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Kalman filtering with constrained output injection
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tDepartment of Aerospace Engineering, University of Michigan, Arun Arbor, USA
TESAT-SCD (SISTA), Katholieke Univeriteit Leuven, Leuven, Belgium

(Received 1 May 2006; in final form 29 March 2007)

In applications involving large scale systems such as discretized partial differential equations,
it is often of interest to use data to estimate state variables associated with a subregion of the
spatial domain. In this paper we derive an extension of the classical Kalman filter in which
data injection is confined to a subspace of the system states.

1. Introduction

The classical Kalman filter provides optimal
least-squares estimates of all of the states of a linear
time-varying system under process and measurement
noise. In many applications, however, optimal estimates
are desired for a specified subset of the system states,
rather than all of the system states. For example, for
systems arising from discretized partial differential
equations, the chosen subset of states can represent a
subregion of the spatial domain. However, it is well
known that the optimal state estimator for a subset of
system states coincides with the classical Kalman filter
(Gelb 1974, pp. 104-109).

For applications involving high-order systems, it is
often difficult to implement the classical Kalman filter,
and thus it is of interest to consider computationally
simpler filters that yield suboptimal estimates of a
specified subset of states. One approach to this problem
is to consider reduced-order Kalman filters. These
reduced-complexity filters provide state estimates that
are suboptimal relative to the classical Kalman filter
(Bernstein and Hyland 1985, Hippe and Wurmthaler
1990, Haddad and Bernstein 1990, Hsieh 2003).
Alternative variants of the classical Kalman filter have
been developed for computationally demanding
applications such as weather forecasting (Farrell and
Toannou 2001, Heemink ef al. 2001, Ballabrera et al.
2001, Fieguth et al. 2003), where the classical Kalman
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filter gain and covariance are modified so as to reduce
the computational requirements.

The present paper is motivated by computationally
demanding applications such as those discussed in
Farrell and Ioannou (2001), Heemink ez al. (2001),
Ballabrera et al. (2001) and Fieguth ez al. (2003). For
such applications, a high-order simulation model is
assumed to be available, but the derivation of
a reduced-order filter in the sense of Bernstein and
Hyland (1985), Hippe and Wurmthaler (1990),
Haddad and Bernstein (1990), Hsieh (2003) is not
feasible due to the high dimensionality of the analytic
model. Instead, we use a full-order state estimator
based directly on the simulation model. However,
rather than implementing the classical Kalman filter,
we derive an optimal spatially localized Kalman filter
in which the structure of the filter gain is constrained
to reflect the desire to estimate a specified subset of
states. Our development is also more general than the
classical treatment since the state dimension can be
time varying, which is useful for variable-resolution
discretizations of partial differential equations.
Some of the results in this paper appeared in
Barerro et al. (2005).

The use of a spatially localized Kalman filter in place
of the classical Kalman filter is also motivated by com-
putational architecture constraints arising from a multi-
processor implementation of the Kalman filter (Lawrie
et al. 1992) in which the Kalman filter operations can
be confined to the subset of processors associated with
the states whose estimates are desired.
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2. Spatially localized Kalman filter
We consider the discrete-time dynamical system
Xier1 = Arxp + Brug +wi, k=0, (1)
with output
Vi = CixXi + i, (2)

where x,eR™, u,eR™, y,eR* and Ay,Bi,C) are
known real matrices of appropriate size. The input uy
and output y, are assumed to be measured, and
wreR™ and v, eR* are zero-mean white noise
processes with variances and correlation

S[Wkwl-T] = Oibijs E[Wk\{iT] = S8,

e[l |z = Resy (3)

where §;; is the Kronecker delta, and &[-] denotes
expected value. We assume that Ry is positive definite.
The initial state x, is assumed to be uncorrelated with
wi and v,. Note that the dimension 7, of the state x;
can be time varying, and thus A;eR"™'*" is not
necessarily square.

For the system (1) and (2), we consider a state
estimator of the form

X1 = AxXk + Brug + T Kil(ye — J), k=0, (4)
with output
Ve = CrXi, ®)

where £, eR™, preRr, I eR™ P and K; e Rk,
The non-traditional feature of (4) is the presence of
the term Iy, which, in the classical case is the identity
matrix. Here, I'; constrains the state estimator so that
only estimator states in the range of I’y are directly
affected by the gain K. For example, I'; can have the
form

Fk = Ip/( ) (6)

where 7. denotes the r x r identity matrix. We assume
that I’y has full column rank for all k£ > 0.
Next, define the state-estimation error state e by

ex 2 X — Xy, (7

which satisfies
eer1 = Arex + 0, k=0, (®)
where
A2 Ay — Th K G, W 2wy — TiKve. (9)
Furthermore, we define the state-estimation error
Ji(Ki) 2 E[(Liers1)" Liers ], (10)

where L, eR%>*"+1  determines the weighted error
components. Then,

Ji(Ki) = tr[Pry1 Mi], (11)
where the error covariance P; € R™*" is defined by
Py ég[ekeZ] (]2)

and My2L[LieR"™ "+ We assume that M is
positive definite for all k>0. The following lemma
will be useful.

Lemma 1: The error (7) satisfies
Elexivi] = 0. (13)
It thus follows from (8) and (13) that
Elexsrer ] = AxElexel JAL + E[Fvl].  (14)
Note that (3) and (9) imply that
E[wiy] = O, (15)
where
0201 — I K, SE — Sk KT + T K R KT, (16)
It thus follows from (12), (14) and (15) that P, satisfies
Pri1 = A PeA] 4 Ox. (17)
Therefore,

K = u[ (APl + 0oMe]. (19)
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It follows from (9) and (16) that J.(K;) can be
expressed as

Ji(Kk)
= tf[((/lk — [ K Co)Pr(A — Tk K Cr)' + Qk)Mlc} (19)

3. Removing the noise correlation

In the classical case where n,=n and I', = I, for all
k>0, the correlation Sy can be removed by introducing
a linear combination of the measurements as
deterministic inputs to the plant (Lewis 1986, pp.
181-183]. For the case I'; # I,, we now state a condition
under which we can derive an equivalent system with
uncorrelated process and sensor noise.

Proposition 1: Let k>0 and suppose there exists
H; e R sych that

T Hi Ry = Sk. (20)

Then
Ji(Ky) = Ji(Ky), (21)

where

-7lc(Ek)étr|:((Zk — 'Kk Cr)Pe(Ar — Tk K Co)'

— — =T
+ 0, + K RK, FZ)M/(], (22)

Ki 2Ky — Hy, A2 Ay — I'eHi Gy, (23)
and
0,20k — T H S} — Sk HL T} + T H R HETE.  (24)

Proof: It follows from (24) that (18) can be
expressed as

Ji(Ki) = trl:((zk — WKk Cr) Pr(Ay — T K Cp)'
+Qk + FEJ(R/(?/{FZ — Fk?kSZ — Sk?ZFZ
+ I KR HTTT + rkaR,Izr,f) Mk].

Using (20) yields (22). ]

Note that replacing Ay, O, and Kj in (18) by A,
0, and Ky, respectively, and setting S;=0 in (18)
yields (22). Hence, Ji(K}) is the cost of a system with

uncorrelated process and sensor noise. It follows from
(21) that Ji(K;) can be minimized with respect to Ky,
and K, can be determined by using (23). If Iy is
square and thus invertible by assumption, then
Hy =T;'SyR;'. In general, however, there may not
exist a matrix H, satisfying (20).

4 One-step spatially constrained Kalman filter

In this section we derive a one-step spatially constrained
Kalman filter that minimizes the state-estimation
error (18). For convenience, we define

St 2 AP CL + S, Re2 R+ CiPCL, (25)
and 7y € R+ by
A T —1 T
yrk—F/‘.(FkMka) F,(Mk. (26)

Note that m; is an oblique projector, that is, n,zc = 1y,
but is not necessarily symmetric. Next, define the
complementary oblique projector m;; by

ﬁkléln — ). (27)

k+1
Proposition 2: The gain K, that minimizes the cost
Ji(Ky) in (18) is given by

—1 Ao~
Ki = (TEMiI'e) TEMiSiR; ! (28)
where the error covariance Py is updated using

T S p—1G&T_T
Py :AkPkAk +7TkLSkRk Sk”kL

+ 0k —SiR; 'S (29)

Proof: Setting Jj(K;)=0 and wusing the fact
that I'f My Ty is positive definite for all k>0 yields
(28). It follows from Bernstein (2005, p. 286) that,
for all O0O<a<1, all distinct Ay, A4,eR™",
and positive-definite Be R, trla(l — a)(4; — A2)x
B(A; — A5)"] > 0. Hence, the mapping A4 — tr(4BAT)
is strictly convex. It thus follows that Ji(Kj) is strictly
convex, and hence K in (29) is the unique global
minimizer of J(Kj). To update the error covariance,
we first note that

I Ky = SR, (30)

where 7, is defined by (26). Now, using (30) with (17)
yields (29). O
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If either M, =1,
orthogonal projector

., or Ly =T}, then m; is the

me =TT~ T, (31)
and it follows from (28) that
“1.Ta A
Ki = (I{Tx)” TESkRL. (32)
Alternatively, specializing to the case in which I’y is

square yields my =1, and m, =0, as well as the
standard Riccati update equation

Pipr = AcPedi + Qi — (AkPeCr + Si)
x (R + CiPC ™ (CePrAf + SP. - (33)
In this case the Kalman filter gain is given by
Ki = (A PeCL+ SR+ CePCH™H (34)
and the estimator equation is
Xkt = ArXi + Brug + Ki( i — Ii). (35)
Furthermore, the one-step filter provides optimal
estimates of all of the states, that is, the filter does not
depend on the state-estimate error weighting L.
Next, we show that increasing the number of
estimator states that are directly injected with the

output improves the filter performance. Define 77, and
L by

~ ~ ~ \—1 A
ﬁkérk<r,{Mkrk) IT™M, A 217 (36)
where I + has full column rank. Next, let IAQ{ be the

optimal gain given by (28) with I, replaced by I,
that is,

R A N —1 . PN
Ra (r{Mkrk) FTM SR (37)

and let P;,; be the corresponding error covariance
when K}, is used, that is,

) T ~ & p—1oTAT
Prpr = ArPrA; +mi SkR. Sy

+ 0 — SRS (38)

Proposition 3:  Assume that M, =1, let fk =[I'x Ggl,
and assume 'y has full column rank. Then

tr(Py + 1) <tr(Pr + 1). (39)

Proof: Noting that 7, and 7, are symmetric, it follows
from (36) that

. 1
iy =k + ML G (G  Gr)— Gl (40)
Therefore,
. 1
Tl = 7l + e Gr(Grime G) - Gl (41)

Hence, subtracting (35) from (29) yields

tr(Pryy — ]'A)/\,Jrl) = tr((md_ - J%M)S/(IQ,TSZ) >0. O

5. Two-step spatially constrained Kalman filter

In this section, we consider a two-step state estimator.
The data assimilation step is given by

Wit = T Ky k(e — vp), k=0, (42)
and
Xl =X+ K (e — Y, k>0, (43)

where w,‘iae[R”k is the data assimilation estimate of wy,
x§1eR"™ is the data assimilation estimate of xy,
and xi eR™ is the forecast estimate of x;. The forecast
step or physics update is given by

x,iH = Akxf,a + Biuy + w,‘ia, k=0, (44)

W=t (45)

Here, Y, is analogous to I, in ensuring that only
components of the process noise estimate in the range
of Y are directly affected by the gain K, ;. We assume
that Y has full column rank for all £ > 0. In traditional
notation, x,‘ia is denoted by Xk to indicate that Xy is the
estimate of x; obtained by using the measurements
Y0, -+ - » Vi, While x,{, is denoted by Xyi—; to indicate
that Xyx—; is the estimate of x, obtained by using the
measurements )y, ..., x—i. The notation x,f( and x,‘(la is
motivated by the data assimilation literature
(Scherliess et al. 2004).
Define the forecast state error e by

e,{, L xp — x,f( (46)
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and the forecast error covariance P by
Pieele(e)' ] (47)
It follows from (1) and (44) that
e = Axelt +wi —wal, k>0, (48)
where the data assimilation error state ¢{? is defined by
e Ay — Xl (49)

Lemma 2: The forecast error ei satisfies
Elejw] = 0. (30)
Elepvi] =0. (51)
Now, define the process noise estimation error
an T .
Jw,k(Kw,/c) é‘S‘I:(I—Ik (Wk - ng)) H/c (Wk - ng)]a (52)
where Hj eR%>"+1  determines the weighted error
components. For convenience, define
-1
Ni2 Hy Hi, 2 0o (YNYCR) YN,
Xkl 2L — Xk (53)

Proposition 4:  The gain K, that minimizes the cost
Jw. k(K. ) is given by

—1 _
Ky = (YENKTR) YENGSK(CePLCE+ RO)™ . (54)

Proof: Substituting (42) into (52), and using (3) and
(50) in the resulting expression yields

JWak(KWsk) = tr[(Qk - SkK:l;kT]I - TkKw,kS]z

+ kKo k(CLPLCh ROKE T )N (59)
As in the proof of Proposition 2, J,, «(K),. k) 1s strictly
convex. To obtain the optimal gain K, , we set

Ji, «(Ky.x) = 0, which yields (54), the unique global
minimizer of J,, x (K. k). U

Next, define the state-estimation error
TurKe) 28| (i) i (56)
so that
T k(K i) = tr[ P My ], (57)

where the data assimilation error covariance P4 € R"*"*
is defined by

P Lele (). (55)

It follows from (43), (45), and (49) that
e = K, el — 'Ky v, (59)

where
K 21— TI' K, Cy. (60)
Substituting (42) and (59) into (48) yields

eh 1 = (AcKy & — YKy k Cr)ek
+ wi — (AL Ky o + YKy k) vk (61)
Next, define
RLAR, + CPLCT (62)
and
£ 20 = (AePLCT + S0 (R) ™ (A PLCT +S1)"
+ A PLCT(RY) T CuPLAT
+ (AkﬂkJ_P/chZ + XkJ_Sk)(RJf()_I
x (A PLCT + i1 Sk) "
— Ay PLCT(RY) ™' CuPinf AT (63)

Proposition 5: The gain K., that minimizes the cost
Jx,k(KY,k) is given by

Kex = (ITMD) " TEMPLCR(RD) ™, (64)
where P& and P' are given by
P = P — PLCL(R}) ™ Gy
+ o PLCT(RY) T G Phaf, (65)
and
Piwy = AP AL+ Q) (66)
Proof: Using (58) and (59), P,‘;a satisfies
PPt = Kei PR — Kar€elf ]K T

— TiKo k€[ () 1T, + TiKo kR KT I, (67)

x, k

Substituting (51) into (67) and substituting the resulting
equation into (57) yields

JorKe) = te] (R PLRY 4+ TR ReKE T M
(68)
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To obtain the optimal gain K, ;, we set J; (Ko x) =0,
which yields (64). As in the proof of Proposition 2, it
can be shown that J, (K, ) is strictly convex, and
hence K, in (64) is the unique global minimizer of
Jy. k(K ). Substituting (50) and (64) into (67) yields (65).

To update the forecast error covariance, we substitute
(42) into (48) so that

ey = Ael® — YKy Crel + Wi — YKy vk
Hence,
Pl = ARPPAL + Qi+ YKok (CePLC] + R)K, YT
+ ArE[ef Wl + E[we(ef) ] 4F
— A () IR 1]
YKo kGl () 4]
— AE[ VKD Y = Tk k() ] 4L
— E[W ( ) ]CTKT ka TkKw,kaE[e,f(Wz]
- S[Mkvk]KI K YE = YK 1k E[viewy |
+ TkKw,k(CkE[ek vk]
+ E[ve(el) JCHKS 41T (69)

Substituting (59) into (69), and using (50) and (51) in the
resulting expression yields (11). O

The two-step estimator can be summarized as follows

Data assimilation step:

Wk - T/\Kw,k(yk - )//fL)» (70)
Kox = (YENT) T YINGS(RE) ™, ()
X = xf + Ko (v — ) (72)

Kex = (ITMIy) ' IEMPLCT(RE) ™, (73)

pit = P~ ALK '

+m PLCT(RY) ™ Pl (74)

Forecast step:
x,f\,+1 = Akxg"‘ + Biuy + wga, (75)
Py = AP AL + Q) (76)

Assume that I'y, and Y, are square for all k>=0.
Substituting (70) and (72) into (75) yields the familiar
one-step Kalman filter

f f
X1 = Akxk + Bruy

+ (AePLCF + Sk) (R + Ci P} Ck)_l k=P (77

Furthermore, substituting (74) into (75) yields

Py, = AP AL — (AkPL.Ci + Sk)
x (R + CPLCT)  (CLPLAT + ST) + Q1. (78)

Next, as in Proposition 3, we show that when additional
estimator states are directly injected with the output
data, the performance of the two-step filter improves.
Define K, ; by (64) with I'; replaced by I, that is,

Rox = (FTMl)  FTMPLCT(RE) ™. (79)

Furthermore, let Pﬁa be the corresponding data
assimilation error covariance when K ; is used instead
of K., that is,

~ -1
PREPL— PLCL(R)) CiePy
A -1 A
+ 7 PLCE(RY) ™ CrPLy, . (80)

Propgsition 6: Let M, =1, I r =[x Gil, and assume
that T'y has full column rank. Then

tr(P8) < tr(PE). (81)

Proof: Subtracting (80) from (65) and using the fact
from (41) that m, — 7, is positive semi-definite,
it follows that

(e = B9 = e — ) PCE(RD) ™ €] 50
U

6. Comparison of the one-step and two-step filters

When I, and Y, are square, comparing (33) with
(78) and (35) with (75) shows that the two-step filter
is equivalent to the one-step filter  with
Ki = AK, j+ Ky, Xk =xi and P = P.. When I
and Yy are not square, we obtain a sufficient condition
under which the one-step and two-step spatially
constrained Kalman filters are equivalent.

Proposition 7:  Suppose that Xy = x\ and Py = P, and,
for all k=0,

Al PLCL+ xSk = min (AePLCE+ Sk). (82)

Then the one-step filter (28), (29) and the two-step filter in
(70)+(76) are equivalent, that is, for all k >0, £ = xt
and P, = P
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Proof: Substituting (63) and (74) into (76) yields

Pi.y = APLAL + (A PLCY + XuSk)(sz()fl

x (A PLCT + 300 Sk) " — (ARPLCT + )
x (RY) ™ (APLCE +81)" + O (83)

Substituting (88) into (83) yields

PLoy = APLAT + s (AP CT + S (R

x (A PLCT + S) ') + Ok — (AkPLCT + )

x (RY) ™ (4 PLCT + 50) . (84)
Since P = Py, it follows from (25), (29), and (62) that,

for all k > 0, PL = Py.
Next, substituting (42) and (72) into (35) yields

f f
Xjg1 = Akxk + By

+ (A PLCT + xeSi) (RY) (e = 0%, (85)
Now, (62) and (88) imply that

x,iH = Ak)C,fC + Bjuy + ﬂk(AkP,f{CZ + Sk)
x (CLPLCT + Ry) ™ (3 — CixD). (86)

It follows from (4) and (28) that, for all k=0,

Xir1 = AXk + Brug + ﬂk(AkPkC;g + Sk)
x (CkPrCy + Rk)_l (v — CrXe). (87)

Since %) = xl and P! = P, for all k>0, (86) and (87)
imply that £, = x{ for all k>0. O

Note that, if I'; and Y} are square, then m;; = 0 and
xk. =0, and thus (88) is satisfied. Furthermore, if
S, =0 or ; = xi, then Proposition 7 specializes to the
following result.

Corollary 1:  Suppose that Xy = x., Py = P, and, for
all k=0, either S;.=0 or m = xi. If

A = i Ak, (88)

for all k=0, then the one-step filter (28), (29) and the

two-step filter in (70)—~(76) are equivalent, that is, for all
k>0, fck:x,{, ande:P,f(.

Next, we present a converse of Proposition 7.
Proposition 8: Assume that the one-step filter (28),

(29) and the two-step filter in (70)—(76) are equivalent,
that is, for all k=0, X = x,E and Py = Pi. Then, for

all k=0, there exists an orthogonal matrix Uy € RAx
such that

(AkﬂkJ_P£CZ + X}d_Sk) (R£)71/2 U
= 7 (A PLCT + Si)(RY) 2. (89)
Proof: Since Py = P. for all k>0, subtracting (29)
from (84) yields
JTkLSk(CkPkCE + Rk)71 5}571’12_
= (A PLCT + s Se) (RY) ™
x (A PLCT + i Si) (90)
Hence, (89) follows from (25) and Bernstein

(2005 p. 193]. O

Neither the one-step nor the two-step filter performs
consistently better than the other. However, there are
special cases when the performance of one filter is
better than the other.

Proposition 9:  Assume that C,=0 and Py, = PL. If T’y
is square and Yy is not square, then

P <PL. (91)
Alternatively, if Ty is not square and Yy is square, then
Pl <Py (92)

Proof: Assume that I'; is square and Yy is not square.
It then follows from (26), (27) and (53) that

mL =0, xxL #0.

Substituting (74) and (63) into (76), and using C, =0
and 7, = 0 yields

-1
Pl = AcPLAL + xiei Sk(CrPLCL + Ry)
-1
x SExit — Sk(CePLCE+ Re) ™ SE+ Ok (93)

Substituting C,, =0 and 7, =0 into (29) yields
-1
Pis1 = ApPrAf — Si(CkPrCL+ Ry) ™ S{+ Ok (94)

Subtracting (94) from (93) yields (91).
Alternatively, if Yy is square and [} is not
square, then

e #0, kL =0.
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Substituting (74) and (63) into (76), and using C, =0
and y;, = 0 yields

Pl = AcPLAT — Si(ChPLCT + Ry) ™' ST+ 0k, (95)
Substituting C, =0 into (29) yields

Pryy = APy A} + . Sy (CrPx Cl+Ry)™!
x ST, — Si(ChPeCT + R) ' ST+ 0k (96)

Subtracting (95) from (96) yields (92). ]
7. Comparison of the open-loop and closed-loop
covariances
Next, we consider the zero-gain filter
KXol k+1 = ArXol i + Bruk O7)
with the zero-gain state-estimation error state
Col,k 2 Xt — Xolk- (98)
It follows from (1), (97) and (98) that
Pot ki1 = AkPol kAL + Ok, %99)
where the zero-gain error covariance P, €R™ " is
defined by P« éS[eol,keIL o) First, we show that the

performance of the Kalman filter is better than the
performance of the zero-gain filter.

Proposition 10: If ;. =1,
Prey1 < Pol k1

and P < Pol i, then

k+1

Proof: Since m; =1,,,, it follows from (27) that

. = 0, and hence (29) implies that

Piy1 = A PeAL + Or — ScR;'ST. (100)
Subtracting (100) from (99) yields
Poi kst — Prs1 = Ar(Potk — Pe) A + Skﬁ;1§/c>0- O

If 7w # L,y
(99) yields

then m;; # 0, and subtracting (29) from

Porks1 — Prs1 = Ar(Pork — Pk)AAT
+§k]§,;1§z —N/CJ_S/CIQIZISEJTEL, (101)

which suggests the following negative result.

Proposition 11: I m #1,,, and Py = Py i, then
Piy1 < Po 41 is not always true.

Proof: Let k>0, np = ngy = 2, and
0 «
where 240” + 2o < 1, and

0i=0, S=0, Re=1 Li—=1I szm.

Furthermore, let P, and P, have the scalar entries

P, — Pk D12k P | Pol1,k Pol12,k
k = > Ol,k - .
P12k P2k Pol, 12,k Pol, 2,k

It follows from (29) and (99) that, if Py = Pk, then

2402 + 200 — 1) P

Pol, 1,k+1 — Pl k+1 = ( 75 1 +p2’k-

Hence, pol 1.k+1 < p1,k+1, and thus Poy g1 — Py is not
positive semidefinite. O

The following result guarantees that the performance
of the constrained filter is better than the performance of
the zero-gain filter.

Proposition 12:  If Py <Pk, then
tr(Pr1 Mi) < tr(Po 41 M). (102)
Proof: It follows from (27) and (101) that

tr((Pot k1 — Piy1) M) = tr(Ai(Povk—p, ) Af M)
+ tr(nkﬁkﬁ,jl S’EM;(
+ M SR STf
— SR ST M), (103)

Since 7} My, = Mym = mt} My, it follows that

tr((Pot, k+1 — Prg1)My)
= tr(Ax(Pork — Pi)Aj My)
+ tr (SR Sff My)
= tr(Le Ak (Pox — Px)ALL})
+tr(LemeScRy ' SEf L)
>0 -
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In fact, in the example in Proposition 11, M, =1 and

22 3\? 5| P},
tr(Pol k1) — tr(Pry1) = |:25 <a+22> +44:| 1 _ﬁ;; . =>0.

(104)

Hence, tr(Pj41) <tr(Poi x+1), and the one-step filter with
constrained output injection performs better than the
zero-gain filter. Although Proposition 12 guarantees
that the performance of the one-step filter with
constrained output injection is better than the
zero-gain filter at time k+1, it follows from
Proposition 11 that Py <Py i1 may not be true.
Hence, Proposition 12 does not guarantee that the
performance of the one-step filter with constrained
output injection is better than the zero-gain filter at
time k + 2, that is, tr(Pri2) <tr(Po k42) may not be true.
The following result gives a condition under which the
state estimates in the range of I'; are better than the
corresponding estimates from the zero-gain filter.

Proposition 13: I P < P i, then
IE My Py My T < T M Poy gyt Mi Ty (105)
Proof: Note that

T Mi(Prst — Po k1) My Ty
= I{ M A(Pi — Poy i) Af Mi Tk
— I'T My Sy R ST M Ty
— I} M SR ST orf M Ty
+ T My SRy S ) My Ty (106)

It follows from (26) that
I My = Ty M. (107)
Substituting (107) into (106) yields

I Mi(Psr — Potks1)Mi Ty
= T My A(Py — Poi i) AL M Ty
— ITM SR ST M, T <0. O

Assume that I'; has the form (6). Then, it follows from
Proposition 13 that, if M, =1, that is, all of the states are
weighted, then the state estimate in the range of I
obtained using the Kalman filter with constrained
output injection are better than the state estimates
obtained when data assimilation is not performed.
However, state estimates that are not in the range of

I't, may be worse than estimates obtained when no
data assimilation is performed.

8. Steady-state filters for linear time-invariant systems

Next, we discuss the steady-state behaviour of the
one-step spatially constrained Kalman filter for linear
time-invariant systems. For all k>0, let A,=4,
By=B, C,=C, I't =T, Ly=L, 0,=0, S;=0 and
R, = R. Assuming R is positive definite, it follows from
Proposition 2 that the optimal gain K that minimizes
Ji 1s given by

K = (I"™MI) ' I"MAPCT Ry, (108)
where
R.AcPC"+R, MAL'L. (109)
Furthermore, the covariance update is given by

Pry1 = AP AT+ 0
+ 7  APLCTR CPeA™ 7!
— AP CTR'CP AT, (110)

where
AAD(I™™MD) ' T™, 7 AT—x  (111)

If limy_, o, P; exists, then the filtering process reaches
statistical steady state. If I' is square and thus by
assumption non-singular, then y; — p; is directly
injected into all of the estimator states. In this case,
the following lemma guarantees the existence of
lim;Hoo Pk.

Lemma 3: [f I is square and (A, C) is detectable, then
P2 limy_ o P exists and is positive semidefinite. If, in
addition, (A, Q) is stabilizable, then P is positive definite
and A —TKC is asymptotically  stable, where
KAT'APCT(CPCT + R)~\.

Proof: Since I' is square, it follows from (26)
and (27) that # =17 and m; =0. Hence, it follows
from (110) that

Piy1 = AP A" — AP CT(CPCT+R) ™ CP AT + Q.
(112)

Since (A4, C) is detectable, it follows from Lewis (1986,
pp. 100-101) that, if Py is positive semidefinite, then
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P2 limy_ Py exists and satisfies the algebraic Riccati
equation

P=APA" — APCT(CPC" + R)'CPAT + Q. (113)

If (A4, C) is detectable and (A4, Q) is stabilizable, it follows
from Lewis (1986, pp. 101-103) that P is positive definite
and A — I'KC is asymptotically stable. ]

When I is not square, the existence of limy_ o P 1S
not guaranteed. In fact, we have the following negative
result when 7 # I,,.

Proposition 14:  Assume that w+#1, and A s
asymptotically stable. Then limy_ o, Py does not always
exist.

Proof: Consider the example in Proposition 11.
It follows from (110) that

1 1 D2,k
_ 1o — 1 =2 > . (114
Prk+1 = D2k <4+ 100 [8a—1)" 2] 1 +pz,k) e

Hence, if « satisfies

(@ —1)*>25 (115)
and
175
> 116
P20 S — 172 = 200 (1)

then, for all k>0, pa 441 > 2p2 k., which implies that
limy o p2.x = 00. Hence, if PyeR>? satisfies (116),
then limy_, o, P does not exist. ]

Next, we present a converse result concerning the
existence of limy_ Pr. For all MeR™", let R(M)
denote the range of M.

Proposition 15: Assume that (A,I) is stabilizable.
If P=Ilimj_o Pr exists and R(mAPC')=R(I),
then (A, I', C) is output feedback stabilizable.

Proof: Letting k — oo in (110) yields

P=APA+Q+m, APC'R'CPA "
— APC'R'cpPA", (117)

where R2 CPCT + R. We can rewrite (117) as
P=APA" +Q —TKCPA"
— APC"K'T" + TKRK'TT, (118)
where
K&(I"™MT) "' T"MAPCTR . (119)

Hence, (118) can be expressed as

P=(A—-TKC)P(A—TKC)"+Q+TKRK'TT. (120)

Next, define 4 and I by

A2 4 -TKC, TATKR'2. (121)
Since (4,T) is stabilizable and R(I') = R(rAPCT), it
follows from Bernstein (2005, pp. 510 and 551) that

(:41, I') is also stabilizable. Let 1 €C be an eigenvalue of
A. Then, there exists an eigenvector x € C" of 4 such that

XA = Ax*. (122)
Furthermore, (120) implies that
X Px=x"APATx +x*(Q+TTT)x.  (123)
Substituting (122) into (123) yields
(1= [AMHx*Px =x*(Q+TT")x. (124)
If |x] =1, then (124) implies that
X(Q+TIT")x=0 (125)
and hence
x*I'=0. (126)

It follows from (122) and (126) that A is an unstable and
uncontrollable eigenvalue of (A4, "), which contradicts
the fact that (A,T) is stabilizable. Hence, [A| < 1 and
A is asymptotically stable. Since K given by (119)
renders 4 — I'KC asymptotically stable, (A4,I,C) is
output feedback stabilizable. U

The following result provides a sufficient condition for
P, to be bounded when C is square and non-singular.

Proposition 16: Assume that C is square and
non-singular. If

sprad(m A) <1, (127)

then P is bounded.

Proof: Since C is non-singular, (110) can be
expressed as

Py = APLAT+ Q0+ 7 AP(P+C ' RCT) ' P ATHT
— AP (P +C'RCT) ' PAT. (128)
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Next, consider the Lyapunov equation

Piy = (4-TR)B(4-TK)

+ O+ TKK'TT + ARA™, (129)
where
R&(r"™mr)"'rm4 (130)
and
R2C'RCTT. (131)

Using (130), we rewrite (129) as
P = AP AT + 0 + 744 7" + ARAT. (132)

Since 7w, A4 is asymptotically stable and
O+ 7AA 7T + ARAT is  positive  semidefinite,
P = limy_. P, exists for all positive-semidefinite 130.
Subtracting (128) from (132) yields

Piyi — Py = AR(R+ P) " RAT + 7AA™ "
+ 7 AP (Py + R) " RATAT
+ 7 A(Py — Pr)A ). (133)

It follows from (133) that, if P> Py, then 15k+1 > Py
Hence, if P0<I30, then P.<P;, for all k> 0.
Furthermore, since Pj converges to P for every choice
of Py, it follows that P is bounded. O

Numerical results suggest that the following
strengthening of Proposition 15 is true.

Conjecture 1: Assume that C is square and
non-singular. If

sprad(r  A4) < 1, (134)

then limy._, o, P) exists.

Example 1: Let

A:[g g] C=1 0=0, R=1 (135

and choose

ﬁ
Il

Y1
|:“/2:|’ (136)

where vy, v, €R so that

R iomm
=5, I E
itV v 72

2 _
- 1 |: Y2 Y1Y2:| (137)

IR el R A &
Note that
L [0 5v3—3yy }
T, A= 2 172 138
B V%H%[O 371 = 51 (138)
and hence
sprad(m A) ! 13v2 — 5,7l (139)
14)=—5—= - .
B T

It follows from Conjecture 1 that, if
—(r1+73) <3 =S < i+ (140)

then limy_, o, Py exists. The shaded region in figure 1
indicates values of vy, and vy, that satisfy (140). Next,
we choose various values of 7v;,y, and numerically
evaluate P, as k — oo using (110). The values of y,, v,
for which limy_, o, Py exists, are indicated by “e” and
the values of v,,y, for which limy_,~ Pr does not exist
are indicated by ‘““x”. The numerical results are
consistent with Lemma 3.

15

Figure 1. The shaded region indicates the values of v, v,
that satisfy (140). The dots indicate the values of v,,y, for
which lim,_ ., P, exists, whereas the values of vy,,y, for

which lim,_, ., P, does not exist are indicated by “x”.
These numerical results are consistent with Conjecture 1.
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9. N-mass system example

Consider the N-mass system shown in figure 2 with stiff-
nesses ki,...,kyr; >0 and dashpots cy,...,cyr1 > 0.
Let ¢; denote the position of mass m;. Define

qé[‘h e QN]T, Médlag(mla DR ’mN)' (141)
ki+ky, —k 0 0 0 T
—ky kot+ks —kj 0 0
K2 0 —ks  ks+ky 0 ’
. 0 0 0 - —ky kn+kyi |
(142)
_Cl+62 —0C 0 - 0 0 7
—¢ ¢te3 —cz - 0 0
cal 00— e o0
| 0 0 0 © —CN CNFCNt
(143)

We assume that d masses are disturbed by unknown
force inputs weR? which are zero-mean white
noise with unit intensity, while p masses are
actuated by known force inputs ueR’. Let u and w
have entries

u=[u - up]T, N T (144)

and let B, and D,, have entries
B, = [Bu,l t Bu,p]a D, = [Dw,l o 'Dw,d]a (145)

where, for all i=1,...,p and j=1,...,d, B,; and
D, ; are defined by

| T
B, = |:le?1%01fo] >

1

T
1
D,, = [olelgowf} (146)

and 7 and f correspond to the masses on which forces
u; and w; act, respectively. The equations of motion
can be written in first-order form as

X = Ax+ Bu+ Dw, (147)

where AcRVN BeR*™™ D, e R and xeR*Y
are defined by

Aé Oy Iy Bé Oy
-M'K —-M'C] B,/
0
Dlé[ N}
D,
XE[q gy gnl’ (148)

Next, we assume that measurements of the positions
of / masses are available so that the output yeR’ can
be expressed as

V= Cposx +, (149)

my ny

N CN+1
_____ — i )

%
?g’“ Y=

my

-

Figure 2.

., —

N-mass system.

n
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where CPOSE[RIXZN has entries Let N=20, so that the (147) has order n=40 with
known inputs u€R® and unknown inputs weR®.
ngs We assume that w is zero-mean white Gaussian noise
with unit covariance, and the known inputs u€R> are
Cpos = : (150) chosen to be sinusoids. The masses on which w and u
ci act and the available measurements are given in
pos

table 1. We assume that the process noise and the
measurement sensor noise are uncorrelated and hence
S, =0. The values of the masses m,...,my), damping
coefficients ¢y,..., ¢y, and spring constants ky,...,kp;
Al 2o,y 1 0y Ol (151)  are m;=10kg for i=1,...,20, ¢;=0.8 N s/m and

k;=5 N/m for i=1,...,21. Finally, we assume that

and, forall i=1,...,N, Cl1 _eR™ is defined by

pos

where i corresponds to the index of the mass whose

position measurements are available. With the sampling Table 1. Forcing and measurement signals in the
time ¢=0.1s, we obtain the zero-order-hold N-mass system.
discrete-time model of (147) and (149) given by Signal Masses
Xi1 = Axi + Buyg + Dywy, (152) Known force input u my, ms, My
Unknown force input w my, Mys, Mg
Vi = CposXx + Vk. (153) Position measurement y My, Ny
4 T T T T T T T T T
———SNR=1dB
3 ——SNR=200dB

measurement of position of mg
)

0 50 100 150 200 250 300 350 400 450 500

- N

Measurement of position of m,,
o

-2

I I I I I I I I I
-3 0 50 100 150 200 250 300 350 400 450 500

Time in seconds

Figure 3. Noisy measurements of the positions of my and m;, with SNR = 20db and SNR = 1 dB. These measurements are used
to estimate the positions and velocities of masses my, . .., nyy.



Downloaded By: [University of Michigan] At: 13:30 12 November 2007

1876 J. Chandrasekar et al.

0.7 T T

0.6+

o o o
w & [¢)]
T T T

RMS error in estimates of position of m,
o
N
T

0.1

D= lon Fe=Aq

mmm SNR =20 dB
EEESNR =1dB

Ty = Ay Ki=0

Figure 4. Root mean square value of the error in estimating the position of m4 obtained using the two-step filter with Ty, =1Iy
(classical Kalman filter) and TI'y# Ly using two different sets of measurements, one with SNR=20dB and another with
SNR =1dB. When I'; # A, measurements are directly injected into the estimates of only the positions and velocities of masses
ms, ...,m wWhereas when 'y # A,, measurements are directly injected into estimates of only the positions and velocities of masses
My, ... ,mp>. As expected, the performance of the estimators with constrained output injection (I'y # /) is not as good as the estimator
with Ty, = I, 5. Since the zero-gain filter does not use the measurements, its performance does not depend on the value of the SNR of

the measurement.

the process noise and sensor noise are uncorrelated, that
is, S, =0 for all k>0. Next, we obtain estimates of the
position and velocity of miy,...,my using two sets of
measurements y, one with a signal to noise ratio
(SNR) of 20 dB and another with a SNR of 1 dB. The
measurements of position of mg and m;, with different
signal to noise rations are shown in figure 3.

We first choose I'y = Ly and L, = Ly, that is, the
available measurements are injected into all of the
states of the estimator, and the errors between all of
the states and the corresponding state estimates are
weighted. In this case, the one-step and two-step
Kalman filters are equivalent. The state estimates are
obtained using the two-step filter (72)—(75). The root
mean square (RMS) value of the error in the estimates
of position of m4 when measurements with a signal to
noise ratio of 20dB and 1dB, respectively, are used is
shown in figure 4. The RMS value of the errors in
position and velocity estimates of miy,...,myy are
plotted in figures 5 and 6, respectively.

Next, we obtain estimates by constraining the output
injection into only some of the states of the estimator.
First, we choose ', = A; for all k>0, where

A12[0xxs  Da Onaxs]’ (154)

so that the measurements are injected into only the
estimates of the positions and velocities of mis, ..., m.
Furthermore, we choose L, = Ly so that the errors
in all of the state estimates are weighted equally.
The RMS value of the error in the position estimate of
my obtained when I'y = A; for all k>0 is shown in
figure 4. The RMS value of the errors in position and
velocity estimates of my, ..., nyy, are shown in figures 5
and 6, respectively. Finally, we choose 'y = A, for all
k>0, where

Ay 2[05516 Is Ogxrq]” (155)
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RMS error in position estimates
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I
=Ty = oy
\\ — — Kk=0
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RMS error in position estimates
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I

2 4 6 8 T

index i

TZ 14 16 18 20

Figure 5. RMS value of the errors in the position estimates of all of the masses when measurements with (a) SNR =20 dB and (b)
SNR = 1 dB are injected into all of the state estimates (I', = I,5) and when measurements are injected into only the position and
velocity estimates of some of the masses (I'y # I,y). The performance of the zero-gain filter with K; =0 is also shown for
comparison. When measurements are injected into a larger number of the estimator states, the performance of the estimator
improves. The arrows indicate the masses whose position measurements are available. As the SNR of the measurement increases,
the difference in the performance of the filters with I', = I,y and 'y, # I, decreases.

so that only the estimates of the positions and velocities
of myg, ..., m; are directly affected by the measurements
y. Again, we choose L; = Ly for all k>0, and the
performance of the estimator with I’y = A, for all
k>0 is shown in figures 4-6.

When [y = Ly, the measurements are injected
directly into all of the states of the estimator, and
figure 4 confirms the expected fact that the performance
of the classical Kalman filter with I', = Ly is better than
the estimators with I’y # I,y. Note that the number of
states into which measurements are injected when
I'y = A, is less than the number of states that are

directly affected by measurements when I'y, = A,, and
it follows from figure 4 that reducing the number of
estimator states that are directly affected by
measurements degrades the performance of the
estimator. These observations are consistent with
Proposition 6.

Although the errors in the position and velocity
estimates of all of the masses are weighted in all three
cases I, = Ly , I'y = Ay, and 'y = A, figures 5 and 6
demonstrate that the error in the position and velocity
estimates of all of the masses is the least when
't = Ly and the measurements are directly injected
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Figure 6. RMS value of the errors in the velocity estimates from the optimal filter with I'y = Ly and I'y # Ly when
measurements with (a) SNR =20 dB and (b) SNR=1 dB are used. When I'; # I,y, the one-step and two-step filters are not
equivalent, and the results presented here are obtained using the two-step estimator. The performance of the estimators with
I';, # I,y improves when additional states of the estimator are directly injected with measurements.

into all of the estimator states. Finally, it can be seen
that when the measurements are injected into a subset
of the estimator states, then the estimates of the states
that are not directly affected by the measurements
improve. The performance of the zero-gain filter with
K;; =0 for all k>0 is also plotted in figures 4-6 for
comparison.

10. Conclusions

This paper presents an extension of the Kalman filter
that constrains data injection into only a specified
subset of state estimates rather than the entire state
estimate. This extension accounts for correlation

between the process noise and the sensor noise.
Conditions are given under which the one-step and
two-step forms of the filter are equivalent. Future
work will consider reduced-rank square root
formulations of this filter to reduce the computational
burden of propagating the covariance. More general
conditions that guarantee the existence of a
steady-state covariance for linear time-invariant
dynamics are also of interest.
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