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Abstract We consider minimization of a quadratic objective function subject to a
sign-indefinite quadratic equality constraint. We derive necessary and sufficient conditions
for the existence of solutions to the constrained minimization problem. These conditions
involve a generalized eigenvalue of the matrix pencil consisting of a symmetric positive-
semidefinite matrix and a symmetric indefinite matrix. A complete characterization of the
solution set to the constrained minimization problem in terms of the eigenspace of the matrix
pencil is provided.
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1 Introduction

We consider the following quadratically constrained quadratic programming (QCQP) prob-
lem. Let M ∈ R

n×n be a (symmetric) positive-semidefinite matrix, let θ ∈ R
n , let N ∈ R

n×n

be a symmetric matrix with at least one positive eigenvalue, let γ be a positive number, and
consider the problem

min θT Mθ (1)

subject to

θT Nθ = γ. (2)
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Note that, the objective function (1) is convex, while the equality constraint (2) is possibly
sign indefinite. The specific motivation for studying this problem is discussed below.

Variations of (1), (2) have been extensively considered in the literature. Quadratic pro-
gramming problems with a quadratic objective function and a quadratic inequality constraint
(both of which may contain linear terms) are considered in [1,3,5,11–13,18,19,21,23,27].
These works apply duality concepts and variational methods to characterize and compute
global minimizers.

Quadratic programming problems are closely associated with least squares optimization
subject to convex quadratic constraints [8,10,20,32]. In particular, in least squares optimi-
zation problems with noise residuals that are uncorrelated with the coefficient matrix and
with each other, standard least squares solutions are known to be the best linear unbiased
estimator (BLUE) [7, Chapter 6]. Along the same lines, the specific motivation for the present
paper is time series model identification under noisy measurements [17,26]. For this class
of problems, the coefficient matrix is comprised of measurements of the input and output
signals, and thus is correlated with the noise residual. This situation, which is not addressed
by BLUE theory, can lead to biased estimators [26, pp. 66, 187].

The present paper is motivated by the observation that, the true parameters of a time-
series model are given by the solution of a least squares optimization problem involving a
homogeneous quadratic positive-semidefinite objective function and a homogeneous sign-
indefinite quadratic equality constraint. Relevant details as well as references to the system
identification literature on unbiased least squares are given in [15,16,22,25,30,31,33].

One approach to guaranteeing that QCQP has a solution is to observe that the constraint
set is the intersection of the set

S
�=

{[
θT Mθ

θT Nθ

]
: θ ∈ R

n
}

⊆ R
2 (3)

and a horizontal line passing though γ on the vertical axis in R
2. Since M is positive semidef-

inite, it follows that this intersection is bounded from the left by the vertical axis. Thus QCQP
has a solution if S is closed. In [9], it is shown that, S is convex (see also [24]). Furthermore,
[9, Theorem 2] states that if, for all θ ∈ R

n �= 0,

θT Nθ = 0 implies θT Mθ �= 0, (4)

then S is closed. However, as illustrated by Example 8 in Table 1, the condition given in [9]
is sufficient, but not necessary. Moreover, the results in [9] are not useful when (4) does not
hold.

In the present paper we adopt a matrix pencil approach to obtain necessary and sufficient
conditions for the existence of solutions to QCQP. In particular, we characterize the solution
set of QCQP in terms of a nonnegative generalized eigenvalue of the matrix pencil formed
from the objective matrix and the constraint matrix. The principal contribution of the paper
is a complete characterization of the existence of solutions as well as the solution set in terms
of the properties of the matrix pencil.

A matrix pencil approach to a related constrained quadratic programming problem is
given in [27], where the objective function includes a linear term (see problem (P) in Sect. 2
of [27]). The constraint in [27] is given by a sign-indefinite homogeneous quadratic form
with upper and lower bounds. This problem specializes to QCQP when the linear term in the
objective function is zero, the objective function is positive-semidefinite, and the upper and
lower bounds are equal (that is, α = β in the notation of [27], see problem (PT ) in Sect. 3
of [27]). However, unlike [27] we do not assume that the constraint matrix is nonsingular.
While Theorem 2.1 of [27] gives sufficient (and, under a constraint qualification, necessary)
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conditions for a feasible point to be a global minimizer, existence theory is not addressed in
[27].

Matrix pencils are also used in [21] to analyze existence of solutions in a quadratic pro-
gramming problem with quadratic, but not necessarily homogeneous, objective and constraint
functions. As in [27], the results of [21] are derived by means of Lagrange multiplier theory.
Accordingly, a constraint qualification is invoked in [21], specifically, that the constraint func-
tion is indefinite. The approach of the present paper avoids the use of Lagrange multipliers,
and thus no constraint qualification is needed.

The analysis that supports these results is self contained in the sense that, we do not
rely on results on matrix pencils from the literature. In particular, the pencil of interest is a
symmetric pencil involving a positive-semidefinite matrix and a symmetric matrix having at
least one positive eigenvalue. Since the literature on matrix pencils [2,4,6,14,28,29] does
not address this specific problem, we provide supporting proofs for all of the results that are
needed.

Notation 0n×m is the n × m zero matrix, In is the n × n identity matrix, R
n(Cn) is the

set of real (complex) n × 1 column vectors, and R
n×m(Cn×m) is the set of real (complex)

n × m matrices. For A ∈ C
n×m , A∗ is the complex conjugate transpose of A. For A ∈ R

n×m ,
rank A is the rank of A, R (A) is the range of A, N (A) is the null space of A, and def A is
the defect (nullity) of A. For symmetric A ∈ R

n×n , λmax(A) is the largest eigenvalue of A,
λmin(A) is the smallest eigenvalue of A, A > 0 means that A is positive definite, and A ≥ 0
means that A is positive semidefinite. Finally, diag (a1, . . . , an) is the diagonal matrix with
diagonal entries a1, . . . , an .

2 Quadratic programming problem

We consider the quadratic objective function

J (θ) = θT Mθ, (5)

where θ ∈ R
n and M ∈ R

n×n is positive-semidefinite. Let γ > 0, let N ∈ R
n×n be

symmetric, and define the parameter constraint set Dγ (N ) by

Dγ (N )
�= {θ ∈ R

n : θT Nθ = γ }. (6)

The quadratically constrained quadratic programming (QCQP) problem is then given by

min
θ∈Dγ (N )

J (θ). (7)

We do not require that N be positive-semidefinite, however, a negative definite N results
in an empty Dγ (N ) and is not useful. Therefore, we will later make the assumption that, N
is not negative definite.

The following result concerns properties of Dγ (N ). By convention, the empty set is
convex.

Proposition 2.1 The set Dγ (N ) has the following properties:

(i) Dγ (N ) is closed.
(ii) Dγ (N ) is symmetric, that is, θ ∈ Dγ (N ) if and only if −θ ∈ Dγ (N ).

(iii) The following statements are equivalent
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(a) Dγ (N ) �= ∅.
(b) Dγ (N ) is not convex.
(c) λmax(N ) > 0.

(iv) Dγ (N ) �= ∅ and compact if and only if N is positive definite.
(v) If Dγ (N ) �= ∅ and n > 1, then Dγ (N ) has uncountably many elements.

Next, define the solution set Wγ (N ) by

Wγ (N )
�= {θ ∈ Dγ (N ) : J (θ) = min

θ ′∈Dγ (N )
J (θ ′)}. (8)

Proposition 2.2 The solution set Wγ (N ) has the following properties:

(i) Wγ (N ) is closed.
(ii) Wγ (N ) is symmetric.

(iii) If Wγ (N ) �= ∅ then the QCQP problem (7) has at least two solutions. In particular,
θ ∈ R

n solves the QCQP problem (7) if and only if −θ does.

3 Matrix pencil and generalized eigenvalues

Let A, B ∈ R
p×p . Then the matrix pencil PA,B(s) is defined by,

PA,B(s)
�= A − s B. (9)

Furthermore, define the characteristic polynomial χA,B(s) by

χA,B(s)
�= det(A − s B). (10)

The pair (A, B) is regular if χA,B(s) is not the zero polynomial. The roots of χA,B(s) are
the generalized eigenvalues of (A, B).

Lemma 3.1 N (M) ∩ N (N ) = N (M) ∩ N (M − N ) = N
([

M
N

])
.

Proof

N (M) ∩ N (M − N ) = N
([

M
M − N

])

= N
([

In 0n×n

In −In

] [
M
N

])

= N
([

M
N

])

= N (M) ∩ N (N ) .

	

Proposition 3.2 The following statements are equivalent:

(i) (M, N ) is regular.
(ii) There exists α ∈ R such that M + αN is nonsingular.

(iii) N (M) ∩ N (N ) = {0}.
(iv) N

([
M
N

])
= {0}.
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(v) N (M) ∩ N (M − N ) = {0}.
(vi) All generalized eigenvalues of (M, N ) are real.

If, in addition, N ≥ 0, then the following statement is equivalent to (i)–(vi):
(vii) There exists β ∈ R such that βN < M.

Proof The results (i) implies (i i) and (i i) implies (i i i) are immediate. Next, Lemma 3.1
implies that (i i i), (iv), and (v) are equivalent. Next, to prove (i i i) implies (vi), let λ ∈ C be a
generalized eigenvalue of (M, N ). Since λ = 0 is real, suppose λ �= 0. Since det(M−λN ) =
0, let nonzero θ ∈ C

n satisfy (M − λN )θ = 0 and thus, it follows that, θ∗Mθ = λθ∗Nθ .
Furthermore, note that θ∗Mθ and θ∗Nθ are real. Now, suppose θ ∈ N (M). Then it fol-
lows from (M − λN )θ = 0 that θ ∈ N (N ), which contradicts N (M) ∩ N (N ) = {0}.
Hence θ �∈ N (M) and thus, θ∗Mθ > 0 and consequently θ∗Nθ �= 0. Hence, it follows
that λ = θ∗Mθ/θ∗Nθ , and thus, λ is real. Hence all generalized eigenvalues of (M, N ) are
real. Next, to prove (vi) implies (i), let λ ∈ C\R so that λ is not a generalized eigenvalue of
(M, N ). Consequently, χM,N (s) is not the zero polynomial, and thus (M, N ) is regular.

Next, to prove (i) − (vi) imply (vi i), let θ ∈ R
n be nonzero and note that, N (M) ∩

N (N ) = {0} implies that either Mθ �= 0 or Nθ �= 0. Hence, either θT Mθ > 0 or θT Nθ > 0.
Thus, θT (M + N )θ > 0, which implies M + N > 0 and hence −N < M .

Finally, to prove (vi i) implies (i) − (vi), let β ∈ R be such that βN < M , so that
βθT Nθ < θT Mθ for all nonzero θ ∈ R

n . Next, suppose θ̂ ∈ N (M) ∩ N (N ) is nonzero.
Hence M θ̂ = 0 and N θ̂ = 0. Consequently, θ̂T N θ̂ = 0 and θ̂T M θ̂ = 0, which contradicts
βθ̂T N θ̂ < θ̂T M θ̂ . Thus, N (M) ∩ N (N ) = {0}. 	

Corollary 3.3 Assume θT Mθ > 0 for all nonzero θ ∈ R

n satisfying θT Nθ = 0. Then (M, N )

is regular.

Proof Since N (N ) ⊆ Q �= {θ : θT Nθ = 0}, and by assumption θT Mθ > 0 for all nonzero
θ ∈ Q, it follows that N (M) ∩ N (N ) = {0}. Thus (M, N ) is regular. 	


The converse of Corollary 3.3 is not true. In Example 4 in Table 1, (M, N ) is regular, but
θ = [

0 1 −1
]T

satisfies θT Mθ = θT Nθ = 0.

4 Properties of αmax

In this section, we discuss the properties of αmax, which is defined in terms of the set

S �= {α ≥ 0 : αN ≤ M}. (11)

Next, define αmax
�= max S. Proposition 4.1 shows that, S is compact and thus, αmax exists.

For the remainder of the paper, we assume that λmax(N ) > 0.

Proposition 4.1 The set S has the following properties:

(i) 0 ∈ S �= ∅.
(ii) S is compact.

(iii) S is connected.

Proof To prove (i), note that M ≥ 0 implies that 0 ∈ S. To prove (i i) note that f :
[0, ∞) → R defined by f (α)

�= λmin(M − αN ) is continuous. Hence S = f −1([0, ∞))

is closed. To prove that S is bounded, let the orthogonal matrix U ∈ R
n×n be such that
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N̂
�= U NU T is diagonal and N̂1,1 = λmax(N ), where N̂1,1 is the (1, 1) entry of N̂ . Then

α ∈ S implies that α N̂ ≤ M̂
�= U MU T. Hence, α ∈ S satisfies αλmax(N ) ≤ M̂1,1, which

implies α ≤ M̂1,1/λmax(N ). To prove (i i i), let α ∈ S be positive and let α̂ ∈ (0, α). Define

β
�= α̂/α and note that 0 < β < 1. Then it follows from αN ≤ M that α̂N ≤ βM ≤ M ,

and thus α̂N ≤ M . Hence α̂ ∈ S, and thus S is connected. 	

It follows from Proposition 4.1 that S = [ 0, αmax ].

Proposition 4.2 If N ≤ M, then αmax ≥ 1.

The following result shows that M − αmax N has a nontrivial null space.

Proposition 4.3 αmax is a generalized eigenvalue of (M, N).

Proof To prove det(M − αmax N ) = 0, let α ≥ 0. Then λmin(M − αN ) ≥ 0 for all
α ≤ αmax, whereas λmin(M − αN ) < 0 for all α > αmax. Taking limits, it follows that
limα↑αmax λmin(M − αN ) ≥ 0 and limα↓αmax λmin(M − αN ) ≤ 0. Since λmin(M − αN ) is a
continuous function of α,

0 ≤ lim
α↑αmax

λmin(M − αN ) = lim
α→αmax

λmin(M − αN ) = lim
α↓αmax

λmin(M − αN ) ≤ 0.

Hence λmin(M − αmax N ) = 0, and thus det(M − αmax N ) = 0. 	

Proposition 4.4

λmin(M)/λmax(N ) ≤ αmax ≤ λmax(M)/λmax(N ). (12)

Proof The upper bound for αmax follows immediately from M − αmax N ≥ 0. To prove the
lower bound, it follows that, for all nonzero θ ∈ R

n , θT Mθ ≥ λmin(M)θTθ and θT Nθ ≤
λmax(N )θTθ . Now let θ ∈ N (M − αmax N ) be nonzero. Then, 0 = θT(M − αmax N )θ =
θT Mθ −αmaxθ

T Nθ ≥ λmin(M)θTθ −αmaxλmax(N )θTθ = (λmin(M)−αmaxλmax(N ))θTθ.

Since θTθ > 0, it follows that λmin(M) − αmaxλmax(N ) ≤ 0. 	

The following basic result is used frequently in the subsequent development without

comment.

Fact 4.5 Let A ∈ R
n×n. Then N (A) ⊆ {θ ∈ R

n : θT Aθ = 0}. If, in addition, A ≥ 0, then
N (A) = {θ ∈ R

n : θT Aθ = 0}.

Proposition 4.6 Assume αmax > 0, let p
�= dim(N (M) ∩ N (N )), and let α1, α2 ∈

(0, αmax). Then

p = def(M − α1 N ) = def(M − α2 N ) < def(M − αmax N ). (13)

In particular, if (M, N ) is regular, then

0 = def(M − α1 N ) = def(M − α2 N ) < def(M − αmax N ). (14)

Proof First, we consider the case in which (M, N ) is regular. By Proposition 4.3, def(M −
αmax N ) > 0. Next, suppose def(M − α1 N ) > 0, and let θ1 ∈ N (M − α1 N ) be non-
zero. It follows that θT

1 Mθ1 = α1θ
T
1 Nθ1. Furthermore, since θT

1 (M − αmax N )θ1 ≥ 0,
it follows that θT

1 Mθ1 ≥ αmaxθ
T
1 Nθ1. Consequently, α1θ

T
1 Nθ1 ≥ αmaxθ

T
1 Nθ1, and thus

(α1 − αmax)θ
T
1 Nθ1 ≥ 0. Since α1 < αmax, it follows that θT

1 Nθ1 ≤ 0. However, θT
1 Nθ1 =
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θT
1 Mθ1/α1 ≥ 0. Thus, θT

1 Nθ1 = 0, which implies that θT
1 Mθ1 = 0 and thus θ1 ∈ N (M).

Since α1 > 0 and θ1 ∈ N (M − α1 N ) ∩ N (M), it follows that θ1 ∈ N (N ), which by
Proposition 3.2 contradicts the assumption that (M, N ) is regular. Thus, (14) holds.

Next, suppose (M, N ) is not regular so that, p
�= dim(N (M) ∩ N (N )) > 0. Let the

nonsingular matrix S ∈ R
n×n be such that N̂

�= SN ST = diag(Ir ,−Is , 0(n−r−s)×(n−r−s)),
where r and s are the numbers of positive and negative eigenvalues of N , respectively.

Next, define M̂
�= SM ST and note that p = dim(N (M̂) ∩ N (N̂ )). Since the columns of[

0(r+s)×(n−r−s)

In−r−s

]
comprise a basis for N

(
N̂

)
, it follows that the trailing (n − r − s)× (n −

r −s) submatrix of M̂ has defect p. Now, applying a basis transformation to the last n −r −s
columns and rows of M̂ and N̂ if necessary (and without renaming M̂ and N̂ ) such that the
last p rows and columns of M̂ and N̂ are zero, we partition M̂ and N̂ as

M̂ =
[

M̂1 0(n−p)×p

0p×(n−p) 0p×p

]
, N̂ =

[
N̂1 0(n−p)×p

0p×(n−p) 0p×p

]
,

where M̂1, N̂1 ∈ R
(n−p)×(n−p). Since p = dim(N (M̂)∩N (N̂ )) = dim

(
(N (M̂1) ⊕ R

p)∩
(N (N̂1) ⊕ R

p)
)

= dim(N (M̂1) ∩ N (N̂1)) + p, it follows that, dim(N (M̂1) ∩ N (N̂1)) = 0

and thus (M̂1, N̂1) is regular. Now, using (14), it follows that, p = p + def(M̂1 − α1 N̂1) =
p + def(M̂1 − α2 N̂1) = def(M̂ − α1 N̂ ) = def(M̂ − α2 N̂ ) < def(M − αmax N ) and hence
(13) holds. 	

Corollary 4.7 Assume αmax > 0 and (M, N ) is regular. Then αmax is the smallest positive
generalized eigenvalue of (M, N).

The following result shows that, if M is not positive definite then αmax = 0 is possible,
in which case S = {0}.
Proposition 4.8 The following statements hold:

(i) If θT Nθ < 0 for all nonzero θ ∈ N (M), then αmax > 0.
(ii) If there exists θ ∈ N (M) such that θT Nθ > 0, then αmax = 0.

(iii) If (M, N ) is regular and there exists nonzero θ ∈ R
n such that θT Mθ = θT Nθ = 0,

then αmax = 0.

Proof To prove (i), let θ ∈ R
n . If θ ∈ N (M) is nonzero, then by assumption −αθT Nθ > 0

for all α > 0 and thus, θT(M −αN )θ > 0 for all α > 0. Next, suppose that θ �∈ N (M). Then
θT Mθ > 0 and thus there exists α > 0 such that θT(M − αN )θ = θT Mθ − αθT Nθ > 0.
Hence, for all θ ∈ R

n , it follows that there exists α > 0 such that θT(M − αN )θ > 0. Thus
αmax > 0. To prove (i i), suppose that αmax > 0. Then it follows that θT(M − αmax N )θ =
−αmaxθ

T Nθ < 0, which contradicts M − αmax N ≥ 0. Thus αmax = 0.
Finally, to prove (i i i), let θ1 ∈ R

n be nonzero such that θT
1 Mθ1 = θT

1 Nθ1 = 0. Since
M ≥ 0 it follows that θ1 ∈ N (M). Furthermore, since (M, N ) is regular, θ1 �∈ N (N ).
Now, suppose αmax > 0. Hence N (M)∩N (αmax N ) = {0} and thus from Lemma 3.1 it fol-
lows that N (M) ∩ N (M − αmax N ) = {0}. Next, note that θT

1 (M − αmax N )θ1 = 0. Since,
by definition, M − αmax N ≥ 0, it follows that θ1 ∈ N (M − αmax N ), which contradicts
N (M) ∩ N (M − αmax N ) = {0} and hence, αmax = 0. 	

Corollary 4.9 If M > 0 then αmax > 0.
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Corollary 4.10 If αmax = 0 then there exists nonzero θ ∈ N (M) such that θT Nθ ≥ 0.

Corollary 4.11 If N > 0 and M is singular then αmax = 0.

To illustrate Corollary 4.10, consider Example 1 in Table 1, where θ = [
0 1

]T
satisfies

θ ∈ N (M) and θT Nθ > 0. Furthermore, in Example 2, θ = [
1 −1

]T
satisfies θ ∈ N (M)

and θT Nθ = 0.
Example 3 in Table 1 shows that αmax is not necessarily the smallest nonnegative gener-

alized eigenvalue of a regular pencil (M, N ).

5 Existence of solutions

In this section we determine conditions under which Wγ (N ) �= ∅, that is, the QCQP problem
(7) has a solution.

The following result provides a lower bound for J (θ).

Proposition 5.1 For all θ ∈ Dγ (N ),

J (θ) ≥ αmaxγ. (15)

Proof Let θ ∈ Dγ (N ). Then J (θ) = θT Mθ = θT(M − αmax N + αmax N )θ = θT(M −
αmax N )θ + αmaxγ ≥ αmaxγ . 	

Lemma 5.2 For all α ∈ S\{αmax},

N (M − αN ) ∩ Dγ (N ) = ∅. (16)

Proof From Proposition 5.1 it follows that, for all θ ∈ Dγ (N ), J (θ)≥ αmaxγ . Next, if
S = {0}, then (16) need not be verified. Hence assume αmax > 0, let α ∈ [0 αmax), and
suppose that N (M − αN ) ∩ Dγ (N ) �= ∅. Then, for all θ̂ ∈ N (M − αN ) ∩ Dγ (N ),
J (θ̂) = θ̂T(M − αN + αN )θ̂ = θ̂T(M − αN )θ̂ + αγ = αγ < αmaxγ , which contradicts
J (θ̂) ≥ αmaxγ . Thus, (16) holds for all α ∈ S\{αmax}. 	

Corollary 5.3 Assume αmax > 0. Then N (M) ∩ Dγ (N ) = ∅.

Corollary 5.4 Assume N ≤ M. Then N (M) ∩ Dγ (N ) = ∅.

Corollary 5.5 Assume N ≤ M. If N (M − N ) ∩ Dγ (N ) �= ∅ then αmax = 1.

The following result considers existence of solutions to (7).

Theorem 5.6 θ ∈ Dγ (N ) satisfies

J (θ) = αmaxγ (17)

if and only if θ ∈ N (M − αmax N ) ∩ Dγ (N ). Hence, if

N (M − αmax N ) ∩ Dγ (N ) �= ∅, (18)

then

min
θ∈Dγ (N )

J (θ) = αmaxγ (19)

and

N (M − αmax N ) ∩ Dγ (N ) ⊆ Wγ (N ), (20)

and thus (7) has a solution.
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Proof From Proposition 5.1, we have that J (θ)≥ αmaxγ . Furthermore, let θ ∈ (M −
αmax N )∩Dγ (N ). Then J (θ) = θT(M −αmax N )θ +αmaxγ = αmaxγ . Conversely, let θ1 ∈
Dγ (N ) satisfy J (θ1) = θT

1 Mθ1 = αmaxγ = αmaxθ
T
1 Nθ1. Then θT

1 (M − αmax N )θ1 = 0.
Since M −αmax N ≥ 0 it follows that, θ1 ∈ N (M − αmax N ). Hence θ1 ∈ N (M − αmax N )∩
Dγ (N ). The last statement is immediate. 	


Several corollaries of Theorem 5.6 are discussed in the Appendix.
Theorem 5.6 provides a necessary and sufficient condition for the cost J to have a min-

imum value equal to the lower bound αmaxγ given by Proposition 5.1. However, Theorem
5.6 does not consider the case in which a solution might exist with a cost that is greater than
αmaxγ . Theorem 5.8 shows that this case cannot occur. The following lemma is needed.

Lemma 5.7 Assume that (7) has a solution, let θ0 solve (7), and define β
�= J (θ0)/γ . Then

θT
0 (M − βN )θ0 = 0.

Proof J (θ0) = θT
0 Mθ0 = θT

0 (M − βN )θ0 + βθT
0 Nθ0 = θT

0 (M − βN )θ0 + βγ = θT
0 (M −

βN )θ0 + J (θ0). Thus θT
0 (M − βN )θ0 = 0. 	


Theorem 5.8 Assume that (7) has a solution, and let θ0 solve (7). Then

J (θ0) = αmaxγ (21)

and

θ0 ∈ N (M − αmax N ). (22)

Hence,

Wγ (N ) ⊆ N (M − αmax N ) ∩ Dγ (N ). (23)

Proof Suppose that J (θ0) = βγ , where β > αmax. Since β �∈ S, it follows that there exists
θ ∈ R

n such that θT(M − βN )θ < 0 and thus 0 ≤ θT Mθ < βθT Nθ . Thus θT Nθ > 0

and hence θ̂
�=

√
γ

θT Nθ
θ ∈ Dγ (N ). Furthermore, θ̂T(M − βN )θ̂ < 0. Hence J (θ̂ ) =

θ̂T M θ̂T < βθ̂T N θ̂ = βγ = J (θ0), which contradicts the assumption that θ0 solves (7).
Thus β ≤ αmax. However, Theorem 5.6 implies that J (θ0)/γ ≥ αmax. Hence β ≥ αmax.
Consequently, β = αmax and thus (21) holds. Next, it follows from Lemma 5.7 with β = αmax

that θT
0 (M − αmax N )θ0 = 0. Since M − αmax N ≥ 0 it follows that (22) holds. 	


Corollary 5.9 Assume N (M) ∩ Dγ (N ) �= ∅. Then

min
θ∈Dγ (N )

J (θ) = 0 (24)

and αmax = 0.

Combining (20) and (23) we have our main result.

Theorem 5.10

Wγ (N ) = N (M − αmax N ) ∩ Dγ (N ). (25)

For Example 2 in Table 1, N (M − αmax N ) ∩ Dγ (N ) = ∅, and thus (7) does not have a
solution.
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6 Uniqueness of solutions

The following result shows that, if the QCQP problem (7) has a solution and (M, N ) is not
regular, then the QCQP problem (7) has an infinite number of solutions.

Proposition 6.1 Assume θ0 ∈ Wγ (N ). Then

θ0 + [N (M) ∩ N (N )] ⊆ Wγ (N ). (26)

Proposition 6.2

def(M − αmax N ) = 1 (27)

if and only if (7) has exactly two solutions. In this case, if θ ∈ N (M − αmax N ) is nonzero
and such that θ �∈ N (M) ∩ N (N ), then

Wγ (N ) =
{√

γ

θT Nθ
θ, −

√
γ

θT Nθ
θ

}
. (28)

Proof Since θ ∈ N (M − αmax N ), it follows that θT Mθ = αmaxθ
T Nθ . If θT Nθ < 0,

then it follows that θT Mθ < 0, which contradicts M ≥ 0. Next, suppose θT Nθ = 0.
Then it follows that θT Mθ = 0 and thus θ ∈ N (M). Next, since αmax > 0 and θ ∈
N (M − αmax N )∩N (M), it follows that θ ∈ N (N ), which contradicts θ �∈ N (M)∩N (N ).
Thus θT Nθ > 0. Thus it follows that (28) holds. 	

Proposition 6.3 Assume αmax > 0 and there exists nonzero φ ∈ R

n satisfying φT Mφ =
φT Nφ = 0. Then, if (7) has a solution, it has an infinite number of solutions.

Proof Let θ1 solve (7) and let β ∈ R. Then it follows from Theorem 5.10 that, θ1 ∈
N (M − αmax N ) ∩ Dγ (N ). Next, since φ ∈ N (M), it follows that

(θ1 + βφ)T M(θ1 + βφ) = θT
1 Mθ1.

Next, note that (θ1 + βφ)T N (θ1 + βφ) = θT
1 Nθ1 + 2βθT

1 Nφ + β2φT Nφ = θT
1 Nθ1 +

2βθT
1 Nφ. Now, suppose that θT

1 Nφ �= 0. Then, since θT
1 Mθ1 = αmaxθ

T
1 Nθ1, it follows that

θT
1 Mθ1 − αmaxθ

T
1 Nθ1 − αmaxθ

T
1 Nφ �= 0. Hence θT

1 (Mθ1 − αmax N (φ + θ1)) �= 0 and thus,
since Mφ = 0, θT

1 (Mθ1−αmax N (φ+θ1)) + θT
1 Mφ �= 0. Thus θT

1 (M−αmax N )(φ + θ1) �= 0,
which contradicts θ1 ∈ N (M − αmax N ). Thus θT

1 Nφ = 0. Consequently,

(θ1 + βφ)T N (θ1 + βφ) = θT
1 Nθ1.

Hence, θ1 + βφ solves (7) for all β ∈ R, and thus (7) has an infinite number of solutions. 	

Example 7 in Table 1 shows that the converse of Proposition 6.3 is not true. Since αmax =

1 and N (M − αmax N ) = R
2, it follows from Theorem 5.10 that all θ ∈ R satisfying

θT Nθ = γ are solutions of (7). However, there does not exist a nonzero φ ∈ R
2 such that

φT Mφ = φT Nφ = 0.

7 Positive-semidefinite and positive-definite constraints

7.1 Positive-semidefinite N

The following result relates the sufficient conditions for existence of a solution to (7) given
by Corollary 8.2 to the sufficient conditions for existence given in [10] for the quadratic
programming problem with N ≥ 0.
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Proposition 7.1 Assume that N ≥ 0. If (M, N) is regular then

min
θ∈Dγ (N )

J (θ) = αmaxγ, (29)

and thus (7) has a solution.

Proof The result follows from (vi i) in Proposition 3.2 and Corollary 8.2. 	

We now consider

N =
[

γ Ir 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

]
, (30)

where 1 ≤ r ≤ 2n + 1, and partition M =
[

M1 M2

MT
2 M3

]
, where M1 ∈ R

r×r .

Proposition 7.2 Assume that N is given by (30). Then αmax = 0 if and only if M1 is singular.

Proof Sufficiency follows from iv) of Proposition 4.8. To prove necessity, suppose that
αmax = 0 and M1 > 0. Then it follows from Proposition 4.4 that αmax ≥ λmin(M1)/λmax

(Ir ) = λmin(M1) > 0, which contradicts αmax = 0. Thus M1 is singular. 	

Proposition 7.3 Assume that N is given by (30). Then

Wγ (N ) =
{√

γ

θT Nθ
θ : θ ∈ N (M − αmax N ) \N (N )

}
. (31)

7.2 Positive-definite N

Proposition 7.4 Assume that N > 0. Then

Wγ (N ) =
{√

γ

θT Nθ
θ : 0 �= θ ∈ N (M − αmax N )

}
, (32)

and

min
θ∈Dγ (N )

J (θ) = αmaxγ. (33)

If, in addition, M is singular, then αmax = 0.

Proof Since θT
1 Nθ > 0 for all nonzero θ1 ∈ R

n , it follows from Theorem 5.10 that (32)
holds and it follows from Corollary 8.6 that (33) holds. Now assume M is singular and let
θ ∈ N (M) be nonzero. It then follows that, for all α > 0, θT(M − αN )θ = −αθT Nθ < 0.
Hence S = {0} and thus αmax = 0. 	


8 Conclusions

In this paper, we considered a quadratic programming problem with a sign-indefinite qua-
dratic equality constraint. We derived necessary and sufficient conditions for existence of
solutions involving the generalized eigenvalue αmax of the matrix pencil involving the
positive-semidefinite cost matrix M and the sign-indefinite constraint matrix N . We then pro-
vided a complete characterization of the solution set in terms of the eigenspace
N (M − αmax N ).
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Appendix

The following seven results are corollaries of Theorem 5.6.

Corollary 8.1 Assume αmax = 0 and N (M) ∩ Dγ (N ) �= ∅. Then, for all θ ∈ N (M) ∩
Dγ (N ),

J (θ) = 0 (34)

and thus

min
θ∈Dγ (N )

J (θ) = 0. (35)

Hence (7) has a solution.

Corollary 8.2 Assume there exists β ∈ R such that βN < M. Then

min
θ∈Dγ (N )

J (θ) = αmaxγ, (36)

and thus (7) has a solution.

Proof Since M − αmax N is singular, let θ ∈ N (M − αmax N ) and note that βθT Nθ <

θT Mθ = αmaxθ
T Nθ . Suppose that θT Nθ = 0. Then 0 < θT Mθ = 0, which is a contradic-

tion. Next, suppose that θT Nθ < 0. If αmax > 0 then θT Mθ < 0, which contradicts M ≥ 0. If
αmax = 0, then βθT Nθ < θT Mθ = 0. Hence β > 0, which implies αmax > 0, which is a con-

tradiction. Hence θT Nθ > 0. Consequently, θ̂
�=

√
γ

θT Nθ
θ ∈ N (M − αmax N ) ∩ Dγ (N ) �=

∅. The result now follows from Theorem 5.6. 	

Corollary 8.3 Assume αmax > 0 and N (M − αmax N ) ∩ N (M) = {0}. Then

min
θ∈Dγ (N )

J (θ) = αmaxγ, (37)

and thus (7) has a solution.

Proof Let θ ∈ N (M − αmax N ) be nonzero. Then θT Mθ = θT(M − αmax N + αmax N )θ =
αmaxθ

T Nθ . Since θ �∈ N (M), it follows that θT Mθ > 0 and thus, θT Nθ = θT Mθ/αmax >

0. Hence, θ̂
�=

√
γ

θT Nθ
θ ∈ Dγ (N ). Finally, since θ̂ ∈ N (M − αmax N ), it follows that

θ̂ ∈ N (M − αmax N ) ∩ Dγ (N ). The result now follows from Theorem 5.6. 	

Corollary 8.4 Assume M > 0. Then

min
θ∈Dγ (N )

J (θ) = αmaxγ, (38)

and thus (7) has a solution.

Corollary 8.5 Assume θT Mθ > 0 for all nonzero θ satisfying θT Nθ = 0. Then

min
θ∈Dγ (N )

J (θ) = αmaxγ, (39)

and thus (7) has a solution.
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Proof Let θ ∈ N (M − αmax N ). Then it follows that

θT Mθ = αmaxθ
T Nθ. (40)

First, let θT Mθ = 0. Then it follows from (40) that either αmax = 0 or θT Nθ = 0. If
θT Nθ = 0, then it follows from assumption that θT Mθ > 0, which is a contradiction. Hence
αmax = 0. It follows from Corollary 4.10 that there exists nonzero θ1 such that θT

1 Mθ1 = 0
and θT

1 Nθ1 ≥ 0. Again by assumption, θT
1 Nθ1 �= 0, and thus θT

1 Nθ1 > 0. Furthermore, since

θ1 ∈ N (M) and αmax = 0, it follows that θ1 ∈ N (M − αmax N ) and hence θ̂
�=

√
γ

θT
1 Nθ1

θ1 ∈
N (M − αmax N ) ∩ Dγ (N ). The result now follows from Theorem 5.6.

Next, let θT Mθ > 0. Then, since αmax ≥ 0, it follows from (40) that αmax > 0 and

θT Nθ > 0. Hence θ̂
�=

√
γ

θT Nθ
θ ∈ Dγ (N ). Finally, since θ̂ ∈ N (M − αmax N ), it follows

that θ̂ ∈ N (M − αmax N ) ∩ Dγ (N ). The result now follows from Theorem 5.6. 	

Since M ≥ 0, the assumption in Corollary 8.5 is a sufficient condition for S to be closed

[9, Theorem 2].

Corollary 8.6 Assume N > 0. Then

min
θ∈Dγ (N )

J (θ) = αmaxγ, (41)

and thus (7) has a solution.

Corollary 8.7 Assume αmax > 0. Then (7) has a solution.

Proof From Proposition 4.6, it follows that there exists nonzero θ ∈ N (M − αmax N ) such
that θ �∈ N (M) ∩ N (N ). Suppose θ ∈ N (M), then θ ∈ N (N ), which implies that
θ ∈ N (M) ∩ N (N ), which contradicts θ �∈ N (M) ∩ N (N ). Thus θ �∈ N (M) and hence

θT Mθ > 0. Since θT Mθ = αmaxθ
T Nθ , it follows that θT Nθ > 0 and thus

√
γ

θT Nθ
θ

solves (7). 	
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