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SUMMARY

This paper considers the concept of input and state observability, that is, conditions under which both the unknown input
and initial state of a known model can be determined from output measurements. We provide necessary and sufficient
conditions for input and state observability in discrete-time systems. Next, we develop a subspace identification algorithm
that identifies the state-space matrices and reconstructs the unknown input using output measurements and known inputs.
Finally, we present several illustrative examples, including a nonlinear system in which the unknown input is due to the
endogenous nonlinearity. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Systems with unknown inputs have received consid-
erable attention [1-26]. The unknown inputs may
represent unknown external drivers, input uncertainty,
or instrument faults. An active research area is a
state reconstruction with known model equations
and unknown inputs. Approaches include full-order
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observers [6,4,7, 16,19, 25], reduced-order observers
[1,5,12,13], geometric techniques [11], and trial-and-
error methods [2]. A widely used approach is to model
the unkno2n inputs as outputs of a known dynamic
system and incorporate the input dynamics with
the plant dynamics [10,27]. However, this approach
increases the dimension of the observer and is limited
to specific types of inputs.

In [23,24] input reconstruction is achieved by
inverting the known transfer function. More recently,
methods for input reconstruction using optimal filters
are developed in [3,15,19,20,25]. The methods of
[3,15,19,20,23-25] for state reconstruction and
input reconstruction require knowledge of the model
equations.

A related problem is the concept of input and state
observability, which is the ability to reconstruct the
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inputs and states using only output measurements.
Necessary and sufficient conditions for the input and
state observability for continuous-time systems in
terms of the invariant zeros of the system are presented
in [3,5,13,19,21]. Input and state observability for
discrete-time systems is considered in [3], whereas
Floquet and Barbot [25] uses a constructive algorithm
to determine the observability of the unknown input
and state.

Subspace identification algorithms are used to
identify systems in a state-space form, and are natu-
rally applicable to multi-input, multi-output systems
[28-39]. The idea underlying subspace algorithms is
that estimates of the state sequence in an unknown
basis can be computed directly from input—output
observations. Once the state estimates are available,
state-space matrices are estimated using least squares.
These methods are computationally tractable and
require no a priori information about the structure or
order of the system.

In this paper, we examine conditions under which
both the input and state can be estimated from the
output measurements. We discuss necessary and suffi-
cient conditions for a discrete-time system to be input
and state observable and derive tests for input and state
observability. Since no assumptions on the input are
made, the unknown input can be either an unmod-
eled exogenous signal or a consequence of an unknown
endogenous nonlinear function of the states.

We then develop a deterministic subspace identifi-
cation algorithm for systems with arbitrary unknown
inputs. When the conditions for input and state observ-
ability and persistency of excitation are satisfied, we
show that the states, the state-space matrices, and the
unknown inputs can be estimated from the output
measurements. No assumptions are imposed on the
unknown inputs.

Finally, we present several illustrative examples. For
a linear example with a known model and an unknown
exogenous input, we estimate the unknown input based
on noisy output measurements. We then assume that
the model is unknown and estimate both the model
and the unknown input based on noisy output measure-
ments. Furthermore, we consider a nonlinear system
in which the unknown input is due to the endogenous
nonlinearity.

Copyright © 2008 John Wiley & Sons, Ltd.

2. INPUT AND STATE OBSERVABILITY:
STRICTLY PROPER CASE

Consider the system
Xp+1=Axi+ Hey (D
Yk =Cuxp (2)

where x; € R", ex e R?, yre R, AcR™", HeR"™P,
and C e R™*". Without loss of generality, we assume
[<n, rank(C)=1[>0, and rank(H) = p>0. No assump-
tions on the unmeasured signal e; are made. Hence, ej
can be either an exogenous input or a consequence of
nonlinear, time-varying function of the states.
Throughout this paper, r denotes a nonnegative
integer. Furthermore, for convenience, every vector or
matrix with zero rows or zero columns is an empty
matrix. Define %, e RV and &, e RCTDP a5

Yo €o
1 el

7S N 3)
Yr er

Definition 2.1
Let r>1. Then the input and state unobservable
subspace U, of (1), (2) is the subspace

A *o n+r
2 . € R™P: 9, =0 4)
r—1

We define I', e RCTDIXn pp e RUTDIXTP and W, €
RU+DIx(n+rp) g4

C
CA

r,2 CA?

cA’
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0 0 0
CH 0
M 2| CAH CH - 0 )
| CA™'H CA™H - CH|
and
Y&, M, (6)

Note that My is an empty matrix and thus Yo=T=C.
Next, from (1), (2), we can express

X0
Y. =1y x0+M,&_1 =Y, @)
r—1
so that
W, =A"(P,) (8)

where /" denotes the null space. Next, define the posi-
tive integer

max”rn_l—‘ 1} <l
" A ©)

1, p=I

where [a] denotes the smallest integer greater than or
equal to a. Note that rg is not defined in the case p>I.

Proposition 2.1
Assume that n>2 and p</. Then ro<n—1.

Proof

Suppose p=I[, then n—1>1=rg. Next, suppose
p<l. If [(n=D/(—p)]<] then n—1=21=r9. If
[(n=0)/(I—p)]>1, then, since n—1>n—I and
[—p>1, it follows that ro=[(n—10)/(—p)I<[n—
Nn<m—11=n-1. ]

Proposition 2.2
Let r>1. If W, ={0}, then the following statements
hold:

1. p<l.
2. If p=I, then p=I=n.
3. (A, C) is observable, that is, rank(I,,_;) =n.

Copyright © 2008 John Wiley & Sons, Ltd.

4. r=ro.
5. rank(CH)=p.
6. rank(¥,)=rank(¥,_)+ p for all r>r.

Proposition 2.3
Assume that either p</ or p=I[=n. Then n+rp<
(r+ 1) for all r=>r.

Proof

Suppose p=I=n. Then n+rp=(r+1)! for all r>O0.
Next, suppose p<lI, let r >rg, and assume (r+ 1)[<n+
rp so that rl —rp<n—I. Hence r<(n—1[)/(l — p), and
thus [(n—10)/(l—p)1<ro<(n—1)/(l— p), which is a
contradiction. Thus, n+rp<(r+1)I. O

Proposition 2.3 implies that if p</ or p=I[=n, then,
for all »>r¢, the number of columns of W, is less than
or equal to the number of rows of ¥,.

Definition 2.2
System (1), (2) is input and state observable if 1. = {0}
for all r>rg.

Definition 2.2 implies that if (1), (2) is input and
state observable, then, for all r >rg, the initial condition
Xo and input sequence {ei}l’.;é are uniquely determined
from the measured output sequence {y;};_,,.

Theorem 2.1
The following statements are equivalent:

1. System (1), (2) is input and state observable.
For all r3rg, %, =0 if and only if [ 2 ] —0.
For all r>rg, rank(W¥,) =n—+rp.

There exists »>rg such that rank(¥,) =n+rp.
rank(W,—1)=n+m—1)p.

Al

Proof

From Definitions 2.1 and 2.2 it follows that (1) =
(2). Using (7), (2) = (3). Result (3) = (4) is imme-
diate. To prove (4)=(5) let n=1. Then Wp=C and
rank(C)=1. Now, suppose n>2. Since rank(¥,)=
n+rp it follows that rank(CH)=p. Hence, for
all 7>rg, rank(W;)= rank(¥;_;)+ p. Hence, since
n—12rg, we have rank(¥,_1) =n+(n—1)p. Finally
to show (5)=-(1), we consider two cases. First, suppose
n=1. In this case, C and H are nonzero scalars, and
hence it follows that rank(W,)=n+rp for all r>rg

Int. J. Adapt. Control Signal Process. 2009; 23:1053-1069
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and hence U, ={0} for all r>ry. Next, suppose n>2.
In this case, rank(¥,—1)=n+(n—1)p implies that
rank(C H) = p and hence rank(¥,)= rank(¥,_;)+p
for all r>rg. Next, since n— 1>rg, it follows that, for
all r>rg, rank(W,) =rank(W,—1)+ (r —n+1) p. Thus,
rank(W,) =n+rp for all r>ry and hence U, ={0} for
all r>r. Ul

Theorem 2.1 shows that (1), (2) is input and state
observable if and only if ¥, has full column rank for
all r>rg. In this case, the unique solution of (7) is

{ 0 }:‘PI@, (10)

r—1

where t represents the Moore—Penrose generalized

inverse ‘Pj = (‘PI‘I—‘,)‘“P,T. Also, note that the system
invertibility condition in Theorem 2 of [23] is closely
related to the rank conditions 5 of Theorem 2.1.

Note that if no unknown inputs are present, that is,
p=0, then ¥, =T, and statement 5 of Theorem 2.1
becomes the standard rank test for observability.

3. INPUT AND STATE OBSERVABILITY:
EXACTLY PROPER CASE

Next, we consider the system

Xp+1=Axp+Heyg (11)

Vi =Cxr+Geg (12)

where GG[RIXP, whereas A, H, C, xi, eg, and y; are
defined as in (1), (2). Without loss of generality, we

assume [/ <n, rank(C)=1[>0, and rank [ g] = p>0. Due

to Gey, the output y is directly affected by e as well
as by the past values of e. Therefore, we have

- | xo
Y, =¥, L@ } (13)

Copyright © 2008 John Wiley & Sons, Ltd.

where &, is defined by (3), W, 2[, M,]e
R(r+l)lx[n+(r+l)p]’ and

-G 0 e 0 07
CH G w00

My=| P (14)
CA™2H CA™3H .. G 0
| CA™"'H CA"2H CH G|

Furthermore, we have the following definition.

Definition 3.1
Let r=0. Then the input and state unobservable
subspace U, of (11), (12) is the subspace

_ Xi
u,ﬁ{[ 0}6[@"“’*“”:@,:0} (15)

r

The input and state unobservable subspace is given
by U, =.A"(W¥,). Next, if p<I then define

foé[lfp—‘—l (16)

Since n>[/— p it follows that ro>1.

Proposition 3.1
Let r>0. If U, ={0}, then the following statements
hold:

1. p<l.

2. n>1.

3. (A, C) is observable, that is, rank(I',,_1)=n.
4. r=ry.

5. rank(G) =p.

6. rank(¥,) =rank(‘P,_1)+p for all r>ry.

Definition 3.2 B
System (11), (12) is input and state observable if U, =
{0} for all r>ry.

Theorem 3.1

The following statements are equivalent:
1. System (11), (12) is input and state observable.
2. For all r>7y, %, =0 if and only if [;‘0 ] —0.
3. rank(P,) =n+(r+1) p for all r>#.

Int. J. Adapt. Control Signal Process. 2009; 23:1053-1069
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4. There exists r>ip such that rank(‘¥,)=n+
(r+1)p.
5. rank(¥,_)=n(p+1).

Finally, if (11), (12) is input and state observable,
then Theorem 3.1 implies that ¥, has a full column
rank for all »>ry. In this case, the unique solution of
(13) is

{xo] — ¥, (17)

r

4. NOISE ANALYSIS FOR INPUT AND STATE
OBSERVABILITY

To analyze the sensitivity of (10) to noise, consider
(1), (2) with additive measurement and process noise
so that

Xk+1=Axg+ Hep +wg (18)
Ye=Cxp+vg (19)

where w; € R" and vy € R are zero mean, uncorrelated,
white-noise sequences. Then

X0
@rzl}‘r |: i|+Nrer+Vr (20)
r—1
where
[0 0 0]
(o 0 0
Nré CA C 0 c R(r+])l><rn
ca™t ocAa? . (]
wo Vo
w1 V1
Wré GR(r+])n, Vré ER(H—])I
Wy vy

Copyright © 2008 John Wiley & Sons, Ltd.

We thus consider the least-squares estimate

£
Y A\pj@rz[ 0 ]+TIN,%_1+‘PrT% 1)
gr,1 éar—l

Since wy and vy are zero mean noise sequences, (21)

implies that
X
E| 0 =[ o ] 22)
(f,,l gr—l

and thus (21) is an unbiased estimate of [ @J:O_I ] Finally,
the variance of estimate (21) is given by

;
va{A 0 }:‘I’IN,RM,N,T HT+wiR,(¥HT (23)

r—1

where R,2E[# 1 #T_|1and R,2E[7", 711

5. COMPARTMENTAL MODEL EXAMPLE

To illustrate the input and state observability with noisy
data, we consider a system comprised n =6 compart-
ments that exchange mass or energy through mutual
interaction [40]. Applying conservation yields

X1 k1 =X1k — Px1k Fo(x2 k — X1 k) (24)
Xi k1 = Xi k—Pxi ko (Xip1.k —Xi k)

—o(X;j k—Xi—1k), i=2,...,n—1 (25)

Xn,k+1=Xn k _ﬁxn,k _a(xn,k _xnfl,k) (26)

where 0<fi<1 is the loss coefficient and O<a<1 is the
flow coefficient. In addition, an unknown input enters
compartment 2. The outputs are the energy states in
compartments 2 and 3, and therefore /=2 and ro=4.
It then follows that

Xep1 = Ax+ Hey 27)
i =Cxy (28)
where AcR"", HeR"*! and CeR?**" are defined as
1—f—o o 0o - 0
1l o I1—f—o o - 0 |
0 0 o 1-f—u
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— Actual input
- — — Estimated input

10 |

2 20 40 60 80 100
time

Figure 1. Compartmental model example. The actual

unknown inputs and the estimates of the unknown inputs

using measurements of outputs and the known model.

Measurement and process noise with standard deviation 0.1

are added to the model simulation.

0
1
H=| (29)
0
Cé[o 1 0 0] 30
0 0 1 0

For simulations, we set «=0.3 and f=0.1. It can be
verified that (27)—(30) is input and state observable.
The initial state is chosen to be xp=[2.0 0.1 —
1.0 0 0 0]T, and the unknown force is chosen to be a
sawtooth signal. Simulations are run with the Gaussian

process noise wy and measurement noise v Wwith
covariances diag(0.01,0.01,0.01,0.01,0.01,0.01) and

W1 V(D=

Copyright © 2008 John Wiley & Sons, Ltd.

—C

—CA
—CA?

—CA"™™" CA"H+)CA"H+---+)""*CH |
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diag(0.01,0.01, 0.01), respectively. Using the measured
outputs, the initial state and unknown input are esti-
mated using (10) for » =1000. Although (27)—(30) is
input and state observable, poor numerical conditioning
of W, can cause the estimates of the unknown inputs
to be inaccurate. In this example, the condition number
of ¥, is 82.8975 and thus ¥, is not ill-conditioned.
Figure 1 shows the unknown force and its estimate
in the presence of process noise and measurement
noise with standard deviation 0.1. In the presence of
process noise and measurement noise, the estimate of
the initial state is Xo=[2.0690 0.1719 —0.9862 —
0.0454 0.0136 —0.6951]".

6. CONNECTIONS WITH MULTIVARIABLE
ZEROS

In this section, we reinterpret the input and state
observability conditions given by Theorem 2.1 for
the strictly proper case in terms of multivariable
transmission zeros.

For . € C, define v(1) e C"~! by

v()=[1 4 2> ... ;» 2T 31)
and V (1) e Clntn=DpIx(tp)
__In 0 ]
0 I,
9 _I 0
Vs Moo=t " (32)
0 vH®I),
| 0 )°n_2]p_

where ® is the Kronecker product. Next, note that

0
CH

Int. J. Adapt. Control Signal Process. 2009; 23:1053-1069
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Lemma 6.1
Let A1, 42, ..., A,—1 € C be distinct. Then
rank[V(41) --- V(lp-D]=n+n—-1)p (34)
Proof
Note that
rank[V (41) --- V(4p—1)]
I, 0
=rank )
0 [v(41) - v(Au—D]I®I)
Next, since rank[v(l)) --- v(4y—1)]=n—1 (Fact

5.13.3, p. 211 in [41]) and

rank[(v(41) -+ v(Au-D]1®1p)
v(4n—1)]) rank(1p)
=(n—Dp (35)

it follows that

I, 0
rank|: ]
0 [v(4) -+ v(4-DI®Ip

=n+m—-1)p O

= (rank[v(4;) ---

Lemma 6.2
Assume that (A, C) is observable, rank(¥,,_; V(1)) =
n+p for all A€C, and either p<l or p=I[I=n. Let

Ay ...y 2n—1 €C be distinct, then
rank(‘V,,—1[V(41) -+ V(p-DD)=n+n—-1)p (36)

Proof
From Fact 2.10.24 in [41], we have

rank(W,_1[V(41) V(2]
=rank(¥, 1V (41)) +rank(¥, -1V (12))
—dim(Z(Y,—1 V(L) NZ(Y-1V (12)))
=n+p+n+p

—dim(¥, 1 2(V D)) N1 2(V (72)))

Copyright © 2008 John Wiley & Sons, Ltd.

=2(n+ p)—dim(¥,,—1 [Z(V (21) NV (J2))])
=2(n+p)—n

=n+2p
The penultimate identity follows from the fact that

Iy
0
RV OINNRV (J2) =R
0
and
I, [ C ]
0 CA
dim W, 12 =dim # =n (37)
0 | cam!]

Next, let 2<k<n—1 be an integer and assume that
rank(W,—1[V(41) V(Z2) -+ V(A =n+kp
Next, we have
rank(‘W,—1[V(Z1) -+ V(D)D)
=rank(Wp—1[V(41) -+ V(40D
+rank(W,—1 V (Ak41))
~dim(#(¥, 1 [V(21) - V(i)
NZ(FYn-1V (Ae+1))))
Next, since p<[ or p=I[=n, it follows that

V(4D
NA(Yn-1V (dit1)))) =n

dim(Z(Yp—1[V (41) -

and thus

rank(W, [V (A1) -+ V(D)D) =n+kp+n+p—n

=n+k+1Dp
Setting k =n —2 yields (36). ]

Int. J. Adapt. Control Signal Process. 2009; 23:1053-1069
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Next, define the [x p rational transfer function
matrix L(z) by

L()AC@EI-A)'H (38)

Furthermore, we assume that (A, H, C) is minimal.
Then A2e€C is an invariant zero of the realization
(A, H,C) if [42]

M—A H zI—-A H
rank <normalrank (39)
C 0 C 0

Since (A, H, C) is minimal, the transmission zeros of
L are the invariant zeros of (A, H, C).

-
c 0
CA 0
CA? 0 [
cA™t 0 |

Lemma 6.3
The following statements are equivalent:

(1) normalrank L=p and L has no transmission
Zeros.
(ii) For all 1eC,

M—A H
rank =n+p
C 0

Note that (ii) in Lemma 6.3 implies that (1)—(2) has
no invariant zeros. The following result provides equiv-
alent conditions for Theorem 2.1 in terms of multivari-
able zeros.

Theorem 6.1

The following statements are equivalent:

(i) Either p<l or p=I[=n, and (A, H,C) has no
invariant zeros.
@ii) rank(W,—1)=n+m—1)p.

Copyright © 2008 John Wiley & Sons, Ltd.

Proof
To prove (i) = (ii), it follows from (i) that, for all A€ C,

rank [MC_A ] =n, and thus (A, C) is observable. Hence
-0 e
CA
rank CA2 =n+l
lcat 0 |
Furthermore, noting that
_ _c 0 A
AC—CA CH
A—AH| | jca_ca? CAH
0
LicA2—CcA™! CA"?H

it follows from Sylvester’s inequality (Proposition 2.5.8
in [41]) that, for all AeC,

_ c 0 -
JC—CA CH
n+p>rank| ACA—CA? CAH

| JcA"2—cA"™! cA"PH |

-0 e
C 0
CA

> rank C A2

cA™' 0 |

Int. J. Adapt. Control Signal Process. 2009; 23:1053-1069
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" M—A H }
+ran c 0 —(n+l)

=m+D+n+p)—n+])

=n+p
Hence
_ _c 0
AC—CA CH
2
rank AMCA—-CA CAH =n+p
| icA?—cAr! CA"T?H |
Next, for all A€ C, we have
B I, 0 e 0]
Al I, - 0
n+ p =rank
A Py SR A
_ _c 0 -
AC—CA CH
2
«| ica-ca CAH | ()

| JCA"2—cA™! CA"T?H |
Next, using (33), (40) becomes
rank(¥,—1 V() =n+p

Finally, let 11, 23, ..., 4,—1 € C be distinct. Then, it
follows from Lemma 6.2 and [41, Lemma 2.5.2] that

n+n—1)p=rank(¥p—1[V(41) -+ V(Zp—1)])

<rank(W,—1)

However, since rank(‘¥,—1)<n+®m—1)p, it follows
that rank(W,,—;)=n+n—1)p.

Copyright © 2008 John Wiley & Sons, Ltd.

Next, to prove (ii) = (i), suppose there exists 1€ C

such that
M—A H
rank <n+p
C 0

Then there exist Xo€ C" and e € C? such that [NEO] is
nonzero and

(Al —A)xo+He=0 (41)
and
Cio=0 (42)
Premultiplying (41) by C and using (42) yields
—CAXo+CHe=0 (43)
Next, premultiplying (41) by CA yields
JCA%)—CA’%9+CAHé=0 (44)
Using (43) in (44) yields
—CA%*59+CAHé+/CHE=0 (45)

Similarly, premultiplying (41) by CA2, CA3, ...,
CA"2 yields

—CA3%9+CA*Hé+)CAHe+)>’CHE=0  (46)
—CA*3%9+CA3He+ACA’He+)>CAHE+>CHeE
=0 (47)

—CA" %0+ CA" 2He+ACA" 3He+- -
+"2CHe=0 (48)

Next, we express (43), (45)—(48) as

X0
Y, . =0 (49)

n—2
where &,_, € C"~DP is defined by Ena2lel 2eT )2
& o 2N Since [9]£0, it follows that

[gi(iz ] #0. However, since rank(‘¥;,_1) =n+(n—1)p,

it follows that [;‘12] =0, which contradicts [ (;iz] #0.

Int. J. Adapt. Control Signal Process. 2009; 23:1053-1069
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Hence, rank[;”lg A 'g =n+p for all AeC. Further-

more, using Proposition 2.2, it follows that either p </
or p=I[=n. O

Note that (i) in the above result is same as the suffi-

cient condition for input observability given in [5].
Next, define @, ¢ RU+HDPx+rD) py

H AH A’H -~ A'H

0 CH CAH CA™'H
o020 0 CH CA™°H (50)

0 0 0 - CH

The following result is the dual of Theorem 6.1.

Theorem 6.2
The following conditions are equivalent:

(i) Either I[<p or I=p=n, and (A, H, C) has no
invariant zeros.
(i) rank(®,_1)=n+®m—1)l.

7. STATE ESTIMATION WITH UNKNOWN
INPUTS AND UNKNOWN DYNAMICS

Consider the system
Xp+1=Axg+ Buy+Hey (51)
Yk =Cxi+ Duy+Gey, (52)

where xi, yr,ex, A,C,H,G are as in Section 2,
ureR™, BeR"™™ and DeR™". Furthermore, uy
is a known input, whereas e; is an unknown signal.
System (51), (52) is input and state observable if it
is input and state observable with u; =0. We consider
the problem of estimating the state sequence {xi};2,
using measurements of inputs u; and outputs yg,
assuming that A, B,C, D, H, G, and ¢} are unknown.
The problem of estimating A, B,C, D, H,G, and e
is considered in the following section. We assume that
(A, B) is controllable, p<! is known, but the order n
of the system is unknown. In this section we assume

Copyright © 2008 John Wiley & Sons, Ltd.

that G #0 so that (51), (52) corresponds to the exactly
proper case (11), (12). The case G=0 is discussed
later.

Let N +1 be the number of available measurements,
and let i be an integer such that n<i and 2i —1<N.
Define U0|2i—1 € R2mi><(N—2i+2), Up € Rmix(N—2i+2)’
and Use RmiX(N—ZH-Z) by

uo uj UN—2i+1 |
u uy UN-2i+2
A Ui—1 u; e UN—;
Uopi—1 = | —— ~ - (53)
Uuj Uiv+1 - UN—i+1
Uitl Uit UN—it2
| uoi—1  uz - uy |
_ _U0|i—1:|=|:Up:| (54)
| Uip2i—1 Us
Partitioning Upp;—1 differently, we have
) u UN-2i+1 |
up  up UN-2i+2
Uj—| uj 0 UN—
Uopi—1 = (55)
Uuj Ui+ UN—i+1
Ui+l Uj42 UN—i+2
| uoi—1 Ui - uy |
[ Ui } [U*] (56)
Ut+]|2l 1 Uf

where U e REHDmx(N=2i+2) and U; —cRU—Dmx(N=2i+2)

The subscript p denotes ‘past’ and the subscript f
denotes ‘future’. The output block-Hankel matrices
Yopi—1, Yp, Y1, Y];r and Y, are defined as in (53)—(56)
with u replaced by y. The unknown-input block-Hankel
matrices Eopi—1, Ep, Et, E}, and E; are defined as
in (53)-(56) with u replaced by e. Furthermore, define
the past input—output data

U . .
W2 [ Yp] c RimHD X (N=2i+2)
p
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and the future input—output data
A [Uf} i (M4 x (N—=2i+2)
W= Y eR
f

Finally, define the block-Toeplitz matrix €;e
R(i-i—l)lx(i-i—l)m by

D 0 -« 0 0
CB D - 0

CA"'B CA'’B

CB D |

and, for 0<r<2i, define the state sequence X, €
RnX(N72i+2) by

N
Xr=[xr Xpg1 c00 XN—2idr XN—2i+r+1] (58)

Lemma 7.1

If (51), (52) is input and state observable, then the row
space of X; is contained in the intersection of the row
space of W, and the row space of Wr.

Proof

From (51) and (52),
Yo=Ti_1Xo+M;_1 Ep+Qi_1U, (59
Ye=Ti_1 X+ M1 Es+ Qi1 Uy (60)

Since the system is input and state observable, (60) can
be expressed as

Xi ot ot
=[-Yi_ Qi1 ¥ IWr (61)
E¢
Furthermore,
Xi=[-¥_, Q1 ¥, 1w (62)
where ‘i’j_l ,, denotes the first n rows of ‘i"j_l. From

(62), it follows that the state sequence X; is contained
in the row space of Wr. Next, we can relate X and X;
as

Xi=A"Xo+O;Ep+A U, (63)

Copyright © 2008 John Wiley & Sons, Ltd.

where
AE[ATTIB A'2B ... B]
O,2[A'H A"7?H ... H]

Using (59) and (63), we obtain

Xi=[A" O] (¥~ Qi U +AU, (64)
=[A1i A2i]Wp (65)

where .o/j ;2 —[A @i]‘i’j_lQi_l—i-A,- and /7

L[A! @i]‘i’j. From (65), the state sequence X; is also
contained in the row space of W,,. Thus, from (62) and
(65) it follows that the state sequence X; is contained
in the intersection of the row space of W, and the row
space of Wr. O

To calculate the state sequence, we require the
following definition concerning

Xo

Eopi—1 € R(H2pi+2mi)x(N—2i+2)

Uoj2i-1

Definition 7.1
The sequences {uk},](\]=l and {ek},i\’:1 are persistently
exciting for (51), (52) if

Xo
rank | Egppi—1 | =n-+2pi+2mi (66)
Uoji—1

If {uk},[{\':1 and {ek},iV:] are persistently exciting, then

it follows from (66) that X has full row rank, [f/g:i’:: ]

has full row rank, and the intersection of the row spaces

of X( and [ggg:] is zero.

Theorem 7.1

If system (51), (52) is input and state observable and the
sequences {u k},iV:] and {ek},iV:] are persistently exciting,
then the intersection of the row spaces of W, and Wt
is equal to the row space of X;.
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Proof

From Lemma 7.1, it follows that the intersection of the
row spaces of W, and Wt contains the state sequence
X;. Now, to show that the intersection of the row spaces
of W, and Wy is the row space of X;, we show that the
dimension of the intersection of the row spaces of W,
and Wr is n. Using (59) we express

_ Xo
Yy Ficr Mioy Qi
_ E, (67)
U, 0 0 Iy
Up

Next, since (51), (52) is input and state observ-
able and rg<n<i, it follows from Theorem 3.1
that rank(W;_;)=rank[I';_; M;_1]=n+pi, which
implies that rank

Lior Mo Qi
0 0 L,

i|=n+pi+mi

and li+mi<n+ pi+mi. Therefore, it follows from
(67) that

Xo
Yy
rank =rank | E, | =n+pi+mi (68)
Up
UP
Similarly,
1
Yy
rank =rank | Ef (69)
Ur
Us
From (63) it follows that
Xo
X;=[A" ©; A| Ep (70)
Up

Since rank[A’ ®; A;]=n, it follows from Sylvester’s
inequality (Corollary 2.5.9 in [41]) that

rank(X;)=n (71)

Copyright © 2008 John Wiley & Sons, Ltd.

Finally, from (69), (70), and (66), we have

Yy
rank =n+ pi+mi (72)
Us

By similar arguments,

U
p Xo
Yy Yopi-1
rank =rank =rank | Egp2i—2
Us Uoji—1
Uopi-1
e
=n+2pi+2mi (73)

Now, the Grassmann dimension theorem [41, Theorem
2.3.1] gives

. Up Ut
dim | row space N row space
Yp Ye

Up
U Us Y,
=rank P +rank ! —rank P
Y, Yy Us
Ye
=[mi+n+ pil+[mi+n+ pi]l—[2mi+n+2pi]
=n O

The proofs of the above results are extensions of the
proofs in [38,39], with modifications in several key
steps to address input reconstruction.

Let X; denote an estimate of the state sequence X;.
Using Theorem 7.1, we compute X; as the intersection
of the row spaces of W}, and W;. One way to compute
this intersection is by orthogonally projecting the row
space of W), onto the row space of Wy [28]. Thus

X EWW,) (W, W)W, (74)

Note that, to calculate X i, we use measurements of uy
and yx; however, knowledge of e, is not required.

Int. J. Adapt. Control Signal Process. 2009; 23:1053-1069
DOI: 10.1002/acs



A SUBSPACE IDENTIFICATION ALGORITHM 1065

A numerically efficient way to compute X; is to use
the LQ decomposition of [ W‘;] [28] given by

Wp r | L 0 o7
AR A [l e

where LR (n+Dx2im+D) js 1ower triangular, L1y, Laj,
L22€Ri<m+l)><i(m+l), QER(N—Zi-i-Z)XQi(m-H) is orthog—
onal, and Q1, Q€ RN=2+2xim+D Then the inter-
section of row spaces of W, and Wt is computed as
Ly Q?. An estimate X ; of the state sequence X; can
then be obtained by using a singular value decomposi-
tion to calculate a basis for the row space of L Q?.

Similarly, estimates }A(,-H of the state sequence X;4|
are obtained by computing the intersection of the row

spaces of
Ut U-
Y, Y;

Next, assume G =0 in (51), (52), which corre-
sponds to the strictly proper case. The following result
considers state estimation with unknown inputs and
unknown dynamics.

Theorem 7.2

Assume that (51) and (52) with G =0 is input and state
observable. If the input sequences {uk}llcv=1 and {ek},i\;1
are persistently exciting, then the intersection of the

gﬁ] and [g,/:] is the row space of X;.

row spaces of [
P

Proof

When G =0, the equations relating the input block-
Hankel matrices and the output block-Hankel matrices
are given by

Y =TiXo+ M E,+QiUS (76)
Yi=Ti 1 Xi+M; 1 Ejjpi2+Q; 1 Us )

Using (76) and (77) in place of (59) and (60) and
following the steps of the proofs of Lemma 7.1, it
follows that the state sequence X; is contained in the

: . Ur Us
p f
intersection of the row spaces of v +:| and [Yf].

p
Furthermore, it follows from (53)-(56) that U;|; is

Copyright © 2008 John Wiley & Sons, Ltd.

contained in the intersection of the row spaces of
Uy : . e
» | and | Y |. Next, using arguments similar to the
v Y
proof of 7.1 yields that the row space of [Z,{ "] is equal

. . Uy
to the intersection of the row spaces of |:Yp+i| and
P

[gff] Thus, it follows that the row space of X; is the

. . U, .
intersection of the row spaces of [Yi] and [l;ff] is the
p

row space of X;.

8. SIMULTANEOUS MODEL ESTIMATION AND
INPUT RECONSTRUCTION

In this section we consider the problem of estimating
the state-space matrices A, B, C, D, H, G, and ¢ of
(51), (52) using estimates }A(,- of the state sequence X;
and measurements of u; and y;. To do this we express

P IMEHE

We use a two-step procedure to estimate A, B,C, D, H,
and G. First, we estimate the matrices A, B, C, and D
by solving the least-squares problem

Yiji C D|| Uy

Although [);IT ‘] is a linear combination of [é"] and
E;);, the term due to E;|; is ignored in the least-squares
problem (78). Thus, E;|; is interpreted as noise, and

hence unbiased estimates of the state-space matrices

argmin (78)

A,B,C,D

2

are not guaranteed. However, if [;";] and e, are uncor-

related then unbiased estimates of A, B, C, and D are
obtained using (78). Next, defining the residual

X; A B[ X;
Yiji C D||Uy
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we estimate [g] and E;); by forming the singular value
decomposition i
2 al/2. a1/2 A
Ry =USVT~USVT= s vT) = [ . ] iy
G

(80)

where 3 contains the p dominant singular values from
X, with

~

I:I ~1/2 A ~1/2
[ ]éUZ/ and E,-|,-éZ/VT
G

Finally, consider the case in which e is a nonlinear
function of the states, that is, ey =h(x;), where h: R" —
RP. We assume that h(x;) can be expanded in terms
of basis functions as

h(xi) =0 fa (xi) 81

where f;,: R" — R® are basis functions, and 0 RP**
are unknown coefficients of the basis function expan-
sion. We thus estimate 0 by solving the least-squares
problem

argmin||E,~|l~ —0f (X))l (82)
0

When noise terms are present in (51) and (52) the
states are estimated by obliquely projecting the row
space of Yt along the row space of Uy into the row space
of W, similar to the procedure presented in [28]. The
least-squares problems for calculating the state-space
matrices remain the same as (78), (80), and (82).

9. COMPARTMENTAL MODEL EXAMPLE
REVISITED

We reconsider the compartmental model example as
described in Section 5. In addition to the unknown
input, we assume that the model is unknown and that
a known input enters compartment 1. Thus, B € R"*!
is defined as

B2[1 0 --- 01T (83)

To generate data for identification, we corrupt the
system equations with process noise and measurement
noise with standard deviation 0.1. We take the known

Copyright © 2008 John Wiley & Sons, Ltd.

input to be a realization of a white-noise process,
whereas the unknown input is a realization of a
white-noise process with impulses at times 20 and 80.
A comparison of the actual output 1 of the system
and output 1 of the identified model is shown in
Figures 2 and 3. Figure 4 shows the actual unknown
input and the reconstructed unknown input is shown.

300

— Actual output
250 - - - Model output |
200 r 1
150

100

50

O 20 40 60 80 100 120 140 160 180 200

time

Figure 2. Compartmental model example. The actual energy

of compartment 2 as well as the estimated energy of

compartment 2 as determined by the identified model are
shown.

250 | — Actual output 1
— Model output 1

200

150

100

50

Figure 3. Compartmental model example. The actual energy

of compartment 2 at 80s and the estimated energy of

compartment 2 at 80 s as determined by the identified model
are shown.
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180 | - - -Reconstructed input |
160
140
120
100
80
60
40
20
O [romehwtmshmimrimih _ AR "
20 40 60 80 100 120 140 160 180 200
time

Ui e e
!

Figure 4. Compartmental model example. The actual
unknown input and the estimate of the unknown input are
shown.

O Actual eigenvalues
X Estimated eigenvalues |

0.5 1

Figure 5. Nonlinear system example. The eigenvalues of A
for the linear portion of the system and the eigenvalues of
the estimate of A are shown.

10. NONLINEAR SYSTEM EXAMPLE

Finally, we consider a system with n=3 and an
unknown nonlinearity in one of the state equations.

Copyright © 2008 John Wiley & Sons, Ltd.

— Actual output 1
15 | --- Model output 1 | |

0.5 il | . \ ) M | ‘ ! i

-1.5

0O 20 40 60 80 100 120 140 160 180 200
time (sec)
Figure 6. Nonlinear system example. The actual output 1

of the system and the estimated output 1 of the system as
determined by the identified model are shown.

15 T T T T T T T T
[ —Actual output 1
| , - - -Model output 1
Thon B NR B LT
! i | |
P 1 T Y
‘1{1 :“ ] I
05} |
ot
-0.5 |||
I
t
- “
-1.5 . . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200

time (sec)
Figure 7. Nonlinear system example. The actual output 2

of the system and the estimated output 2 of the system as
determined by the identified model are shown.

Consider the system

X1,k+1 = X1k +hxo g
X2 k1 = X2k +hx3
X3 k41 = X3k —CIX1,k —C2X2 k

—hkx3 j — hxik +ug
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where h is the sample interval. We assume that
measurements of the first state and the third state
are available and the input u; is measured. Thus, the
system can be expressed in the form (51), (51) with

1 1 0
A= 0 1 ts ,

| —c1 — 1—hk

[0 0

(84)

B=|0|, H=|0

1 1
c—_1 00 D=0, G=0

oo 1) T T

and the unknown signal is the feedback nonlinearity
ek =—hx,§ ERE To generate data for identification, we
set k=0.7,¢1=0.5,¢2=0.6, h=0.1 and generate
2000 data points with process noise and measurement
noise having standard deviation 0.01. The eigenvalues
of the estimate of A are shown in Figure 5, whereas
Figures 6 and 7 show the actual outputs of the system
and the outputs of the identified model augmented with
the nonlinearity identified using (81).

11. CONCLUSIONS

In this paper, we considered input and state observ-
ability, that is, the ability to estimate both the unknown
input and state from the output measurements. We
discussed the sufficient and necessary conditions for
input and state observability of discrete-time systems.
Next, we developed a subspace identification algorithm
that identified the state-space matrices and recon-
structed the unknown input using output measurements
and known inputs. The unknown input could be
either an exogenous signal or a nonlinear function of
the states. Finally, we presented several illustrative
examples.
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