru�k � r� �Hzw;0w�k� �Hzw;1w�k � 1� � 
 
 

�Hzw;rw�k � r� (38)

where r � d andHzw;0 ≜ E0, andHzw;i ≜ E1A
i�1D1 for all i > 0. In

terms of the backward-shift operator q�1, Eq. (38) can be rewritten as

z�k� �E1A
rq�rx�k� � �H1q

�1 �H2q
�2 � 
 
 
 �Hrq

�r�u�k�
� �Hzw;0 �Hzw;1q

�1 � 
 
 
 �Hzw;rq
�r�w�k� (39)

Shifting Eq. (39) forward by r steps gives

z�k� r� � E1A
rx�k� � pr�q�u�k� �Wr�q�w�k� (40)

where q is the forward-shift operator,

Wr�q�≜Hzw;0q
r �Hzw;1q

r�1 �Hzw;2q
r�2 � 
 
 
 �Hzw;r (41)

and

pr�q�≜H1q
r�1 �H2q

r�2 � 
 
 
 �Hr (42)

We call pr�q� the Markov-parameter polynomial. Note that pr�q� is
a matrix polynomial in theMIMO case and a polynomial in the SISO
case. Furthermore, since H1 � 
 
 
 �Hd�1 � 0 when d � 2, it
follows that pr�q� for all r � d � 1 can be written as

pr�q� �Hdq
r�d �Hd�1q

r�d�1 � 
 
 
 �Hr (43)

The Markov-parameter polynomial pr�q� contains information
about the relative degreed and, in the SISO case, the sign of the high-
frequency gain: that is, the sign ofHd.We showbelow thatpr�q� also
contains information about the transmission zeros of Gzu�z�≜
E1�zI � A��1B, which is given by

Gzu�z��
1

zn��1zn�1�


��n
��1z

n�1��2z
n�2�


��n� (44)

To relate the transmission zeros ofGzu topr�q�, the Laurent series
expansion of Gzu about z�1 is given by

Gzu�z� �
X1
i�1

z�iHi (45)

This expansion converges uniformly on all compact subsets of
fz:jzj> ��A�g, where ��A� is the spectral radius of A ([28],
Theorem 13, page 186). By truncating the summation in Eq. (45), we
obtain the truncated Laurent expansion �Gr;zu of Gzu, given by

�Gr;zu�z�≜
Xr
i�1

z�iHi �
1

zr
�H1z

r�1 � 
 
 
 �Hr�1z�Hr�

� 1

zr
pr�z� (46)

Consequently, the Markov-parameter polynomial pr�q� is closely
related to the truncated Laurent expansion of Gzu.

A. Approximation of Outer Non-Minimum-Phase Zeros

In the case of MIMO systems, pr�q� is a matrix polynomial and
thus does not have roots in the sense of a polynomial. We therefore
require the notion of a Smith zero ([29], page 259). Specifically,
z 2 C is a Smith zero of pr�q� if the rank of pr�z� is less than the
normal rank of pr�q�: that is, the maximum rank of pr��� taken over
all � 2 C.

Let � 2 C be a transmission zero ofGzu. Then � is an outer zero of
Gzu if j�j � ��A�. Otherwise, � is an inner zero of Gzu.

The following result shows that the Smith zeros of the Markov-
parameter polynomial pr�q� asymptotically approximate each outer
transmission zero of Gzu.

Fact 1. Let � 2 C be an outer transmission zero ofGzu. For each r,
letRr ≜ f�r;1; . . . ; �r;mrg denote the set of Smith zeros ofpr�q�. Then
there exists a sequence f�r;irg1r�1 that converges to � as r!1.

The following specialization to SISO transfer functions shows
that the roots of pr�q� asymptotically approximate each outer zero
of Gzu.

Fact 2. Consider lu � lz � 1, and let � 2 C be an outer zero ofGzu.
For each r, let Rr ≜ f�r;1; . . . ; �r;r�dg be the set of roots of pr�q�.
Then there exists a sequence f�r;irg1r�1 that converges to � as r!1.

The following examples illustrate Fact 2 by showing that as r
increases, roots of the Markov-parameter polynomial pr�q�, and
hence roots of the numerator of the truncated transfer function �Gr;zu,
asymptotically approximate each outer non-minimum-phase zero of
Gzu. The remaining roots of pr�q� are either located at the origin or
form an approximate ring with radius close to ��A�. These roots are
spurious and have no effect on the adaptive control algorithm.

Example 1 (SISO, non-minimum-phase, stable plant). Consider
the plant Gzu with d� 2; H2 � 1; poles 0:5� 0:5|, �0:5� 0:5|,
�0:95, and �0:7|; minimum-phase zeros 0:3� 0:7| and
�0:7� 0:3|; and outer non-minimum-phase zeros 1.25 and �1:5.
Table 1 lists the approximated non-minimum-phase zeros obtained
as roots of pr�q� as a function of r. Note that as r increases, the outer
non-minimum-phase zeros are more closely approximated by the
roots of pr�q� (see Fig. 2).

Fig. 1 Closed-loop system including adaptive control algorithm with

the retrospective correction filter (dashed box) for p� 1.
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Example 2 (SISO, non-minimum-phase, unstable plant). Consider
the plant Gzu with d� 2; H2 � 1; poles 0:5� 0:5|, �0:5� 0:5|,
�0:7|, �0:95, and 1.4; minimum-phase zeros 0:3� 0:7| and
�0:7� 0:3|; outer non-minimum-phase zero �1:5; and inner non-
minimum-phase zero 1.25. Figure 3 shows the roots of p25�q�. Note
that the root of p25�q� outside ��A� is close to the outer non-
minimum-phase zero�1:5. However, the inner non-minimum-phase
zero 1.25 is not approximated by a root of p25�q�. The remaining
roots are either located at the origin or form an approximate ring with
radius close to ��A�.

B. Approximation of Inner Non-Minimum-Phase Zeros

Example 2 illustrates that the roots of pr�q� approximate each
outer non-minimum-phase zero of Gzu. However, inner non-
minimum-phase zeros ofGzu are not approximated by roots ofpr�q�.
To overcome this deficiency, we can use information about the
plant’s unstable poles to create a modified Markov-parameter
polynomial ~pr�q� whose roots approximate each non-minimum-
phase zero of Gzu. For illustration, assume that the SISO plant Gzu
has a unique unstable pole � 2 Cwhose absolute value is greater than
all other poles of Gzu. Then we define

~Gzu�z�≜
z � �
z

Gzu�z�

�Gzu�z� �
�

z
Gzu�z�

�
X1
i�d

z�iHi �
X1
i�d

z��i�1��Hi

�
X1
i�d

z�i�Hi � �Hi�1�

�
X1
i�d

z�i ~Hi (47)

where ~Hi ≜Hi � �Hi�1 are the modified Markov parameters for
i� 1; 2; . . ., and H0 � 0. By repeating this operation for each
unstable pole of Gzu, the roots of the modified Markov-parameter
polynomial

~p r�q�≜ ~Hdq
r�d � ~Hd�1q

r�d�1 � 
 
 
 � ~Hr (48)

can approximate each non-minimum-phase zero of Gzu. The
following example illustrates this process.

Example 3 (Example 2 with pole information). Reconsider
Example 2, where the inner non-minimum-phase zero 1.25 is not
approximated by a root of pr�q�. Using knowledge of the unstable
pole 1.4 to construct ~pr�q� given by Eq. (48), Fig. 4 shows the roots
of ~p25�q�. Note that the roots outside �� ~A�, where ~A is the dynamics
matrix of a minimal realization of ~Gzu, are close to the non-
minimum-phase zeros ofGzu. The remaining roots are either located
at the origin or form an approximate ring with radius close to �� ~A�.

Table 1 Approximated non-minimum-phase zeros

obtained as roots of pr�q� as a function of r for the
stable non-minimum-phase plant in Example 1

ra rootsnmp�pr�q��
6 {0.944, �1:537}
8 {1.170, �1:502}
10 {1.207, �1:498}
15 {1.240, �1:499}
20 {1.248, �1:500}
25 (1.250, �1:500}
aAs r increases, the outer zeros are more accurately modeled.
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Fig. 2 Roots of p20�q� for the stable, non-minimum-phase plant in

Example 1. The dashed line denotes ��A� � 0:95. Note that the roots
outside ��A� are close to the outer non-minimum-phase zeros �1:5 and
1.25. The remaining roots are either located at the origin or form an

approximate ring with radius close to ��A�.
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Example 2. The dashed line denotes ��A� � 1:4. Note that the root of

p25�q� outside ��A� is close to the outer non-minimum-phase zero �1:5.
However, the non-minimum-phase zero 1.25 is not approximated by a
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Fig. 4 Roots of ~p25�q� for the unstable, non-minimum-phase plant

in Example 3. The dashed line denotes �� ~A� � 0:95, where ~A is the

dynamics matrix of a minimal realization of ~Gzu. Note that the roots

outside �� ~A� are close to the inner and outer non-minimum-phase zeros
of Gzu. The remaining roots are either located at the origin or form an

approximate ring with radius close to �� ~A�.
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VI. Construction of �Bzu

We present four constructions for �Bzu based on the available
modeling information.

A. Bzu-Based Construction

IfBzu givenbyEq. (8) isknown, then �Bzu canbechosen tobeequal to
Bzu, withpc � qc. In this case,U�k� �U1�k�, and Eq. (17) becomes

Ẑ��̂; k� �Wzw�zw�k� � BzuÛ��̂; k� (49)

This construction of �Bzu captures information about the relative degree
d, the first nonzero Markov parameter (since Hd � �d), and exact
valuesofall transmissionzerosofGzu: that is,bothminimum-phaseand
non-minimum-phase transmission zeros.

B. Non-Minimum-Phase-Zero-Based Construction

Consider lu � lz � 1 and assume that Hd and the non-minimum-
phase zeros of Gzu are known. Then we define the non-minimum-
phase-zero polynomial N�q� to be the polynomial whose roots are
equal to the non-minimum-phase zeros of Gzu: that is,

N�q�≜Hdq
m � ~�1q

m�1 � 
 
 
 � ~�m (50)

where m � 0 is the number of non-minimum-phase zeros in Gzu,
and ~�1; . . . ; ~�m 2 R. If m� 0, that is, Gzu is minimum phase, then
N�q� �Hd. With pc � qc, the non-minimum-phase-zero-based
construction of �Bzu is thus given by

�B zu �

H1 
 
 
 Hd
~�1 
 
 
 ~�m 0lz	lu 
 
 
 0lz	lu 0lz	lu 
 
 
 0lz	lu

0lz	lu
. .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0lz	lu 
 
 
 0lz	lu H1 
 
 
 Hd
~�1 
 
 
 ~�m 0lz	lu 
 
 
 0lz	lu

2
666664

3
777775 (51)

where H1 � 
 
 
 �Hd�1 � 0. This construction of �Bzu captures
information about the relative degree d, the first nonzero Markov
parameter, and exact values of all non-minimum-phase zeros ofGzu.
In the minimum-phase case, the only required modeling information
isHd. This construction of �Bzu can be extended to theMIMO case by
replacing eachminimum-phase zero in the Smith–McMillan form of
Gzu by a zero at z� 0; for details, see [26].

C. r-Markov-Based Construction

Replacing k with k � 1 in Eq. (4) and substituting the resulting
relation back into Eq. (4) yields a 2-Markov model. Repeating this
procedure r � 1 times yields the r-Markov model of Eqs. (1–3):

z�k� �
Xn
i�1

�r;iz�k � r � i� 1� �
Xr�1
i�d

Hiu�k � i�

�
Xn
i�1

�r;iu�k � r � i� 1� �
Xr�1
i�0

Hzw;iw�k � i�

�
Xn
i�1

�r;iw�k � r � i� 1� (52)

where, for i� 1; . . . ; n, the coefficients �r;i 2 R, �r;i 2 Rlz	lu , and
�r;i 2 Rlz	lw are given by

�1;i ≜ ��i; �1;i ≜ �i; �1;i ≜ �i;

..

. ..
. ..

.

�r;i ≜ �r�1;1�1;i � �r�1;i�1; �r;i ≜ �r�1;1�1;i � �r�1;i�1; �r;i ≜ �r�1;1�1;i � �r�1;i�1;
..
. ..

. ..
.

�r;n ≜ �r�1;1�1;n; �r;n ≜ �r�1;1�1;n; �r;n ≜ �r�1;1�1;n

(53)

Note that �r;1 �Hr and �r;1 �Hzw;r. We represent Eq. (52) with
w� 0 as the r-Markov transfer function:

Gr;zu�z� �
1

zr�n�1 � �r;1zn�1 � 
 
 
 � �r;n

 �H1z

r�n�2 � 
 
 


�Hr�1z
n �Hrz

n�1 � �r;2zn�2 � 
 
 
 � �r;n� (54)

The system representation (54) is nonminimal, since its order is
n� r � 1, and thus Eq. (54) includes poles that are not present in
the original model. Furthermore, note that the coefficients of the
terms zn�r�2 through zn in the denominator are zero. These facts
are irrelevant for the following development. Using the numerator
coefficients of Eq. (54), the r-Markov-based construction of �Bzu with
pc � qc � r � 1 is given by

�B zu

�

H1 
 
 
 Hr �r;2 
 
 
 �r;n 0lz	lu 
 
 
 0lz	lu

0lz	lu
. .
. . .

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
.

0lz	lu
0lz	lu 
 
 
 0lz	lu H1 
 
 
 Hr �r;2 
 
 
 �r;n

2
66664

3
77775

(55)

This construction of �Bzu captures information about the relative
degree d, the first nonzero Markov parameter, and exact values of all

transmission zeros of Gzu: that is, both minimum-phase and non-
minimum-phase transmission zeros.

D. Markov-Parameter-Based Construction

Using the numerator coefficients of Eq. (46), the Markov-
parameter-based construction of �Bzu with pc � qc � r � 1 is given
by

�B zu�

H1 
 
 
 Hr 0lz	lu 
 
 
 0lz	lu 0lz	lu 
 
 
 0lz	lu

0lz	lu
. .
. . .

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
. ..

.

0lz	lu 
 
 
 0lz	lu H1 
 
 
 Hr 0lz	lu 
 
 
 0lz	lu

2
66664

3
77775

(56)

TheMarkov parameters are the numerator coefficients of a truncated
Laurent series expansion of Gzu about z�1. The Markov param-
eters contain information about the relative degree d and, as shown
by Fact 2 for the SISO case, approximate values of all outer non-
minimum-phase zeros of Gzu. The advantage in using �Bzu given by
Eq. (56) rather than Eq. (55) is that �r;2; . . . ; �r;n need not be known.
If, however, Gzu has inner non-minimum-phase zeros and the
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unstable poles ofGzu whose absolute values are greater than at least
one inner non-minimum-phase zero are known, then we can replace
the Markov parameters H1; . . . ; Hr in Eq. (56) by the modified
Markov parameters ~H1; . . . ; ~Hr given in Eq. (47). If these poles are
not known, then �Bzu can be chosen to be either Bzu, the non-
minimum-phase-zero form in Eq. (51), or the r-Markov form in
Eq. (55).

Note that if the order n of the system is known and 2n� 1Markov
parameters are available, then a state-space model of the system
can be reconstructed by using the eigensystem realization algorithm
[30]. However, the examples considered in Secs. VII and VIII use
substantially fewer Markov parameters.

VII. Numerical Examples: Nominal Cases

We now present numerical examples to illustrate the response of
the RCF adaptive control algorithm under nominal conditions. We
consider a sequence of examples of increasing complexity, ranging
from SISO minimum-phase plants to MIMO non-minimum-phase
plants, including stable and unstable cases. Each SISO example is
constructed such thatHd � 1. All examples assume y� z, with ��k�
given by Eq. (37), and in all simulations, the adaptive controller
gain matrix ��k� is initialized to zero. Unless otherwise noted, all
examples assume x�0� � 0.

Example 4 (SISO, minimum-phase, unstable plant, stabilization).
Consider the plant Gzu with d� 1, poles 0 and 1.5, and inner non-
minimum-phase zero�1:25. For stabilization, we takeD1 and E0 to
be zero matrices. Let �Bzu be given by Eq. (51), which is constructed
using the first nonzeroMarkov parameterH1 � 1 and the location of
the non-minimum-phase zero �1:25: that is, N�q� � q� 1:25. We
take nc � 2, p� 1, and ��k�  10. The closed-loop response is
shown in Fig. 5 for x�0� � � 0:1 0:4 �T.

Example 5 (SISO, minimum-phase, unstable plant, command-
following). Consider the double integrator plant Gzu with d� 3;
poles 0:5� 0:5|, �0:5� 0:5|, 1, and 1; and minimum-phase zeros
0:3� 0:7| and 0.5.We consider a command-following problemwith
step command w�k� � 1. With the plant realized in controllable
canonical form, we take D1 � 0 and E0 ��1. We take nc � 10,
p� 5,��k�  5, and r� 10, with �Bzu givenbyEq. (56). The closed-
loop response is shown in Fig. 6.

Example 6 (SISO, minimum-phase, stable plant, command-
following, disturbance rejection). Consider the plantGzu withd� 3;
poles 0:5� 0:5|, �0:5� 0:5|, �0:9, and �0:7|; and minimum-
phase zeros 0:3� 0:7|, �0:7� 0:3|, and 0.5. We consider a
combined step-command-following and disturbance-rejection prob-
lem with command w1 and disturbance w2 given by

w�k� � w1�k�
w2�k�

� �
� 5

sin�1k

� �
(57)

where �1 � 	=10 rad=sample. With the plant realized in control-
lable canonical form, we take

D1 �
0 0

0 1

� �

and E0 � ��1 0 �. The disturbance, which is not matched, is
assumed to be unknown, and the command signal is not used directly.
We take nc � 20, p� 1, ��k�  50, and r� 3, with �Bzu given by
Eq. (56). The closed-loop response is shown in Fig. 7.

The following examples are disturbance-rejection simulations,
that is, E0 � 0, with the unknown two-tone sinusoidal disturbance:

w�k� � sin�1k
�1:5 sin�2k

� �
(58)

where �1 � 	=10 rad=sample and �2 � 13	=50 rad=sample.
With each plant realized in controllable canonical form, we take
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Fig. 5 Closed-loop response of the unstable, minimum-phase, SISO

plant in Example 4 using the non-minimum-phase-zero-based con-

struction Eq. (51) of �Bzu. The control is turned on at k� 0. The controller

order is nc � 2 with parameters p� 1 and ��k� � 10.
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Fig. 6 Closed-loop response of the unstable, minimum-phase, SISO

plant in Example 5 with a step command. The control is turned on

at k� 200. The controller order is nc � 10 with parameters p� 5,

��k� � 5, and r� 10, with �Bzu given by Eq. (56).
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Fig. 7 Closed-loop response of the stable, minimum-phase, SISO plant

in Example 6 with a step command and sinusoidal disturbance. The
control is turned on at k� 200. The controller order is nc � 20 with

parameters p� 1, ��k� � 50, and r� 3, with �Bzu given by Eq. (56).
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D1 �
I2
0

� �

and therefore the disturbance is not matched.
Example 7 (SISO, minimum-phase, stable plant, disturbance

rejection). Consider the plant Gzu with d� 3; poles 0:5� 0:5|,
�0:5� 0:5|, �0:9, and �0:7|; and minimum-phase zeros
0:3� 0:7|, �0:7� 0:3|, and 0.5. We take nc � 15, p� 1,
��k�  25, and r� 3, with �Bzu given by Eq. (56), the closed-loop
response is shown in Fig. 8. The control algorithm converges (see
Fig. 9) to an internal model controller with high gain at the
disturbance frequencies, as shown in Fig. 10.

Example 8 (SISO, non-minimum-phase, stable plant, disturbance
rejection). Consider the plant Gzu with d� 3, poles 0:5� 0:5|,
�0:5� 0:5|, �0:9, and �0:7|; minimum-phase zeros 0:3� 0:7|
and �0:7� 0:3|; and outer non-minimum-phase zero 2. We take
nc � 15, p� 1, r� 7, and ��k�  25. The Markov-parameter
polynomial used to construct �Bzu as in Eq. (56) is given by

p7�q� � q4 � 1:2q3 � 0:96q2 � 0:56q � 0:75

with roots 0:01� 0:71|, �0:77, and 1.94. Note that the root 1.94
approximates the zero 2. The closed-loop response is shown in
Fig. 11.

To illustrate the effect of the learning rate ��k�, the closed-loop
response is shown in Fig. 12 for ��k�  2500 and all other
parameters unchanged. Note that with ��k�  2500, the initial
transient is reduced at the expense of convergence speed.

Example 9 (SISO, minimum-phase, unstable plant, disturbance
rejection). Consider the plant Gzu with d� 3; poles 0:5� 0:5|,
�0:5� 0:5|, �1:04, and 0:1� 1:025|; and minimum-phase
zeros 0:3� 0:7|, �0:7� 0:3|, and 0.5. We take nc � 15, p� 1,
��k�  25, and r� 10, with �Bzu given by Eq. (56). The closed-loop
response is shown in Fig. 13.

Example 10 (MIMO, minimum-phase, stable plant, disturbance
rejection). Consider the two-input, two-output plant

Gzu�z� �
z2�0:5z
D1�z�

z4�0:1z3�0:22z2�0:59z�0:29
D1�z�

z�0:5
D1�z�

z3�1:1z2�0:88z�0:29
D1�z�

" #

where

D1�z�≜ z5 � 0:1z4 � 0:09z3 � 0:401z2 � 0:196z � 0:2205

d� 1; H1 �
0 1

0 0

� �

Consequently,Gzu has poles�0:5� 0:5|, 0.9,�0:7|,�0:5� 0:5|,
0.9, and �0:7| and minimum-phase transmission zeros 0:3� 0:7|,
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Fig. 8 Closed-loop disturbance-rejection response of the stable,

minimum-phase, SISO plant in Example 7. The control is turned on
at k� 200. The controller order is nc � 15 with parameters p� 1,

��k� � 25, and r� 3, with �Bzu given by Eq. (56).
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Fig. 9 Time history of the components of ��k� for the stable, minimum-

phase, SISO plant in Example 7. The control is turned on at k� 200.
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Fig. 10 Bodemagnitude plot of the adaptive controller in Example 7 at
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Fig. 11 Closed-loop disturbance-rejection response of the stable, non-

minimum-phase, SISO plant in Example 8. The control is turned on
at k� 200. The controller order is nc � 15 with parameters p� 1,

��k� � 25, and r� 7, with �Bzu given by Eq. (56).
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0.5, and 0.5.We takenc � 15,p� 1,��k�  1, and r� 10, with �Bzu
given by Eq. (56). The closed-loop response is shown in Fig. 14.

Example 11 (MIMO, non-minimum-phase, stable plant, distur-
bance rejection). Consider the two-input, two-output plant

Gzu�z� �
z2�0:5z
D1�z�

z2�z�2
D2�z�

z�0:5
D1�z�

z�2
D2�z�

" #

where D1�z� is given in Example 10,

D2�z�≜ z3 � 0:2z2 � 0:34z� 0:232; d� 1

H1 �
0 1

0 0

� �

Consequently,Gzu has poles�0:5� 0:5|, 0:3� 0:7|,�0:7|,�0:4,
and 0.9; minimum-phase transmission zero 0.5; and outer non-
minimum-phase transmission zero 2. We take nc � 15, p� 2,
��k�  1, and r� 8, with �Bzu given by Eq. (56). The closed-loop
response is shown in Fig. 15.

Example 12 (MIMO, non-minimum-phase, unstable plant,
disturbance rejection). Consider the two-input, two-output plant

Gzu�z� �
z2�0:5z
D3�z�

z2�z�2
D4�z�

z�0:5
D3�z�

z�2
D4�z�

" #

where

D3�z�≜ z5 � 1:1z4 � 1:731z3 � 1:494z2 � 0:608z � 0:4679

D4�z�≜ z3 � 1:4z2 � 0:9z� 0:2; d� 1; H1 �
0 1

0 0

� �

Consequently, Gzu has poles �0:5� 0:5|, �0:7|, 0:1� 1:025|,
�0:4, and 0.9; minimum-phase transmission zero 0.5; and outer
non-minimum-phase transmission zero 2. We take nc � 10, p� 1,
��k�  1, and r� 10, with �Bzu given by Eq. (56). The closed-loop
response is shown in Fig. 16.

VIII. Numerical Examples: Offnominal Cases

We now revisit the numerical examples of Sec. VII to illustrate the
response of the RCF adaptive control algorithm under conditions of
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Fig. 13 Closed-loop disturbance-rejection response of the unstable,

minimum-phase, SISO plant in Example 9. The control is turned on
at k� 200. The controller order is nc � 15 with parameters p� 1,

��k� � 25, and r� 10, with �Bzu given by Eq. (56).
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Fig. 14 Closed-loop disturbance-rejection response of the stable,

minimum-phase, two-input, two-output plant in Example 10. The

control is turned on at k� 200. The controller order is nc � 15 with

parameters p� 1, ��k� � 1, and r� 10, with �Bzu given by Eq. (56).

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

P
er

fo
rm

an
ce

 V
ar

ia
bl

e 
z(

k)

z
1

z
2

0 200 400 600 800 1000
−4

−2

0

2

4

Sample Index k

C
on

tr
ol

 In
pu

t u
(k

) u
1

u
2

Fig. 15 Closed-loop disturbance-rejection response of the stable, non-

minimum-phase, two-input, two-output plant in Example 11. The
control is turned on at k� 200. The controller order is nc � 15 with

parameters p� 2, ��k� � 1, and r� 8, with �Bzu given by Eq. (56).
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Fig. 12 Closed-loop disturbance-rejection response of the stable, non-

minimum-phase, SISO plant in Example 8. The control is turned on

at k� 200. The controller order is nc � 15 with parameters p� 1,

��k� � 2500, and r� 7 with �Bzu given by Eq. (56). Compared with

Fig. 11, the initial transient is reduced at the expense of convergence
speed.
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uncertainty in the relative degree and Markov parameters as well as
measurement noise and actuator and sensor saturation. In each
example, the adaptive controller gain matrix ��k� is initialized to
zero. Unless otherwise noted, all examples assume x�0� � 0.

Example 13 (Example 8 with Markov-parameter multiplicative
error). Reconsider Example 8withMarkov-parametermultiplicative
error. For controller implementation, we use the estimate B̂≜ 
B,
where 
 2 R is varied between 0.3 and 5. For i� 1; . . . ; r, the
estimatedMarkovparameters Ĥi � CAi�1B̂ are used to construct �Bzu
given by Eq. (56). Taking nc � 15,p� 1, r� 10, and��k�  1000,
the closed-loop performance is compared in Fig. 17. In each case, the
control is turned on at k� 0, and the performance metric is given by

k0 ≜min

�
k � 9:

1

10

X9
i�0
jz�k � i�j< 0:01

�
(59)

that is, k0 is the minimum time step k such that the average of
fjz�k� i�jg9i�0 is less than 0.01. Figure 17 shows that the best
performance is obtained for 
� 1, which corresponds to the true
value ofB. As 
 is decreased, convergence slows significantly. In the

case in which the sign of the first nonzero Markov parameter (the
sign of the high-frequency gain) is wrong, that is, Ĥ3 ��H3, the
simulation fails. These simulations suggest that performance degra-
dation due to an unknown scaling of theMarkov parameters provides
a useful measure of adaptive gain margin. These findings are
consistent with the adaptive gain-margin results presented in [3].

Example 14 (Example 8 with unknown latency). A known latency
of l steps can be accounted for by replacing d by d� l in the
construction of �Bzu. However, we now assess the effect of unknown
latency in Example 8, which is equivalent to uncertainty in the
relative degree d. The system has relative degree d� 3. For con-
troller implementation, we use the erroneous estimate d̂ of d and
take nc � 15, p� 1, ��k�  1000, and r� 10, with �Bzu given by
Eq. (56). Letting d̂ be either 2, 3, 4, 5, or 6, Table 2 compares both the
performance metric (59) and the maximum value of jz�k�j for each
estimate d̂ of d. In each case, the control is turned on at k� 0. The
best performance is obtained for d̂� d� 3. These simulations show
the sensitivity of the adaptive controller to unknown errors in the
relative degree d, which provides a useful measure of adaptive phase
margin.

Example 15 (sensitivity to non-minimum-phase-zero uncertainty).
Consider the plantGzuwithd� 1;H1 � 1; poles 0 and 0.5; and outer
non-minimum-phase zero 2. The plant is subject to disturbancew�k�
given by Eq. (58); thus, with the plant realized in controllable
canonical form, we take D1 � I2 and E0 � 0. Furthermore, we
assume y� z and let ��k� be given by Eq. (37). To illustrate the
sensitivity of the adaptive control algorithm to knowledge of the non-
minimum-phase zero, we let �Bzu be given by Eq. (51), which is
constructed using the first nonzero Markov parameter H1 � 1, the

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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2000
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Multiplicative Error η

k 0

Fig. 17 Closed-loop performance comparison of the stable, non-

minimum-phase, SISOplant in Example 8withmultiplicative error inB.
We take nc � 10, p� 1, and ��k� � 1000. The multiplicative error �,

which is used to obtain the Markov parameters for �Bzu given by Eq. (56)

with r� 10, is varied between 0.3 and 5. The best performance is

obtained for �� 1, which corresponds to the true value of B.

Table 2 Closed-loop performance comparison

of the stable, non-minimum-phase, SISO plant

in Example 8 with unknown latency

d̂a k0 max jz�k�j

2 1870 12.3
3 531 9.4
4 847 8.5
5 4633 10.9
6 11,660 3:2 	 109

aFor controller implementation, we use the erroneous estimate d̂
of d and take nc � 15,p� 1, ��k�  1000, and r� 10, with �Bzu
given by Eq. (56). The best performance is obtained for
d̂� d� 3.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
200

300

400

500

600

700

800

900

1000

1100

1200

Multiplicative Error η

k 0

Fig. 18 Closed-loop performance comparison of the stable, non-
minimum-phase, SISOplant inExample 15with amultiplicative error in

the non-minimum-phase zero 2. We take nc � 10, p� 1, and ��k� � 25.

The non-minimum-phase-zero multiplicative error �, which is used to

construct �Bzu given by Eq. (51), is varied between 0.75 and 2.5. The best

performance is obtained for �� 1:05, which is close to the true value of

the non-minimum-phase zero.
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Fig. 16 Closed-loop disturbance-rejection response of the unstable,

non-minimum-phase, two-input, two-output plant in Example 12. The
control is turned on at k� 200. The controller order is nc � 10 with

parameters p� 1, ��k� � 1, and r� 10, with �Bzu given by Eq. (56).
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non-minimum-phase zero 2, and a multiplicative error 
 2 R: that is,
N�q� � q � 2
. We vary 
 between 0.75 and 2.5 with nc � 10,
p� 1, and ��k�  25. A closed-loop performance comparison is
shown in Fig. 18. In each case, the control is turned on at k� 0, and
the performance metric is given by Eq. (59). The best performance is
obtained for 
� 1:05, which is close to the true value of the non-
minimum-phase zero. Note that the adaptive control algorithm is
more robust to larger values of 
 than smaller values.

Example 16 (Example 9 with stabilization and noisy measure-
ments). Reconsider Example 9 with no commands or disturbances.
For stabilization, we takeD1 andE0 to be zeromatrices. To assess the
performance of the adaptive algorithm with added sensor noise, we
modify Eqs. (2) and (3) by

y�k� � z�k� � E1x�k� � E0w�k� � v�k� (60)

where v�k� 2 Rlz is Gaussian white noise with mean �v� 2 and
standard deviation � � 0:1.We takenc � 15,p� 1,��k�  25, and
r� 3, with �Bzu given by Eq. (56). For the initial condition

x�0�� ��0:43 �1:67 0:13 0:29 �1:15 1:19 1:19 �0:04 �T

the closed-loop response is shown in Fig. 19.
Example 17 (Example 7 with actuator and sensor saturation).

Reconsider Example 7 with the additional assumption that both the
control input and sensor measurement are subject to saturation
at �2. We take nc � 15, p� 1, ��k�  25, and r� 3, with �Bzu
given by Eq. (56). The closed-loop response shown in Fig. 20
indicates that the saturations degrade steady-state performance.

Example 18 (Example 7 with command-following and actuator
saturation). Reconsider Example 7 with step command given by
w�k� � 1. With the plant realized in controllable canonical form,
we take D1 � 0 and E0 ��1. Taking nc � 15, p� 1, ��k�  25,
and r� 3, with �Bzu given by Eq. (56), the closed-loop responses
are shown in Fig. 21 with and without actuator saturation at �0:1.
With actuator saturation, the performance variable reflects the
capability of the saturated control.

IX. Model Reference Adaptive Control

Model reference adaptive control (MRAC), as illustrated in
Fig. 22, is a special case of Eqs. (1–3), where z≜ y1 � ym is the
difference between the measured output y1 of the plant G and the
output ym of a reference model Gm. For MRAC, the exogenous
command w is assumed to be available to the controller as an
additional measurement variable y2. Unlike standard MRAC
methods [1,7,16,31–33], retrospective cost adaptive control does not
depend on knowledge of the reference model Gm.

We now present numerical examples to illustrate the response of
the RCF adaptive control algorithm for model reference adaptive
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Fig. 19 Closed-loop response of the unstable, minimum-phase, SISO

plant in Example 9 with random white noise added to the measurement.

The control is turned on at k� 0. The controller order is nc � 15 with

parameters p� 1, ��k� � 25, and r� 3, with �Bzu given by Eq. (56). The

performance variable is degraded to the level of the additive sensor noise

v�k�.
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Fig. 20 Closed-loop disturbance-rejection response of the stable,

minimum-phase, SISO plant in Example 7, where both the actuator and

sensor are saturated at �2. The control is turned on at k� 200. The

controller order is nc � 15 with parameters p� 1, ��k� � 25, and r� 3,

with �Bzu given by Eq. (56). The saturations degrade steady-state

performance.
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Fig. 21 Closed-loop step-command-following responses of the stable,

minimum-phase, SISO plant in Example 7 with and without actuator

saturation at �0:1. The control is turned on at k� 200. The controller
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given by Eq. (56).

Fig. 22 Model reference adaptive control problem with performance

variable z.
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control (see Fig. 22). Unless otherwise noted, the adaptive controller
gain matrix ��k� is initialized to zero.

A. Boeing 747 Longitudinal Dynamics

Consider the longitudinal dynamics of a Boeing 747 aircraft,
linearized about steady flight at 40,000 ft and 774 ft=s. The inputs to
the dynamical system are taken to be elevator deflection and thrust,
and the output is the pitch angle. The continuous-time equations of
motion are thus given by

_u
_w
_q
_�

2
664

3
775�

�0:003 0:039 0 �0:322
�0:065 �0:319 7:74 0

0:020 �0:101 �0:429 0

0 0 1 0

2
664

3
775

u
w
q
�

2
664

3
775

�

0:010 1
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�1:160 0:598
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2
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3
775 �e

�T

� �
(61)
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Fig. 23 Closed-loop model reference adaptive control of Boeing 747 longitudinal dynamics. The controller order is nc � 10 with parameters p� 1,

��k� � 40, and r� 10, with �Bzu given by Eq. (56). The controller is turned on at t� 0 s, and the performance variable converges within about 20 s.
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Fig. 24 Closed-loopmodel reference adaptive control ofmissile longitudinal dynamics. The control effectiveness�� 1, and thus the plant and reference

model are identical. Therefore, the adaptive control input uac � 0.
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w (62)

z� y1 � ym (63)

where w is the exogenous command and ym is the output of the
reference model:

Gm�s� �
Ym�s�
W�s� �

0:0131

s2 � 0:16s� 0:0131
(64)

We discretize Eqs. (61–64) using a zero-order hold and sampling
time Ts � 0:01 s. The reference command is taken to be a 1 deg
step command in pitch angle. The controller order is nc � 10

with parameters p� 1, ��k�  40, and r� 10, with �Bzu given by
Eq. (56). The closed-loop response is shown in Fig. 23 for zero initial
conditions.

B. Missile Longitudinal Dynamics

We now present numerical examples for MRAC of missile
longitudinal dynamics under offnominal or damage situations. The
missile longitudinal plant [34] is derived from the short-period
approximation of the longitudinal equations of motion, given by
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Fig. 25 Missile longitudinal dynamics with control effectiveness �� 0:50 and adaptive controller turned off: that is, autopilot-only control.
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Fig. 26 Closed-loop model reference adaptive control of missile longitudinal dynamics with control effectiveness �� 0:50. The augmented controllers

provide better performance than the autopilot-only simulation.
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where

x≜ �
q

� �
; y≜ Az

q

� �

and 2 �0; 1� represents the control effectiveness. Nominally,� 1.
The open-loop system (65) and (66) is statically unstable. To

overcome this instability, a classical three-loop autopilot [34] is
wrapped around the basic missile longitudinal plant. The adaptive
controller then augments the closed-loop system to provide control in
offnominal cases: that is, when  < 1. The autopilot and adaptive
controller inputs are denoted as uap and uac, respectively. Thus, the
total control input u� uap � uac. The reference model Gm consists
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Fig. 27 Closed-loop model reference adaptive control of missile longitudinal dynamics with control effectiveness �� 0:25. After a transient, the

augmented controllers stabilize the system, whereas the autopilot-only simulation fails. Note that the system is stabilized despite the total control input u
reaching the actuator saturation level of�30 deg.
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Fig. 28 Closed-loop model reference adaptive control of missile longitudinal dynamics with control effectiveness �� 0:25. The adaptive controller is
initializedwith the converged gains from the 50%control effectiveness case. The initial transient is reduced as comparedwith initializing the control gains

to zero. In this case, the actuator saturation level is never reached.
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of the basic missile longitudinal plant with � 1 and the clas-
sical three-loop autopilot. An actuator amplitude saturation of
�30 deg�� 0:524 rad is included in the model, but no actuator or
sensor dynamics are included.

The goal is to have the missile follow a pitch acceleration
command w consisting of a 1 g amplitude, 1 Hz square wave. The
performance variable z is the difference between the measured pitch
accelerationAz and the referencemodel pitch accelerationA�z : that is,
z≜ Az � A�z . The closed-loop response is shown in Fig. 24 for� 1.
Since the plant and reference model are identical in the nominal case,
the adaptive control input uac � 0.

All of the following examples use zero initial conditions and
the same adaptive controller parameters. The adaptive controller is
implemented at a sampling rate of 300 Hz. We take nc � 3, p� 1,
and r� 20, with �Bzu given by Eq. (56). A time-varying learning rate
��k� � 75k� 1 is used such that, initially, controller adaptation is
fast and as performance improves, the adaptation slows. The learning
rate is identical for each simulation. System identification using the
observer/Kalman filter identification algorithm [30] is used to obtain
the 20 Markov parameters required for controller implementation.
The offline identification procedure is performed with a nominal
simulation (� 1) by injecting band-limited white noise at the
adaptive controller input uac and recording the performance variable
z while the autopilot is in the loop. No external disturbances are
assumed to be present during the identification procedure.

Example 19 (50% control effectiveness). Consider � 0:50.
Figure 25 shows simulation results with the adaptive controller
turned off: that is, autopilot-only control. Now, with the autopilot
augmented by the adaptive controller, simulation results are shown in
Fig. 26. After a transient, the augmented controllers provide better
performance than the autopilot-only simulation.

Example 20 (25% control effectiveness). Consider � 0:25. With
the adaptive controller turned off, that is, autopilot-only control, the
simulation fails. With the autopilot augmented by the adaptive
controller, simulation results are shown in Fig. 27. After a transient,
the augmented controllers stabilize the system, whereas the
autopilot-only simulation fails.

Figure 27 shows that the total control input u reaches the actuator
saturation level of �30 deg. To reduce the initial transient, we
initialize the adaptive controller with the converged control gains �
from the 50% control effectiveness case. As shown in Fig. 28, the
initial transient is reduced as compared with initializing the control
gains to zero. In this case, the actuator saturation level is not reached.

X. Conclusions

We presented the RCF adaptive control algorithm and demon-
strated its effectiveness in handling non-minimum-phase zeros
through numerical examples, illustrating the response of the algo-
rithm under conditions of uncertainty in the relative degree and
Markov parameters, measurement noise, and actuator and sensor
saturations. Bursting was not observed in any of the simulations. We
also suggested metrics that can serve as gain and phase margins for
discrete-time adaptive systems. Future work includes the develop-
ment of Lyapunov-based stability and robustness analysis of theRCF
adaptive control algorithm as well as development of a theoretical
foundation for analyzing broadband disturbance-rejection properties
of the controller.
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