
Dimensional Analysis of Matrices
State-Space Models and Dimensionless Units

HARISH J. PALANTHANDALAM-MADAPUSI, DENNIS S. BERNSTEIN, and RAVINDER VENUGOPAL

» L E C T U R E  N O T E S

Physical dimensions and units, such as mass (kg),
length (m), time (s), and charge (C), provide the link
between mathematics and the physical world. It is

well known that careful attention to physical dimensions
can provide valuable insight into relationships among
physical quantities. In this regard, the Buckingham Pi the-
orem (see “The Buckingham Pi Theorem in a Nutshell”),
which is essentially an application of the fundamental the-
orem of linear algebra on the sum of the rank and defect of
a matrix, has been extensively applied [1]–[10]. Interesting
historical remarks on the development of dimensional
analysis are given in [11], while detailed discussions are
given in [12, Chapter 10] and [13].

In the control literature, with its historically strong mathe-
matical influence, it is not unusual to see expressions such as

V(x, ẋ) = x2 + ẋ2 ,

where x and ẋ denote position and velocity states, respec-
tively. Although this expression appears to be dimension-
ally incorrect, the reader usually assumes that unlabeled
coefficients are present to convert units from squared posi-
tion to squared velocity or vice versa.

A related issue concerns the appearance of dimen-
sionless units. For example, for a stiffness k and a mass
m, the expression 

√
k/m has the dimensions of recipro-

cal time. However, when used within the context of
harmonic solutions of an oscillator, the same expression
has the interpretation of rad/s, where the dimension-
less unit  “rad” is inserted to facil itate the use of
trigonometric functions. Although this insertion is ad
hoc, the recognition that radians are dimensionless pro-
vides reasonable justification.

A publication of special note is the book [6], which takes
an in-depth look at the role of dimensions including matri-
ces populated with dimensioned quantities. Although this
text provides no situations in which the “usual” rules of
dimensional analysis lead to incorrect answers, the careful
reexamination in [6] of the treatment of dimensions, espe-
cially for matrices, motivates the present article.

The main objective of this article is to examine the
dimensional structure of the dynamics matrix A that arises
in the linear state-space system ẋ = Ax. To do this, we

extend results of [6] and provide a self-contained treat-
ment of the dimensional structure of A and its exponential.
Our investigation of the physical dimensions of A moti-
vates us to look at the algebraic structure of dimensioned
quantities. This development forces us to define multiple,
distinct, group identity elements, which are the dimension-
less units. One such dimensionless unit is the radian. How-
ever, to complete the analysis, we introduce an additional
dimensionless quantity for each physical dimension and
each product of dimensions.

This approach immediately clarifies the mysterious
appearance of radians in the example above. Specifical-
ly,  [

√
k/m] = ([k]/[m])1/2 = ((N/m)/kg)1/2 = [ ]m[ ]kg/s ,

where [a] denotes the physical dimensions of a,
[ ]kg � kg0 is the identity element in the group of mass
dimensions, and [ ]m � m0 is the identity element in the
group of length dimensions. In fact, [ ]m is the traditional
radian, whose appearance is natural and need not be
inserted with the justification that “radians are dimen-
sionless.” Rather, [ ]m appears because the mathematical
structure of physical dimensions requires that it be pre-
sent. By the same reasoning, the massian [ ]kg is also pre-
sent in [

√
k/m].

As an additional example, consider the expression
ω = v/r, where ω is angular velocity, v is translational veloc-
ity, and r is radius. Then [ω] = [v]/[r] = (m/s)/m =
m0/s = [ ]m/s = rad/s. Again, there is no need to artificially
insert the dimensionless unit “rad” in order to obtain the
angular velocity in the expected units. We also note that, for
an angle θ in radians, the fact that [ ]αm = (m0)α = m0 = [ ]m

for all real numbers α implies that

[sin θ] =
[
θ − θ3

3!
+ · · ·

]
= [ ]m ,

which is consistent with the fact that both θ and sin θ are
ratios of lengths.

In real computations involving physical quantities, that
is, aside from pure theory, it is necessary to keep track of
physical dimensions and their associated units. Elucida-
tion of the physical dimension structure of state space
models can thus be useful for verifying the model struc-
ture and ensuring that the units are consistent within the
context of state-space computations.Digital Object Identifier 10.1109/MCS.2007.906924
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ALGEBRAIC STRUCTURE OF UNITS
For simplicity, we consider the fundamental dimensions
mass (kg), length (m), and time (s) only. For convenience,
we use kg, m, and s to represent the respective physical
dimension as well as the associated unit. Let R and C
denote the real and complex numbers, respectively.
Define Gkg � {kgα : α ∈ R} ,  Gm � {mβ : β ∈ R} ,  and
Gs � {sγ : γ ∈ R}. Note that Gkg, Gm, and Gs are Abelian
(commutative) groups (see “What Is a Group?”) with the
identity elements [ ]kg, [ ]m, and [ ]s, respectively, which
are dimensionless units referred to as the massian, lengthi-
an, and timian. The lengthian [ ]m in Gm, when interpreted
within the context of a circle, is the radian. Next, define
the set G of all mixed units

G � {kgαmβsγ : α, β, γ ∈ R}. (1)

Since, for all α, β, γ ∈ R , kgαmβsγ = kgαsγ mβ =
mβkgαsγ = mβsγ kgα = sγ mβkgα = sγ kgαmβ , we have the
following result.

Fact 1
G is an Abelian group with the identity element [ ]kg[ ]m[ ]s.

The four products of the identity elements are represent-
ed by [ ]kg,m � [ ]kg[ ]m, [ ]kg,s � [ ]kg[ ]s, [ ]m,s � [ ]m[ ]s ,
and [ ]kg,m,s � [ ]kg[ ]m[ ]s , of which only the last is an ele-
ment of G. Note that the dimensionless Reynolds number
in fluid dynamics defined by

Re � vsL
ν

,

where vs is the mean fluid velocity, L is the characteristic
length of the flow, and ν is the kinematic fluid viscosity,
has the units

[Re] = [ ]kg,m,s.

Similarly, the dimensionless Froude number in fluid
mechanics defined by

Fr � vs

Lg
,

where g is acceleration due to gravity, has the units

[Fr] = [ ]m,s.

Table 1 classifies several dimensionless quantities based on
their units.

The set D of dimensioned scalars consists of elements of
the form akgαmβsγ , where a ∈ C and α, β, γ ∈ R . We
allow a ∈ C to accommodate complex eigenvalues and
eigenvectors. We define the units operator [ ] as

[akgαmβsγ ] � kgαmβsγ .

Note that [0 kgαmβsγ ] � kgαmβsγ . Let a1kgα1 mβ1 sγ1 and
a2kgα2 mβ2 sγ2 be dimensioned scalars. Then the product of
two dimensioned scalars always exists and is defined to
be a1kgα1 mβ1 sγ1 a2kgα2 mβ2 sγ2 = a1a2kgα1+α2 mβ1+β2 sγ1+γ2 .
However, the sum a1kgα1 mβ1 sγ1 + a2kgα2 mβ2 sγ2 is defined
only if α1 = α2, β1 = β2, and γ1 = γ2 , in which case
a1kgα1 mβ1 sγ1 + a2kgα2 mβ2 sγ2 = (a1 + a2)kgα1 mβ1 sγ1 .  Fur-
thermore, although quantities such as akgα and bsγ are
not elements of D, we assume that all operations occur
after these quantities are embedded in the appropriate
group containing all of the common units. For example,
(akgα)(bsγ ) � (akgα[ ]s)(bsγ [ ]kg) = abkgαsγ .

Dimensioned vectors and dimensioned matrices are denot-
ed by Dn and Dn×m, respectively, all of whose entries are
dimensioned scalars (see “Energy Versus Moment” for an
example of the difference between dimensioned scalars
and dimensioned vectors). Let P ∈ Dn×m and define

[P] �

⎡
⎢⎣

[P1,1] · · · [P1,m]
...

. . .
...

[Pn,1] · · · [Pn,m]

⎤
⎥⎦ ∈ Gn×m , (2)

where Pi, j is the (i, j) entry of P and Gn×m denotes the set
of n × m matrices with entries in G. Note that [PT] = [P]T.
If P ∈ Dn×m and Q ∈ Dm×p, then PQ exists if all addition
operations required to form the product are defined.

Fact 2
Let P ∈ Dn×m and Q ∈ Dm×p. Then PQ exists if and only if,
for all i = 1, . . . , n and j = 1, . . . , p,

[Pi,1][Q1, j] = [Pi,2][Q2, j] = · · · = [Pi,n][Qn, j]. (3)

Furthermore, if PQ exists, then

[PQ] = [P][Q]. (4)

Fact 3
Let P ∈ Dn×n. If P2 exists, then

[P1,1] = [P2,2] = · · · = [Pn,n]. (5)

Proof
Since P2 exists, it follows that, for all i, j = 1, . . . , n, 

[(P2)i,i] = [Pi,1][P1,i] = [Pi,2][P2,i] = · · · = [Pi,n][Pn,i].

Now, let i, j ∈ {1, . . . , n} . Then [Pi,i][Pi,i] = [Pi, j][Pj,i] =
[Pj,i][Pi, j] = [Pj, j][Pj, j]. Hence [Pi,i] = [Pj, j]. �

Fact 4
Let P ∈ Dn×n. If P2 exists, then, for all positive integers k,
Pk exists and [Pk] = [P]k . Furthermore, for all i = 1, . . . , n
and for all positive integers k,
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[Pk] = [(Pi,i)
k−1][P]. (6)

Proof
Since, for all i, j = 1, . . . , n,

[(P2)i, j] = [Pi,1][P1, j] = [Pi,2][P2, j] = · · · = [Pi,n][Pn, j],

it follows that

[(P2)i, j] = [Pi,i][Pi, j].

Hence [P2] = [Pi,i][P]. Induction yields (6).            �

Fact 5
Let P ∈ Dn×n . Then P2 exists if and only if there exist
z1, z2 ∈ Gn such that zT

2 z1 exists and

[P] = z1zT
2 . (7)

Proof
Sufficiency is immediate. To prove necessity, define

z1 �

⎡
⎢⎢⎢⎣

[P1,1]
[P2,1]

...

[Pn,1]

⎤
⎥⎥⎥⎦ , z2 �

⎡
⎢⎢⎢⎣

[P1,1]/[P1,1]
[P1,2]/[P1,1]

...

[P1,n]/[P1,1]

⎤
⎥⎥⎥⎦ .

Let u1, . . . , up be fundamental dimensions and let G
�=

{∏p
i=1 uαi

i : α1, . . . , αp ∈ R be the corresponding Abelian

group. Then the set D of dimensioned scalars consists of ele-

ments of the form a
∏p

i=1 uαi
i , where a ∈ C and α1, . . . , αp ∈ R.

The following theorem, called the Buckingham Pi theorem [S1],

shows that a relationship between q dimensioned quantities

induces a collection of dimensionless quantities.

THEOREM S1

Let Q1, Q2, . . . , Qq ∈ D be dimensioned scalars such that, for

i = 1, . . . , q, Qi
�= ai

∏p
j=1 uαij

j , and assume that

K∑
k=1

ck Qβ1k
1 · · · Qβqk

q = 0, (S1)

where c1, . . . , cK ∈ R are nonzero. Let A �= [αij ]T ∈ R
p×q , and let

r
�= rank A . Then there exists �

�= [γij ] ∈ R
q×(q−r) such that

rank � = q − r, A� = 0, and, for i = 1, . . . , q − r,

�i
�= Qγ1i

1 · · · Qγqi
q (S2)

are dimensionless.

PROOF
It follows from the fundamental theorem of linear algebra [S2, p.

33] that

rank A + def A = q

and thus

def A = q − r,

where def A is the dimension of the nullspace of A. Next, let

�
�= [γij ] ∈ R

q×(q−r ) be such that the columns of � form a basis for

the nullspace of A. Then it follows that rank � = q − r and

A� = 0. Next, since the (j, i) entry of A� is 
∑q

k=1 αkjγk i = 0, it

follows that, for all i = 1, . . . , q − r,

�i = Qγ1i

1 · · · Qγqi
q

= aγ1i

1 · · · aγqi
q

p∏
j=1

u
∑q

k=1
αkj γki

j

= aγ1i

1 · · · aγqi
q

p∏
j=1

u0
j

is dimensionless.                           �
As an example, consider the law of conservation of momen-

tum in a collision between two rigid bodies given by

m1v−
1 + m2v−

2 = m1v+
1 + m2v+

2 , (S3)

where m1 and m2 are the masses of the bodies, v−
1 and v−

2 are the

velocities of the bodies before collision, and v+
1 and v+

2 are the veloci-

ties of the bodies after collision, respectively. Note that

[m1] = [m2] = kg and [v−
1 ] = [v−

2 ] = [v+
1 ] = [v+

2 ] = m/s. Further-

more, choosing u1 = kg, u2 = m, u3 = s, Q1 = m1, Q2 = m2 ,

Q3 = v−
1 , Q4 = v−

2 , Q5 = v+
1 , and Q6 = v+

2 , it follows that p = 3,

q = 6,

A =
[ 1 1 0 0 0 0

0 0 1 1 1 1
0 0 −1 −1 −1 −1

]
, (S4)

and r = 2. Therefore, in accordance with Theorem S1, there exist

q − r = 4 dimensionless quantities. These dimensionless quan-

tities can be computed by determining a basis for the null space

of A. For example, choosing

� =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
−1 0 0 0
0 1 1 0
0 −1 0 0
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (S5)

yields the dimensionless quantities

The Buckingham Pi Theorem in a Nutshell
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Since P2 exists it follows that [(P2)1,1]/[P1,1] = zT
2 z1 exists.

Furthermore, let k ∈ {1, . . . , n} and define z3 ∈ Gn by

z3 �

⎡
⎢⎢⎢⎣

[P1,k]
[P2,k]

...

[Pn,k]

⎤
⎥⎥⎥⎦ .

Then, zT
2 z3 exists and thus the rows of [P] are dimensioned

scalar multiples of each other. Hence

[P] =

⎡
⎢⎢⎢⎣

[P1,1] [P1,2] · · · [P1,n]
[P2,1] [P1,2][P2,1]/[P1,1] · · · [P1,n][P2,1]/[P1,1]

...
...

. . .
...

[Pn,1] [P1,2][Pn,1]/[P1,1] · · · [P1,n][Pn,1]/[P1,1]

⎤
⎥⎥⎥⎦

= z1zT
2 . �

Fact 6
Let P ∈ Dn×n. Then eP ∈ Dn×n exists if and only if P2 exists
and [P] = [P2]. Furthermore, if eP exists then

[eP] = [P]. (8)

�1 = m1

m2
, �2 = v−

1

v−
2

,

�3 = v−
1

v+
1

, �4 = v+
1

v+
2

.

Note that these dimensionless quantities are not unique.

An application of the Buckingham Pi Theorem is to derive

physical relationships between dimensioned quantities. For

example, consider the problem of deriving an expression for the

time period of oscillations of a pendulum. We expect the time

period T to depend on the length l of the pendulum, the acceler-

ation g due to gravity, and perhaps the mass m of the pendu-

lum. Since [T ] = s, [l ] = m, [g] = m/s2, and [m] = kg, we

choose u1 = kg, u2 = m, u3 = s, Q1 = T, Q2 = l, Q3 = g, and

Q4 = m. Noting that p = 3, q = 3,

A =
[ 0 0 0 1

0 1 1 0
1 0 −2 0

]
, (S6)

and r = 3, it follows that there exists q − r = 1 dimensionless

quantity given by

�1 = T
√

g√
l

. (S7)

Therefore,

T = �1

√
l
g

, (S8)

where the dimensionless constant �1 can be determined experi-

mentally to be 2π . Note that the time period does not depend on

the mass of the pendulum, a result due to Galilieo.

As a final example, consider the force generated by a pro-

peller on an aircraft. Presumably, the force F depends on the

diameter d of the propeller, the velocity v of the airplane, the

density ρ of the air, the rotational speed N of the propeller, and

the dynamic viscosity ν of the air. Noting that [F ] = kgm/s2 ,

[d ] = m, [v ] = m/s, [ρ] = kg/m3, [N] = [ ]m/s, [ν] = m2/s , we

choose u1 = kg, u2 = m, u3 = s, Q1 = F, Q2 = d, Q3 = v ,

Q4 = ρ, Q5 = N, and Q6 = ν . Therefore, we have

p = 3, q = 6,

A =
[ 1 0 0 1 0 0

1 1 1 −3 0 2
−2 0 −1 0 −1 −1

]
, (S9)

and r = 3. Thus we have q − r = 6 − 3 = 3 dimensionless quan-

tities. Choosing � to be

� =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1
1 1 −2
1 −1 −2
0 0 −1
0 1 0

−1 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (S10)

it follows that

�1 = dv
ν

, �2 = dN
v

, �3 = F
d2v2ρ

,

where �1 is the Reynolds number, �2 is the top-speed ratio, and

�3 is the dynamic-force ratio.
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Proof
By definition, the matrix exponential eP ∈ Dn×n is given by

eP = I + 1
1!

P + 1
2!

P2 + · · · . (9)

Necessity is immediate. To prove sufficiency, note that,
since P2 exists and [P] = [P2], it follows from Fact 4 that
[P] = [P2] implies that [P] = [Pk] for all positive integers k.
Thus eP exists. Next, it follows from (9) that (8) holds. �

Fact 7
Let P ∈ Dn×n and assume that eP exists. Then, for all
i = 1, . . . , n,

[Pi,i] = [ ]kg,m,s. (10)

Proof
The result follows immediately from facts 6 and 4. �

For a real scalar q and P ∈ Dn×m , the Schur power
P{q} ∈ Dn×m is defined by

(P{q})i, j � (Pi, j)
q, (11)

assuming the right hand side exists. The notation
[P]C ∈ Cn×m denotes the numerical part of the dimen-
sioned matrix P ∈ Dn×m. Note that

P = [P]C ◦ [P], (12)

where ◦ is the Schur (entry-wise) product. We write [P]C
as [P]R if [P]C is real. Let IR denote the identity matrix in
Rn×n . Furthermore, let Q ∈ Dm×p and assume that PQ
exists. Then [PQ]C = [P]C[Q]C and

PQ = ([P]C ◦ [P])([Q]C ◦ [Q])

= ([P]C[Q]C) ◦ ([P][Q]) = [PQ]C ◦ [PQ]. (13)

Fact 8
Let P ∈ Dn×m, and let y ∈ Dn and u ∈ Dm be such that

y = Pu. (14)

Then

[P] = [y][uT]{−1}. (15)

Proof
The ith component equation of (15) is

[Pi,1][u1] + [Pi,2][u2] + · · · + [Pi,m][um] = [yi].

Therefore,

[Pi,1][u1] = [Pi,2][u2] = · · · = [Pi,m][um] = [yi],

and thus [Pi, j] = [yi]/[uj]. Hence (15) holds. �

Agroup (G, ∗) is a set G with a binary operation

∗ : G × G → G that satisfies the following axioms:

A1) For all a, b ∈ G, a ∗ b ∈ G.

A2) For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

A3) There exists an identity element e ∈ G such that, for

all a ∈ G, e ∗ a = a ∗ e = a.

A4) For all a ∈ G , there exists b ∈ G such that

a ∗ b = b ∗ a = e, where e is the identity element in

G.

Note that, A1–A4 do not imply that, for all a, b ∈ G ,

a ∗ b = b ∗ a . However, if, for all a, b ∈ G , a ∗ b = b ∗ a ,

then the group G is an Abelian group.

The set of real numbers with e = 0 and the binary oper-

ation of addition is a group. However, the set of real num-

bers with e = 1 and the binary operation of multiplication is

not a group since A4 is not satisfied for a = 0. Furthermore,

since addition is commutative, the set of real numbers with

the addition operation is an Abelian group.

The set of units G = {kgαmβsγ : α, β, γ ∈ R} with

e = [ ]kg,m,s and the binary operation of multiplication is an

Abelian group.

What Is a Group?
TABLE 1 Classification of dimensionless units and examples.
These seven dimensionless units are defined in terms of
ratios of the basic physical dimensions.

Dimensionless Unit Name Examples
[ ]kg Massian Air-fuel ratio

Stoichiometric mass ratio

[ ]m Lengthian Radian
Strain
Poisson's ratio
Fresnel number
Aspect ratio

[ ]s Timian Courant-Friedrichs-Lewy 
(CFL) number

Damkohler numbers

[ ]kg,m Densian Density ratio
Moment-of-inertia ratio

[ ]kg,s Flowian Mass-flow ratio
Stiffness ratio

[ ]m,s Velocian Froude number
Fourier number
Mach number
Stokes number

[ ]kg,m,s Forcian Reynolds number
Weber number 
Coefficient of friction
Lift coefficient
Drag coefficient
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Next, let P ∈ Dn×n. Then, the determinant det P of P is
defined to be

det P =
∑

p∈Pn

σ(p)P1,p1 P2,p2 · · · Pn,pn, (16)

where Pn is the set of all permutations p = (p1, . . . , pn) of
(1, 2, . . . , n), and σ(p) is the signature of the permutation
p, which is 1 if p is achieved by applying an even number
of transpositions to (1, 2, . . . , n) and −1 if p is reached by
applying an odd number of transpositions to (1, 2, . . . , n).
Note that if P ∈ Dn×n then det P exists if and only if
[P1,p1 P2,p2 · · · Pn,pn ] is the same for all p ∈ Pn. Hence, if det
P exists, we have

[det P] = [P1,p1 P2,p2 · · · Pn,pn ] (17)

for all p ∈ Pn. Note that

det [P]C = [det P]C (18)

and
det P = (det [P]C)[det P]. (19)

The following result presents necessary and sufficient con-
ditions for the existence of det P.

Fact 9
Let P ∈ Dn×n. Then det P exists if and only if there exist
z1, z2 ∈ Gn such that

[P] = z1zT
2 . (20)

Proof
Sufficiency is immediate. To prove necessity, first let n = 2.
Then, since det P exists, it follows that

[P1,1]
[P1,2]

= [P2,1]
[P2,2]

. (21)

Thus the columns of [P] are dimensioned scalar multiples of
each other. Next, let n = 3 and assume that det P exists.
Then it follows from the cofactor expansion of det P that the
determinant of every 2 × 2 submatrix of P exists. Hence (21)
holds. Next, it follows that [P1,1P2,3P3,2] = [P1,2P2,3P3,1]
and hence

[P1,1]
[P1,2]

= [P3,1]
[P3,2]

. (22)

Furthermore, using [P1,2P2,3P3,1] = [P1,3P2,2P3,1] and
[P1,2P2,1P3,2] = [P1,3P2,1P3,2], it follows that [P1,2]/[P1,3] =
[P2,2]/[P2,3] and [P1,2]/[P1,3] = [P3,2]/[P3,3] . Thus the
columns of [P] are dimensioned scalar multiples of each

other. Likewise, for all n ≥ 1, it can be seen that, since det P
exists, the columns of [P] are dimensioned scalar multiples
of each other. Thus, defining

z1 �

⎡
⎢⎢⎢⎣

[P1,1]
[P2,1]

...

[Pn,1]

⎤
⎥⎥⎥⎦ , z2 �

⎡
⎢⎢⎢⎣

[P1,1]/[P1,1]
[P1,2]/[P1,1]

...

[P1,n]/[P1,1]

⎤
⎥⎥⎥⎦ ,

it follows that (20) holds.                  �
Note that if P2 exists then det P exists. However, the

following example shows that the converse does not hold.

Example 1
Let P ∈ D2×2 be such that

[P] =
[

m m2

s ms

]
. (23)

Then det P exists, but P2 does not exist.
Let P ∈ Dn×n. Then λ ∈ D and v ∈ Dn are an eigenvalue-

eigenvector pair of P if [v]C is not zero and λ and v satisfy

Pv = λv. (24)

Fact 10
Let P ∈ Dn×n. Then P has an eigenvalue-eigenvector pair
λ ∈ D, v ∈ Dn if and only if det P exists and, for all
i = 1, . . . , n and j = 1, . . . , n,

[Pi,i] = [Pj, j]. (25)

Since energy is force times displacement, it follows that the

units of energy are J = Nm = kgm2/s2. On the other hand,

since moment times angular displacement is energy, it follows

that the units of moment are J/rad = Nm/rad = kgm2/s2rad.

Furthermore, since rad = [ ]m = m0 , it follows that

J/rad = kgm2/s2rad = kgm2/s2 = J, and hence moment has

the same units as energy.

Although the above analysis suggests that energy and

moment are indistinguishable, we know intuitively that they

are different. This apparent contradiction is resolved by the

fact that energy is a dimensioned scalar in D, while moment

is a dimensioned vector in D3. In fact, the work done by a

moment through an angle is the dot product of the moment

and a dimensionless angle vector, which is a dimensionless

vector perpendicular to the plane containing the angle. The

direction of the angle vector is determined by the right-hand

rule, and its dimensionless magnitude is given by the radian

measure of the angle.

Energy Versus Moment
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In this case,

[P] = [λv][vT]{−1} (26)

and, for all i = 1, . . . , n,

[Pi,i] = [λ]. (27)

Proof
To prove necessity, note that it follows from Fact 8 that
(24) implies (26). It thus follows from Fact 9 that det P
exists. Furthermore, it follows from (24) that, for all
i = 1, . . . , n,

[Pi,i][vi] = [λ][vi].

Thus

[Pi,i] = [λ].

Hence, for i = 1, . . . , n, j = 1, . . . , n, it follows that
[Pi,i] = [Pj, j].

To prove sufficiency, from (20) and (25) it follows that

[(z1)1(z2)1] = [(z1)2(z2)2] = · · · = [(z1)n(z2)n], (28)

where (z1)i denotes the ith component of z1 . Thus,
λG � zT

2 z1 exists. Note that λGz1 = z1zT
2 z1 = [P]z1 . Next, let

λC ∈ C and vC ∈ Cn be such that

[P]CvC = λCvC. (29)

Then defining λ ∈ D and v ∈ Dn by λ � λCλG and
v � vC ◦ z1 it follows that

Pv = ([P]C ◦ [P])(vC ◦ [v])

= ([P]CvC) ◦ z1zT
2 z1

= (λCvC) ◦ λGz1

= λCλG(vC ◦ z1)

= λv. �

Next, let P ∈ Dn×n. Then, if det [P]C �= 0, we define the
inverse P−1 of P by

P−1 � 1
det P

PA, (30)

where the adjugate PA is defined by (PA)i, j �
(−1)i+ jdet P[ j,i] , where P[ j,i] denotes the (n − 1) × (n − 1)

cofactor of Pi,i. Hence

[P−1] = 1
[det P]

[PA] (31)

and

[P−1]C = 1
[det P]C

[PA]C. (32)

The following example shows that, for P ∈ Dn×n such
that P−1 exists, in general [P−1][P] �= [P][P−1].

Example 2
Let P ∈ Dn× be such that

[P] = [ ]m,s

[
m 1/s

ms2 s

]

and assume that P−1 exists. Then

[P−1] = [ ]m,s

[
1/m 1/ms2

s 1/s

]
,

[P][P−1] = [ ]m,s

[
1 1/s2

s2 1

]
,

and

[P−1][P] = [ ]m,s

[
1 1/ms

ms 1

]

Thus [P−1][P] �= [P][P−1].

DIMENSIONS OF MATRICES 
IN STATE-SPACE MODELS
Consider the system

ẋ(t) = Ax(t) + Bu(t), (33)

y(t) = Cx(t) + Du(t), (34)

where [t] = s, x(t) ∈ Dn, y(t) ∈ D l, u(t) ∈ Dm , A ∈ Dn×n,

B ∈ Dn×m, C ∈ D l×n , and D ∈ D l×m . Every component of
x(t), y(t), u(t) , and thus every entry of A, B, C, D , is a
dimensioned scalar. Taking units on both sides of (33) yields

[ẋ(t)] = [A][x(t)] = [B][u(t)], (35)

[y(t)] = [C][x(t)] = [D][u(t)]. (36)

The following result is given on page 150 of [6].

Fact 11

[A] = 1
s

[x(t)][xT(t)]{−1}, (37)

[B] = 1
s

[x(t)][uT(t)]{−1}, (38)

[C] = [y(t)][xT(t)]{−1}, (39)

and

[D] = [y(t)][uT(t)]{−1}. (40)
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Proof
The result follows from [ẋ(t)] = (1/s)[x(t)] and Fact 8. �

Next, define the transfer function matrix H(s) ∈ D l×m by

H(s) � C(sIs − A)−1B + D, (41)

where s ∈ D is the Laplace variable, [s] = 1/s, and
Is � IR ◦ s[A].

Fact 12

[H(s)] = [y(t)][uT(t)]{−1}. (42)

Proof
Note that

[C(sI − A)−1B] = [y(t)][xT(t)]{−1}[x(t)][xT(t)]{−1}

× [x(t)][uT(t)]{−1},
= [y(t)][uT(t)]{−1}

= [D]. �

Fact 13
For all i = 1, . . . , n,

[Ai,i] = [ ]kg,ms−1. (43)

Furthermore, det A exists and satisfies

[det A] = [ ]kg,ms−n. (44)

Proof. It follows from (37) that

[Ai,i] = 1
s

[xi(t)]
[xi(t)]

= [ ]kg,m

s
.

Next, note that

[Ai,pi] = 1
s

[xi(t)]
[xpi(t)]

.

Thus, for all p ∈ Pn,

[A1,p1 A2,p2 · · · An,pn ] = 1
sn

[x1(t)][x2(t)] · · · [xn(t)]
[xp1(t)][xp2(t)] · · · [xpn(t)]

= [ ]kg,m

sn .

Since [A1,p1 A2,p2 · · · An,pn ] is the same for all p ∈ Pn, det A
exists. Finally, since [det A] = ∏n

i=1[A1,pi] for all p ∈ Pn, it
follows that

[det A] = [A1,p1 A2,p2 · · · An,pn ] = [ ]kg,m

sn . �

Fact 14
Let t ∈ D be such that [t] = s. Then

det [At] = [ ]kg,m,s. (45)

MATRIX EXPONENTIAL

Lemma 1
Let t ∈ D be such that [t] = s. Then the following state-
ments hold:

i) For all positive integers k, Ak exists.
ii) For all k ≥ 1, [Ak] = (1/sk−1)[A].
iii) For all k ≥ 1, [Ak] = (1/s)[Ak−1].
iv) For all k ≥ 1, [Aktk] = [At].
v) [A]{−1} = (1/s2)[A].

If, in addition, A−1 exists, then
vi) [A−1] = [AT]{−1} .

vii) [A−1] = s2[A]T.

Proof
Statements i)–iv) follow from Fact 4. Next, we prove vi).
Since (A−1)i,i = det A[i,i]/det A, it follows that [(A−1)i,i] =
= det [A[i,i]]/det [A] = [A1,1] · · · [Ai−1,i−1] [Ai+1,i+1] · · ·
[An,n]/([A1,1] · · · [An,n]) = 1/[Ai,i] . Thus, the diagonal
entries of [A][A−1] satisfy

([A][A−1])i, i = [ ]kg,m,s, i = 1, . . . , n.

Therefore,

([A][A−1])i,i = [Ai,1][A−1
1,i ] + [Ai,2][A−1

2,i ]

+ · · · + [Ai,n][A−1
n,i ][An,n]

= [ ]kg,m,s,

which implies that

[(A−1)i, j] = [Aj,i]
−1. (46)

Thus, vi) is satisfied.
To prove vii), note that

([A]T)i, j = 1
s

[xj(t)]

[xi(t)]
. (47)

Next, from (46) it follows that

[(A−1)i, j] = [Aj,i]
−1 = s

[xj(t)]

[xi(t)]
. (48)

Thus from (47) and (48), it follows that

[A]T = 1
s2 [A−1]. (49)

To prove v), using vi) in (49), we have

[A]T = 1
s2 [AT]{−1}. (50)

Taking transposes yields v).                              �
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Fact 15
[A−1] = s[x(t)][xT(t)]{−1}. (51)

Furthermore,

[A−1][A] = [A][A−1]. (52)

Proof
Note that

[A−1] = [AT]{−1} = s[x(t)][xT(t)]{−1}.

Hence [ A−1][ A] = [ A][ A−1] = [ x(t)][ xT(t)]{−1}[ x(t)]
[xT(t)]{−1} . �

Fact 16
Let t ∈ D be such that [t] = s. Then

[eAt] = [At] = [x(t)][xT(t)]{−1}. (53)

EIGENVALUES AND EIGENVECTORS OF A

Fact 17
Let λ ∈ D be an eigenvalue of A, and let v ∈ Dn be an asso-
ciated eigenvector. Then, for all i = 1, . . . , n,

[λ] = [Ai,i] (54)

and

[v] = [xT(t)]{−1}[v][x(t)]. (55)

Proof
Since Av = λv , it follows that, for all i = 1, . . . , n,

[Ai,i][vi] = [λ][vi] , and thus [λ] = [Ai,i] . Next, since
Av = λv, it follows that

1
s

[x(t)][xT(t)]{−1}[v] = 1
s

[v],

which implies (55). �

DC MOTOR EXAMPLE
Consider a dc motor with constant armature current Ia.
Defining the state vector to be x � [ if ω ]T, where if is the
field current and ω is the motor angular velocity, we have

A =
[− Rf

Lf
0

BIa
J − c

J

]
, (56)

where Rf and Lf are the field resistance and inductance,
respectively, B is the electromagnetic constant of the
motor, J is the inertia of the motor shaft and external
load, and c is the angular damping coefficient. The units
of Rf, Lf, Ia, B, J, and c are m2kg/C2s, m2kg/C2 , C/s,
kgm2/C2, kgm2, and kgm2/s, respectively.

Taking units yields

[x(t)] =
[

C/s
[ ]m/s

]
. (57)

Thus

[A] = 1
s

[x(t)][xT(t)]{−1} =
[

[ ]C/s [ ]mC/s
[ ]m/Cs [ ]m/s

]
, (58)

where [ ]C denotes the Coulombian. Hence
[det A] = [ ]m,C/s2. Furthermore,

[det A]C = det [A]R =
[

cRf

Lf J

]
R

. (59)

Thus,

det A =
[

cRf

JLf

]
R

[ ]m,C

s2 . (60)

Next, if [cRf]R �= 0 then det [A]R �= 0 and [A−1] is given by

[A−1] =
[

[ ]Cs [ ]mCs
[ ]ms/C [ ]ms

]
. (61)

Finally,

[eAt] =
[

[ ]C,s [ ]m,sC
[ ]m,s/C [ ]m,s

]
. (62)

SPRING-DAMPER SYSTEM EXAMPLE
Consider the spring-mass system shown in Figure 1. By
defining the state x(t) � [ q1 q̇1 q2 q̇2 ]T , where qi and
q̇i are the displacement and velocity of the ith mass, respec-
tively, we have

A �

⎡
⎢⎢⎣

0 1 0 0
− (k1+k2)

m1
− (c1+c2)

m1

k2
m1

c2
m1

0 0 0 1
k1
m2

c1
m2

− k2
m2

− c2
m2

⎤
⎥⎥⎦ . (63)

Taking units yields

[x(t)] =

⎡
⎢⎢⎣

m
m/s
m

m/s

⎤
⎥⎥⎦ . (64)

FIGURE 1  Two-mass spring-damper system.

k2

m1 m2

c1

k1

c2
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Thus,

[A] = 1
s

[x(t)][xT(t)]{−1}

= [ ]m

⎡
⎢⎢⎣

1/s 1 1/s 1
1/s2 1/s 1/s2 1/s
1/s 1 1/s 1
1/s2 1/s 1/s2 1/s

⎤
⎥⎥⎦ . (65)

Hence [det A] = [ ]m/s4. Furthermore,

[det A]C = det [A]R =
[

k2

m1m2

]
R

. (66)

Thus,

det A =
[

k2

m1m2

]
R

[ ]m

s4 . (67)

Next, if [k2]R �= 0 then det [A]R �= 0 and [A−1] is given by

[A−1] = [ ]m

⎡
⎢⎢⎣

s s2 s s2

1 s 1 s
s s2 s s2

1 s 1 s

⎤
⎥⎥⎦ . (68)

Finally,

[eAt] = [ ]m

⎡
⎢⎢⎣

[ ]s s [ ]s s
1/s [ ]s 1/s [ ]s

[ ]s s [ ]s s
1/s [ ]s 1/s [ ]s

⎤
⎥⎥⎦ . (69)

CONCLUSIONS
Physical dimensions are the link between mathematical
models and the real world. In this article we extended
results of [6] by determining the dimensional structure
of a matrix under which standard operations involving
the inverse, powers, exponential, and eigenvalues are
valid. These results were applied to state space models.
We also distinguished between different types of
dimensionless units, namely, the massian, lengthian,
timian, densian, flowian, velocian, and forcian. These
dimensionless units arise naturally from the structure
of the groups of units, and appear throughout science
and engineering.
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