This article was downloaded by:[University of Michigan]
On: 12 November 2007
Access Details: [subscription number 769788369]
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713393989
Kalman filtering with constrained output injection
J. Chandrasekar ${ }^{\text {a }}$; D. S. Bernstein ${ }^{\text {a }}$; O. Barrero ${ }^{\text {b }}$; B. L. R. De Moor ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Aerospace Engineering, University of Michigan, Arun Arbor, USA
${ }^{\mathrm{b}}$ ESAT-SCD (SISTA), Katholieke Univeriteit Leuven, Leuven, Belgium
First Published on: 05 September 2007
To cite this Article: Chandrasekar, J., Bernstein, D. S., Barrero, O. and De Moor, B. L. R. (2007) 'Kalman filtering with constrained output injection', International Journal of Control, 80:12, 1863-1879
To link to this article: DOI: 10.1080/00207170701373633
URL: http://dx.doi.org/10.1080/00207170701373633

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: $\underline{h t t p: / / w w w . i n f o r m a w o r l d . c o m / t e r m s-a n d-c o n d i t i o n s-o f-a c c e s s . p d f ~}$
This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Kalman filtering with constrained output injection

J. CHANDRASEKAR \dagger, D. S. BERNSTEIN* \dagger, O. BARRERO \ddagger and B. L. R. DE MOOR \ddagger
\dagger Department of Aerospace Engineering, University of Michigan, Arun Arbor, USA
\$ESAT-SCD (SISTA), Katholieke Univeriteit Leuven, Leuven, Belgium

(Received 1 May 2006; in final form 29 March 2007)

Abstract

In applications involving large scale systems such as discretized partial differential equations, it is often of interest to use data to estimate state variables associated with a subregion of the spatial domain. In this paper we derive an extension of the classical Kalman filter in which data injection is confined to a subspace of the system states.

1. Introduction

The classical Kalman filter provides optimal least-squares estimates of all of the states of a linear time-varying system under process and measurement noise. In many applications, however, optimal estimates are desired for a specified subset of the system states, rather than all of the system states. For example, for systems arising from discretized partial differential equations, the chosen subset of states can represent a subregion of the spatial domain. However, it is well known that the optimal state estimator for a subset of system states coincides with the classical Kalman filter (Gelb 1974, pp. 104-109).

For applications involving high-order systems, it is often difficult to implement the classical Kalman filter, and thus it is of interest to consider computationally simpler filters that yield suboptimal estimates of a specified subset of states. One approach to this problem is to consider reduced-order Kalman filters. These reduced-complexity filters provide state estimates that are suboptimal relative to the classical Kalman filter (Bernstein and Hyland 1985, Hippe and Wurmthaler 1990, Haddad and Bernstein 1990, Hsieh 2003). Alternative variants of the classical Kalman filter have been developed for computationally demanding applications such as weather forecasting (Farrell and Ioannou 2001, Heemink et al. 2001, Ballabrera et al. 2001, Fieguth et al. 2003), where the classical Kalman

[^0]filter gain and covariance are modified so as to reduce the computational requirements.
The present paper is motivated by computationally demanding applications such as those discussed in Farrell and Ioannou (2001), Heemink et al. (2001), Ballabrera et al. (2001) and Fieguth et al. (2003). For such applications, a high-order simulation model is assumed to be available, but the derivation of a reduced-order filter in the sense of Bernstein and Hyland (1985), Hippe and Wurmthaler (1990), Haddad and Bernstein (1990), Hsieh (2003) is not feasible due to the high dimensionality of the analytic model. Instead, we use a full-order state estimator based directly on the simulation model. However, rather than implementing the classical Kalman filter, we derive an optimal spatially localized Kalman filter in which the structure of the filter gain is constrained to reflect the desire to estimate a specified subset of states. Our development is also more general than the classical treatment since the state dimension can be time varying, which is useful for variable-resolution discretizations of partial differential equations. Some of the results in this paper appeared in Barerro et al. (2005).

The use of a spatially localized Kalman filter in place of the classical Kalman filter is also motivated by computational architecture constraints arising from a multiprocessor implementation of the Kalman filter (Lawrie et al. 1992) in which the Kalman filter operations can be confined to the subset of processors associated with the states whose estimates are desired.

2. Spatially localized Kalman filter

We consider the discrete-time dynamical system

$$
\begin{equation*}
x_{k+1}=A_{k} x_{k}+B_{k} u_{k}+w_{k}, \quad k \geqslant 0 \tag{1}
\end{equation*}
$$

with output

$$
\begin{equation*}
y_{k}=C_{k} x_{k}+v_{k}, \tag{2}
\end{equation*}
$$

where $x_{k} \in \mathbb{R}^{n_{k}}, u_{k} \in \mathbb{R}^{m_{k}}, y_{k} \in \mathbb{R}^{l_{k}}$, and A_{k}, B_{k}, C_{k} are known real matrices of appropriate size. The input u_{k} and output y_{k} are assumed to be measured, and $w_{k} \in \mathbb{R}^{n_{k+1}}$ and $v_{k} \in \mathbb{R}^{l_{k}}$ are zero-mean white noise processes with variances and correlation

$$
\begin{align*}
& \mathcal{E}\left[w_{k} w_{j}^{\mathrm{T}}\right]=Q_{k} \delta_{k j}, \quad \mathcal{E}\left[w_{k} v_{j}^{\mathrm{T}}\right]=S_{k} \delta_{k j}, \\
& \mathcal{E}\left[v_{k} v_{j}^{\mathrm{T}}\right] z=R_{k} \delta_{k j}, \tag{3}
\end{align*}
$$

where $\delta_{k j}$ is the Kronecker delta, and $\mathcal{E}[\cdot]$ denotes expected value. We assume that R_{k} is positive definite. The initial state x_{0} is assumed to be uncorrelated with w_{k} and v_{k}. Note that the dimension n_{k} of the state x_{k} can be time varying, and thus $A_{k} \in \mathbb{R}^{n_{k+1} \times n_{k}}$ is not necessarily square.

For the system (1) and (2), we consider a state estimator of the form

$$
\begin{equation*}
\hat{x}_{k+1}=A_{k} \hat{x}_{k}+B_{k} u_{k}+\Gamma_{k} K_{k}\left(y_{k}-\hat{y}_{k}\right), \quad k \geqslant 0, \tag{4}
\end{equation*}
$$

with output

$$
\begin{equation*}
\hat{y}_{k}=C_{k} \hat{x}_{k} \tag{5}
\end{equation*}
$$

where $\hat{x}_{k} \in \mathbb{R}^{n_{k}}, \hat{y}_{k} \in \mathbb{R}^{l_{k}}, \Gamma_{k} \in \mathbb{R}^{n_{k+1} \times p_{k}}$, and $K_{k} \in \mathbb{R}^{p_{k} \times l_{k}}$. The non-traditional feature of (4) is the presence of the term Γ_{k}, which, in the classical case is the identity matrix. Here, Γ_{k} constrains the state estimator so that only estimator states in the range of Γ_{k} are directly affected by the gain K_{k}. For example, Γ_{k} can have the form

$$
\Gamma_{k}=\left[\begin{array}{c}
0 \tag{6}\\
I_{p_{k}} \\
0
\end{array}\right]
$$

where I_{r} denotes the $r \times r$ identity matrix. We assume that Γ_{k} has full column rank for all $k \geq 0$.

Next, define the state-estimation error state e_{k} by

$$
\begin{equation*}
e_{k} \triangleq x_{k}-\hat{x}_{k} \tag{7}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
e_{k+1}=\tilde{A}_{k} e_{k}+\tilde{w}_{k}, \quad k \geq 0 \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{A}_{k} \triangleq A_{k}-\Gamma_{k} K_{k} C_{k}, \quad \tilde{w}_{k} \triangleq w_{k}-\Gamma_{k} K_{k} v_{k} . \tag{9}
\end{equation*}
$$

Furthermore, we define the state-estimation error

$$
\begin{equation*}
J_{k}\left(K_{k}\right) \triangleq \mathcal{E}\left[\left(L_{k} e_{k+1}\right)^{\mathrm{T}} L_{k} e_{k+1}\right] \tag{10}
\end{equation*}
$$

where $L_{k} \in \mathbb{R}^{q_{k} \times n_{k+1}}$ determines the weighted error components. Then,

$$
\begin{equation*}
J_{k}\left(K_{k}\right)=\operatorname{tr}\left[P_{k+1} M_{k}\right] \tag{11}
\end{equation*}
$$

where the error covariance $P_{k} \in \mathbb{R}^{n_{k} \times n_{k}}$ is defined by

$$
\begin{equation*}
P_{k} \triangleq \mathcal{E}\left[e_{k} e_{k}^{\mathrm{T}}\right] \tag{12}
\end{equation*}
$$

and $M_{k} \triangleq L_{k}^{\mathrm{T}} L_{k} \in \mathbb{R}^{n_{k+1} \times n_{k+1}}$. We assume that M_{k} is positive definite for all $k \geqslant 0$. The following lemma will be useful.

Lemma 1: The error (7) satisfies

$$
\begin{equation*}
\mathcal{E}\left[e_{k} \tilde{w}_{k}^{\mathrm{T}}\right]=0 \tag{13}
\end{equation*}
$$

It thus follows from (8) and (13) that

$$
\begin{equation*}
\mathcal{E}\left[e_{k+1} e_{k+1}^{\mathrm{T}}\right]=\tilde{A}_{k} \mathcal{E}\left[e_{k} e_{k}^{\mathrm{T}}\right] \tilde{A}_{k}^{\mathrm{T}}+\mathcal{E}\left[\tilde{w}_{k} \tilde{w}_{k}^{\mathrm{T}}\right] \tag{14}
\end{equation*}
$$

Note that (3) and (9) imply that

$$
\begin{equation*}
\mathcal{E}\left[\tilde{w}_{k} \tilde{w}_{k}^{\mathrm{T}}\right]=\tilde{Q}_{k} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{Q}_{k} \triangleq Q_{k}-\Gamma_{k} K_{k} S_{k}^{\mathrm{T}}-S_{k} K_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}}+\Gamma_{k} K_{k} R_{k} K_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}} . \tag{16}
\end{equation*}
$$

It thus follows from (12), (14) and (15) that P_{k} satisfies

$$
\begin{equation*}
P_{k+1}=\tilde{A}_{k} P_{k} \tilde{A}_{k}^{\mathrm{T}}+\tilde{Q}_{k} \tag{17}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
J_{k}\left(K_{k}\right)=\operatorname{tr}\left[\left(\tilde{A}_{k} P_{k} \tilde{A}_{k}^{\mathrm{T}}+\tilde{Q}_{k}\right) M_{k}\right] \tag{18}
\end{equation*}
$$

It follows from (9) and (16) that $J_{k}\left(K_{k}\right)$ can be expressed as

$$
\begin{align*}
& J_{k}\left(K_{k}\right) \\
& =\operatorname{tr}\left[\left(\left(A_{k}-\Gamma_{k} K_{k} C_{k}\right) P_{k}\left(A_{k}-\Gamma_{k} K_{k} C_{k}\right)^{\mathrm{T}}+\tilde{Q}_{k}\right) M_{k}\right] . \tag{19}
\end{align*}
$$

3. Removing the noise correlation

In the classical case where $n_{k}=n$ and $\Gamma_{k}=I_{n}$ for all $k \geqslant 0$, the correlation S_{k} can be removed by introducing a linear combination of the measurements as deterministic inputs to the plant (Lewis 1986, pp. 181-183]. For the case $\Gamma_{k} \neq I_{n}$, we now state a condition under which we can derive an equivalent system with uncorrelated process and sensor noise.

Proposition 1: Let $k \geqslant 0$ and suppose there exists $H_{k} \in \mathbb{R}^{p_{k} \times l_{k}}$ such that

$$
\begin{equation*}
\Gamma_{k} H_{k} R_{k}=S_{k} . \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
J_{k}\left(K_{k}\right)=\bar{J}_{k}\left(\bar{K}_{k}\right), \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
\bar{J}_{k}\left(\bar{K}_{k}\right) \triangleq & \operatorname{tr}\left[\left(\left(\bar{A}_{k}-\Gamma_{k} \bar{K}_{k} C_{k}\right) P_{k}\left(\bar{A}_{k}-\Gamma_{k} \bar{K}_{k} C_{k}\right)^{\mathrm{T}}\right.\right. \\
& \left.\left.+\bar{Q}_{k}+\Gamma_{k} \bar{K}_{k} R_{k} \bar{K}_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}}\right) M_{k}\right] \tag{22}
\end{align*}
$$

$$
\begin{equation*}
\bar{K}_{k} \triangleq K_{k}-H_{k}, \bar{A}_{k} \triangleq A_{k}-\Gamma_{k} H_{k} C_{k}, \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{Q}_{k} \triangleq Q_{k}-\Gamma_{k} H_{k} S_{k}^{\mathrm{T}}-S_{k} H_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}}+\Gamma_{k} H_{k} R_{k} H_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}} . \tag{24}
\end{equation*}
$$

Proof: It follows from (24) that (18) can be expressed as

$$
\begin{aligned}
J_{k}\left(\bar{K}_{k}\right)= & \operatorname{tr}\left[\left(\left(\bar{A}_{k}-\Gamma_{k} \bar{K}_{k} C_{k}\right) P_{k}\left(\bar{A}_{k}-\Gamma_{k} \bar{K}_{k} C_{k}\right)^{\mathrm{T}}\right.\right. \\
& +\bar{Q}_{k}+\Gamma \bar{K}_{k} R_{k} \bar{K}_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}}-\Gamma_{k} \bar{K}_{k} S_{k}^{\mathrm{T}}-S_{k} \bar{K}_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}} \\
& \left.\left.+\Gamma_{k} \bar{K}_{k} R_{k} H_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}}+\Gamma_{k} H_{k} R_{k} \bar{K}_{k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}}\right) M_{k}\right] .
\end{aligned}
$$

Using (20) yields (22).
Note that replacing A_{k}, Q_{k}, and K_{k} in (18) by \bar{A}_{k}, \bar{Q}_{k}, and \bar{K}_{k}, respectively, and setting $S_{k}=0$ in (18) yields (22). Hence, $\bar{J}_{k}\left(\bar{K}_{k}\right)$ is the cost of a system with
uncorrelated process and sensor noise. It follows from (21) that $\bar{J}_{k}\left(\bar{K}_{k}\right)$ can be minimized with respect to \bar{K}_{k}, and K_{k} can be determined by using (23). If Γ_{k} is square and thus invertible by assumption, then $H_{k}=\Gamma_{k}^{-1} S_{k} R_{k}^{-1}$. In general, however, there may not exist a matrix H_{k} satisfying (20).

4 One-step spatially constrained Kalman filter

In this section we derive a one-step spatially constrained Kalman filter that minimizes the state-estimation error (18). For convenience, we define

$$
\begin{equation*}
\hat{S}_{k} \triangleq A_{k} P_{k} C_{k}^{\mathrm{T}}+S_{k}, \quad \hat{R}_{k} \triangleq R_{k}+C_{k} P_{k} C_{k}^{\mathrm{T}} \tag{25}
\end{equation*}
$$

and $\pi_{k} \in \mathbb{R}^{n_{k+1} \times n_{k+1}}$ by

$$
\begin{equation*}
\pi_{k} \triangleq \Gamma_{k}\left(\Gamma_{k}^{\mathrm{T}} M_{k} \Gamma_{k}\right)^{-1} \Gamma_{k}^{\mathrm{T}} M_{k} . \tag{26}
\end{equation*}
$$

Note that π_{k} is an oblique projector, that is, $\pi_{k}^{2}=\pi_{k}$, but is not necessarily symmetric. Next, define the complementary oblique projector $\pi_{k \perp}$ by

$$
\begin{equation*}
\pi_{k \perp} \triangleq I_{n_{k+1}}-\pi_{k} \tag{27}
\end{equation*}
$$

Proposition 2: The gain K_{k} that minimizes the cost $J_{k}\left(K_{k}\right)$ in (18) is given by

$$
\begin{equation*}
K_{k}=\left(\Gamma_{k}^{\mathrm{T}} M_{k} \Gamma_{k}\right)^{-1} \Gamma_{k}^{\mathrm{T}} M_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \tag{28}
\end{equation*}
$$

where the error covariance P_{k} is updated using

$$
\begin{align*}
P_{k+1}= & A_{k} P_{k} A_{k}^{\mathrm{T}}+\pi_{k \perp} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k \perp}^{\mathrm{T}} \\
& +Q_{k}-\hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} . \tag{29}
\end{align*}
$$

Proof: Setting $J_{k}^{\prime}\left(K_{k}\right)=0$ and using the fact that $\Gamma_{k}^{\mathrm{T}} M_{k} \Gamma_{k}$ is positive definite for all $k \geqslant 0$ yields (28). It follows from Bernstein (2005, p. 286) that, for all $0<\alpha<1$, all distinct $A_{1}, A_{2} \in \mathbb{R}^{n \times m}$, and positive-definite $B \in \mathbb{R}^{m \times m}, \operatorname{tr}\left[\alpha(1-\alpha)\left(A_{1}-A_{2}\right) \times\right.$ $\left.B\left(A_{1}-A_{2}\right)^{\mathrm{T}}\right]>0$. Hence, the mapping $A \rightarrow \operatorname{tr}\left(A B A^{\mathrm{T}}\right)$ is strictly convex. It thus follows that $J_{k}\left(K_{k}\right)$ is strictly convex, and hence K_{k} in (29) is the unique global minimizer of $J_{k}\left(K_{k}\right)$. To update the error covariance, we first note that

$$
\begin{equation*}
\Gamma_{k} K_{k}=\pi_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \tag{30}
\end{equation*}
$$

where π_{k} is defined by (26). Now, using (30) with (17) yields (29).

If either $M_{k}=I_{n_{k+1}}$ or $L_{k}=\Gamma_{k}^{\mathrm{T}}$, then π_{k} is the orthogonal projector

$$
\begin{equation*}
\pi_{k}=\Gamma_{k}\left(\Gamma_{k}^{\mathrm{T}} \Gamma_{k}\right)^{-1} \Gamma_{k}^{\mathrm{T}}, \tag{31}
\end{equation*}
$$

and it follows from (28) that

$$
\begin{equation*}
K_{k}=\left(\Gamma_{k}^{\mathrm{T}} \Gamma_{k}\right)^{-1} \Gamma_{k}^{\mathrm{T}} \hat{S}_{k} \hat{R}_{k}^{-1} \tag{32}
\end{equation*}
$$

Alternatively, specializing to the case in which Γ_{k} is square yields $\pi_{k}=I_{n}$ and $\pi_{k \perp}=0$, as well as the standard Riccati update equation

$$
\begin{align*}
P_{k+1}= & A_{k} P_{k} A_{k}^{\mathrm{T}}+Q_{k}-\left(A_{k} P_{k} C_{k}^{\mathrm{T}}+S_{k}\right) \\
& \times\left(R_{k}+C_{k} P_{k} C_{k}^{\mathrm{T}}\right)^{-1}\left(C_{k} P_{k} A_{k}^{\mathrm{T}}+S_{k}^{\mathrm{T}}\right) \tag{33}
\end{align*}
$$

In this case the Kalman filter gain is given by

$$
\begin{equation*}
K_{k}=\left(A_{k} P_{k} C_{k}^{\mathrm{T}}+S_{k}\right)\left(R_{k}+C_{k} P_{k} C_{k}^{\mathrm{T}}\right)^{-1} \tag{34}
\end{equation*}
$$

and the estimator equation is

$$
\begin{equation*}
\hat{x}_{k+1}=A_{k} \hat{x}_{k}+B_{k} u_{k}+K_{k}\left(y_{k}-\hat{y}_{k}\right) . \tag{35}
\end{equation*}
$$

Furthermore, the one-step filter provides optimal estimates of all of the states, that is, the filter does not depend on the state-estimate error weighting L_{k}.

Next, we show that increasing the number of estimator states that are directly injected with the output improves the filter performance. Define $\hat{\pi}_{k}$ and $\hat{\pi}_{k \perp}$ by

$$
\begin{equation*}
\hat{\pi}_{k} \triangleq \hat{\Gamma}_{k}\left(\hat{\Gamma}_{k}^{\mathrm{T}} M_{k} \hat{\Gamma}_{k}\right)^{-1} \hat{\Gamma}_{k}^{\mathrm{T}} M_{k}, \quad \hat{\pi}_{k \perp} \triangleq I-\hat{\pi}_{k} \tag{36}
\end{equation*}
$$

where $\hat{\Gamma}_{k}$ has full column rank. Next, let \hat{K}_{k} be the optimal gain given by (28) with Γ_{k} replaced by $\hat{\Gamma}_{k}$, that is,

$$
\begin{equation*}
\hat{K} \triangleq\left(\hat{\Gamma}_{k}^{\mathrm{T}} M_{k} \hat{\Gamma}_{k}\right)^{-1} \hat{\Gamma}_{k}^{\mathrm{T}} M_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \tag{37}
\end{equation*}
$$

and let \hat{P}_{k+1} be the corresponding error covariance when \hat{K}_{k} is used, that is,

$$
\begin{align*}
\hat{P}_{k+1}= & A_{k} P_{k} A_{k}^{\mathrm{T}}+\hat{\pi}_{k \perp} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \hat{\pi}_{k \perp}^{\mathrm{T}} \\
& +Q_{k}-\hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} . \tag{38}
\end{align*}
$$

Proposition 3: Assume that $M_{k}=I$, let $\hat{\Gamma}_{k}=\left[\begin{array}{ll}\Gamma_{k} & G_{k}\end{array}\right]$, and assume $\hat{\Gamma}_{k}$ has full column rank. Then

$$
\begin{equation*}
\operatorname{tr}\left(\hat{P}_{k}+1\right) \leqslant \operatorname{tr}\left(P_{k}+1\right) \tag{39}
\end{equation*}
$$

Proof: Noting that π_{k} and $\hat{\pi}_{k}$ are symmetric, it follows from (36) that

$$
\begin{equation*}
\hat{\pi}_{k}=\pi_{k}+\pi_{k \perp} G_{k}\left(G_{k}^{\mathrm{T}} \pi_{k \perp} G_{k}\right)^{-1} G_{k}^{\mathrm{T}} \pi_{k \perp} . \tag{40}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\pi_{k \perp}=\hat{\pi}_{k \perp}+\pi_{k \perp} G_{k}\left(G_{k}^{\mathrm{T}} \pi_{k \perp} G_{k}\right)^{-1} G_{k}^{\mathrm{T}} \pi_{k \perp} . \tag{41}
\end{equation*}
$$

Hence, subtracting (35) from (29) yields

$$
\operatorname{tr}\left(P_{k+1}-\hat{P}_{k+1}\right)=\operatorname{tr}\left(\left(\pi_{k \perp}-\hat{\pi}_{k \perp}\right) \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}}\right) \geqslant 0
$$

5. Two-step spatially constrained Kalman filter

In this section, we consider a two-step state estimator. The data assimilation step is given by

$$
\begin{equation*}
w_{k}^{\mathrm{da}}=\Upsilon_{k} K_{w, k}\left(y_{k}-y_{k}^{\mathrm{f}}\right), \quad k \geqslant 0 \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{k}^{\mathrm{da}}=\mathrm{x}_{k}^{\mathrm{f}}+\Gamma_{k} K_{x, k}\left(y_{k}-\mathrm{y}_{k}^{\mathrm{f}}\right), \quad k \geqslant 0 \tag{43}
\end{equation*}
$$

where $w_{k}^{\mathrm{da}} \in \mathbb{R}^{n_{k}}$ is the data assimilation estimate of w_{k}, $x_{k}^{\mathrm{da}} \in \mathbb{R}^{n_{k}}$ is the data assimilation estimate of x_{k}, and $x_{k}^{\mathrm{f}} \in \mathbb{R}^{n_{k}}$ is the forecast estimate of x_{k}. The forecast step or physics update is given by

$$
\begin{gather*}
x_{k+1}^{\mathrm{f}}=A_{k} x_{k}^{\mathrm{da}}+B_{k} u_{k}+w_{k}^{\mathrm{da}}, \quad k \geqslant 0 \tag{44}\\
y_{k}^{\mathrm{f}}=C_{k} x_{k}^{\mathrm{f}} \tag{45}
\end{gather*}
$$

Here, Υ_{k} is analogous to Γ_{k} in ensuring that only components of the process noise estimate in the range of Υ_{k} are directly affected by the gain $K_{w, k}$. We assume that Υ_{k} has full column rank for all $k \geq 0$. In traditional notation, x_{k}^{da} is denoted by $\hat{x}_{k \mid k}$ to indicate that $\hat{x}_{k \mid k}$ is the estimate of x_{k} obtained by using the measurements y_{0}, \ldots, y_{k}, while x_{k}^{f} is denoted by $\hat{x}_{k \mid k-1}$ to indicate that $\hat{x}_{k \mid k-1}$ is the estimate of x_{k} obtained by using the measurements y_{0}, \ldots, y_{k-1}. The notation x_{k}^{f} and x_{k}^{da} is motivated by the data assimilation literature (Scherliess et al. 2004).

Define the forecast state error e_{k}^{f} by

$$
\begin{equation*}
e_{k}^{\mathrm{f}} \triangleq x_{k}-x_{k}^{\mathrm{f}} \tag{46}
\end{equation*}
$$

and the forecast error covariance P_{k}^{f} by

$$
\begin{equation*}
P_{k}^{\mathrm{f}} \triangleq \mathcal{E}\left[e_{k}^{\mathrm{f}}\left(e_{k}^{\mathrm{f}}\right)^{\mathrm{T}}\right] . \tag{47}
\end{equation*}
$$

It follows from (1) and (44) that

$$
\begin{equation*}
e_{k+1}^{\mathrm{f}}=A_{k} e_{k}^{\mathrm{da}}+w_{k}-w a_{k}^{\mathrm{da}}, \quad k \geq 0, \tag{48}
\end{equation*}
$$

where the data assimilation error state e_{k}^{da} is defined by

$$
\begin{equation*}
e_{k}^{\mathrm{da}} \triangleq x_{k}-x_{k}^{\mathrm{da}} . \tag{49}
\end{equation*}
$$

Lemma 2: The forecast error e_{k}^{f} satisfies

$$
\begin{align*}
& \mathcal{E}\left[e_{k}^{\mathrm{f}} w_{k}^{\mathrm{T}}\right]=0, \tag{50}\\
& \mathcal{E}\left[e_{k}^{\mathrm{f}} v_{k}^{\mathrm{T}}\right]=0 . \tag{51}
\end{align*}
$$

Now, define the process noise estimation error

$$
\begin{equation*}
J_{w, k}\left(K_{w, k}\right) \triangleq \mathcal{E}\left[\left(H_{k}\left(w_{k}-w_{k}^{\mathrm{da}}\right)\right)^{\mathrm{T}} H_{k}\left(w_{k}-w_{k}^{\mathrm{da}}\right)\right], \tag{52}
\end{equation*}
$$

where $H_{k} \in \mathbb{R}^{d_{k} \times n_{k+1}}$ determines the weighted error components. For convenience, define

$$
\begin{align*}
& N_{k} \triangleq H_{k}^{\mathrm{T}} H_{k}, \quad \chi_{k} \triangleq \Upsilon_{k}\left(\Upsilon_{k}^{\mathrm{T}} N_{k} \Upsilon_{k}\right)^{-1} \Upsilon_{k}^{\mathrm{T}} N_{k}, \\
& \chi_{k \perp} \triangleq I_{n_{k+1}}-\chi_{k} . \tag{53}
\end{align*}
$$

Proposition 4: The gain $K_{w, k}$ that minimizes the cost $J_{w, k}\left(K_{w, k}\right)$ is given by

$$
\begin{equation*}
K_{w, k}=\left(\Upsilon_{k}^{\mathrm{T}} N_{k} \Upsilon_{k}\right)^{-1} \Upsilon_{k}^{\mathrm{T}} N_{k} S_{k}\left(C_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1} . \tag{54}
\end{equation*}
$$

Proof: Substituting (42) into (52), and using (3) and (50) in the resulting expression yields

$$
\begin{align*}
J_{w}, k\left(K_{w}, k\right)= & \operatorname{tr}\left[\left(Q_{k}-S_{k} K_{w, k}^{\mathrm{T}} \Upsilon_{k}^{\mathrm{T}}-\Upsilon_{k} K_{w, k} S_{k}^{\mathrm{T}}\right.\right. \\
& \left.\left.+\Upsilon_{k} K_{w, k}\left(C_{k} P_{k}^{\mathrm{f}} C_{k}+R_{k}\right) K_{w, k}^{\mathrm{T}} \Upsilon_{k}^{\mathrm{T}}\right) N_{k}\right] . \tag{55}
\end{align*}
$$

As in the proof of Proposition 2, $J_{w, k}\left(K_{w, k}\right)$ is strictly convex. To obtain the optimal gain $K_{w, k}$, we set $J_{w, k}^{\prime}\left(K_{w, k}\right)=0$, which yields (54), the unique global minimizer of $J_{w, k}\left(K_{w, k}\right)$.

Next, define the state-estimation error

$$
\begin{equation*}
J_{x, k}\left(K_{x, k}\right) \triangleq \mathcal{E}\left[\left(L_{k} e_{k}^{\mathrm{da}}\right)^{\mathrm{T}} L_{k} e_{k}^{\mathrm{d} a}\right] \tag{56}
\end{equation*}
$$

so that

$$
\begin{equation*}
J_{x, k}\left(K_{x, k}\right)=\operatorname{tr}\left[P_{k}^{\mathrm{da}} M_{k}\right], \tag{57}
\end{equation*}
$$

where the data assimilation error covariance $P_{d}^{\mathrm{da}} \in \mathbb{R}^{n_{k} \times n_{k}}$ is defined by

$$
\begin{equation*}
P_{k}^{\mathrm{da}} \triangleq \mathcal{E}\left[e_{k}^{\mathrm{da}}\left(e_{k}^{\mathrm{da}}\right)^{\mathrm{T}}\right] . \tag{58}
\end{equation*}
$$

It follows from (43), (45), and (49) that

$$
\begin{equation*}
e_{k}^{\mathrm{da}}=\tilde{K}_{x, k} e_{k}^{\mathrm{f}}-\Gamma_{k} K_{x, k} v_{k}, \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{K}_{x, k} \triangleq I-\Gamma_{k} K_{x, k} C_{k} . \tag{60}
\end{equation*}
$$

Substituting (42) and (59) into (48) yields

$$
\begin{align*}
e_{k+1}^{\mathrm{f}}= & \left(A_{k} \tilde{K}_{x, k}-\Upsilon_{k} K_{w, k} C_{k}\right) e_{k}^{\mathrm{f}} \\
& +w_{k}-\left(A_{k} \Gamma_{k} K_{x, k}+\Upsilon_{k} K_{w, k}\right) v_{k} . \tag{61}
\end{align*}
$$

Next, define

$$
\begin{equation*}
R_{k}^{\mathrm{f}} \triangleq R_{k}+C_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}} \tag{62}
\end{equation*}
$$

and

$$
\begin{align*}
Q_{k}^{\mathrm{f}} \triangleq & Q_{k}-\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right)\left(R_{k}^{\mathrm{f}}\right)^{-1}\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right)^{\mathrm{T}} \\
& +A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} \mathrm{P}_{k}^{\mathrm{f}} A_{k}^{\mathrm{T}} \\
& +\left(A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}\right)\left(R_{k}^{\mathrm{f}}\right)^{-1} \\
& \times\left(A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}\right)^{\mathrm{T}} \\
& -A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} P_{k}^{\mathrm{f}} \pi_{k \perp}^{\mathrm{T}} A_{k}^{\mathrm{T}} . \tag{63}
\end{align*}
$$

Proposition 5: The gain $K_{x, k}$ that minimizes the cost $J_{x, k}\left(K_{x, k}\right)$ is given by

$$
\begin{equation*}
K_{x, k}=\left(\Gamma_{k}^{\mathrm{T}} M_{k} \Gamma_{k}\right)^{-1} \Gamma_{k}^{\mathrm{T}} M_{k} \mathrm{P}_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{f}\right)^{-1}, \tag{64}
\end{equation*}
$$

where P_{k}^{da} and P_{k}^{f} are given by

$$
\begin{align*}
P_{k}^{\mathrm{da}}= & P_{k}^{\mathrm{f}}-P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} P_{k}^{\mathrm{f}} \\
& +\pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} P_{k}^{\mathrm{f}} \pi_{k \perp}^{\mathrm{T}} \tag{65}
\end{align*}
$$

and

$$
\begin{equation*}
P_{k+1}^{\mathrm{f}}=A_{k} P_{k}^{\mathrm{da}} A_{k}^{\mathrm{T}}+Q_{k}^{\mathrm{f}} . \tag{66}
\end{equation*}
$$

Proof: Using (58) and (59), $P_{k}^{\text {da }}$ satisfies

$$
\begin{align*}
\mathrm{P}_{k}^{\mathrm{da}}= & \tilde{K}_{x, k} P_{k}^{\mathrm{f}} \tilde{K}_{x, k}^{\mathrm{T}}-\tilde{K}_{x, k} \mathcal{E}\left[\mathrm{e}_{k}^{\mathrm{f}} \mathrm{~V}_{k}^{\mathrm{T}}\right] K_{x, k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}} \\
& -\Gamma_{k} K_{x, k} \mathcal{E}\left[v_{k}\left(\mathrm{e}_{k}^{\mathrm{f}}\right)^{\mathrm{T}}\right] \tilde{K}_{x, k}^{\mathrm{T}}+\Gamma_{k} K_{x, k} R_{k} K_{x, k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}} . \tag{67}
\end{align*}
$$

Substituting (51) into (67) and substituting the resulting equation into (57) yields

$$
\begin{equation*}
J_{x, k}\left(K_{x, k}\right)=\operatorname{tr}\left[\left(\tilde{K}_{x, k} P_{k}^{\mathrm{f}} \tilde{K}_{x, k}^{\mathrm{T}}+\Gamma_{k} K_{x, k} R_{k} K_{x, k}^{\mathrm{T}} \Gamma_{k}^{\mathrm{T}}\right) M_{k}\right] . \tag{68}
\end{equation*}
$$

To obtain the optimal gain $K_{x, k}$, we set $J_{x, k}^{\prime}\left(K_{x, k}\right)=0$, which yields (64). As in the proof of Proposition 2, it can be shown that $J_{x, k}\left(K_{x, k}\right)$ is strictly convex, and hence $K_{x, k}$ in (64) is the unique global minimizer of $J_{x, k}\left(K_{x, k}\right)$. Substituting (50) and (64) into (67) yields (65).

To update the forecast error covariance, we substitute (42) into (48) so that

$$
e_{k+1}^{\mathrm{f}}=A_{k} e_{k}^{\mathrm{da}}-\Upsilon_{k} K_{w, k} C_{k} \mathrm{e}_{k}^{\mathrm{f}}+w_{k}-\Upsilon_{k} K_{w, k} v_{k} .
$$

Hence,

$$
\begin{align*}
P_{k+1}^{\mathrm{f}}= & A_{k} P_{k}^{\mathrm{da}} A_{k}^{\mathrm{T}}+Q_{k}+\Upsilon_{k} K_{w, k}\left(C_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+R_{k}\right) K_{w, k}^{\mathrm{T}} \Upsilon_{k}^{\mathrm{T}} \\
& +A_{k} \mathcal{E}\left[e_{k}^{\mathrm{da}} w_{k}^{\mathrm{T}}\right]+\mathcal{E}\left[w_{k}\left(e_{k}^{\mathrm{da}}\right)^{\mathrm{T}}\right] A_{k}^{\mathrm{T}} \\
& -A_{k} \mathcal{E}\left[e_{k}^{\mathrm{da}}\left(e_{k}^{\mathrm{f}}\right)^{\mathrm{T}}\right] C_{k}^{\mathrm{T}} K_{w, k}^{\mathrm{T}} \Upsilon_{k}^{\mathrm{T}} \\
& -\Upsilon_{k} K_{w, k} C_{k} \mathcal{E}\left[e_{k}^{\mathrm{f}}\left(e_{k}^{\mathrm{da}}\right)^{\mathrm{T}}\right] A_{k}^{\mathrm{T}} \\
& -A_{k} \mathcal{E}\left[e_{k}^{\mathrm{da}} v_{k}^{\mathrm{T}}\right] K_{w, k}^{\mathrm{T}} \Upsilon_{k}^{\mathrm{T}}-\Upsilon_{k} K_{w, k} \mathcal{E}\left[v_{k}\left(e_{k}^{\mathrm{da}}\right)^{\mathrm{T}}\right] A_{k}^{\mathrm{T}} \\
& -\mathcal{E}\left[w_{k}\left(e_{k}^{\mathrm{f}}\right)^{\mathrm{T}}\right] C_{k}^{\mathrm{T}} K_{w, k}^{\mathrm{T}} \Upsilon_{k}^{\mathrm{T}}-\Upsilon_{k} K_{w, k} C_{k} \mathcal{E}\left[e_{k}^{\mathrm{f}} w_{k}^{\mathrm{T}}\right] \\
& -\mathcal{E}\left[w_{k} v_{k}^{\mathrm{T}}\right] K_{w, k}^{\mathrm{T}} \Upsilon_{k}^{\mathrm{T}}-\Upsilon_{k} K_{w, k} \mathcal{E}\left[v_{k} w_{k}^{\mathrm{T}}\right] \\
& +\Upsilon_{k} K_{w, k}\left(C_{k} \mathcal{E}\left[e_{k}^{\mathrm{f}} v_{k}^{\mathrm{T}}\right]\right. \\
& \left.+\mathcal{E}\left[v_{k}\left(e_{k}^{\mathrm{f}}\right)^{\mathrm{T}}\right] C_{k}^{\mathrm{T}}\right) K_{w, k}^{\mathrm{T}} \Upsilon_{k}^{\mathrm{T}} . \tag{69}
\end{align*}
$$

Substituting (59) into (69), and using (50) and (51) in the resulting expression yields (11).
The two-step estimator can be summarized as follows
Data assimilation step:

$$
\begin{gather*}
w_{k}^{\mathrm{da}}=\Upsilon_{k} K_{w, k}\left(y_{k}-y_{k}^{\mathrm{f}}\right), \tag{70}\\
K_{w, k}=\left(\Upsilon_{k}^{\mathrm{T}} N_{k} \Upsilon_{k}\right)^{-1} \Upsilon_{k}^{\mathrm{T}} N_{k} S_{k}\left(R_{k}^{\mathrm{f}}\right)^{-1}, \tag{71}\\
x_{k}^{\mathrm{da}}=x_{k}^{\mathrm{f}}+\Gamma_{k} K_{x, k}\left(y_{k}-y_{k}^{\mathrm{f}}\right), \tag{72}\\
K_{x, k}=\left(\Gamma_{k}^{\mathrm{T}} M_{k} \Gamma_{k}\right)^{-1} \Gamma_{k}^{\mathrm{T}} M_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1}, \tag{73}\\
P_{k}^{\mathrm{da}}= \\
P_{k}^{\mathrm{f}}-P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} P_{k}^{\mathrm{f}} \tag{74}\\
\\
+\pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} P_{k}^{\mathrm{f}} \pi_{k \perp}^{\mathrm{T}}
\end{gather*}
$$

Forecast step:

$$
\begin{gather*}
x_{k+1}^{\mathrm{f}}=A_{k} x_{k}^{\mathrm{da}}+B_{k} u_{k}+w_{k}^{\mathrm{da}} \tag{75}\\
P_{k+1}^{\mathrm{f}}=A_{k} P_{k}^{\mathrm{da}} A_{k}^{\mathrm{T}}+Q_{k}^{\mathrm{f}} \tag{76}
\end{gather*}
$$

Assume that Γ_{k} and Υ_{k} are square for all $k \geqslant 0$. Substituting (70) and (72) into (75) yields the familiar one-step Kalman filter

$$
\begin{align*}
x_{k+1}^{\mathrm{f}}= & A_{k} x_{k}^{\mathrm{f}}+B_{k} u_{k} \\
& +\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right)\left(R_{k}+C_{k} P_{k}^{\mathrm{f}} C_{k}\right)^{-1}\left(y_{k}-y_{k}^{\mathrm{f}}\right) . \tag{77}
\end{align*}
$$

Furthermore, substituting (74) into (75) yields

$$
\begin{align*}
P_{k+1}^{\mathrm{f}}= & A_{k} P_{k}^{\mathrm{f}} A_{k}^{\mathrm{T}}-\left(A_{k} P_{k}^{\mathrm{f}} C_{k}+S_{k}\right) \\
& \times\left(R_{k}+C_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\right)^{-1}\left(C_{k} P_{k}^{\mathrm{f}} A_{k}^{\mathrm{T}}+S_{k}^{\mathrm{T}}\right)+Q_{k} \tag{78}
\end{align*}
$$

Next, as in Proposition 3, we show that when additional estimator states are directly injected with the output data, the performance of the two-step filter improves. Define $\hat{K}_{x, k}$ by (64) with Γ_{k} replaced by $\hat{\Gamma}_{k}$, that is,

$$
\begin{equation*}
\hat{K}_{x, k}=\left(\hat{\Gamma}_{k}^{\mathrm{T}} M_{k} \hat{\Gamma}_{k}\right)^{-1} \hat{\Gamma}_{k}^{\mathrm{T}} M_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} \tag{79}
\end{equation*}
$$

Furthermore, let $\hat{P}_{k}^{\mathrm{da}}$ be the corresponding data assimilation error covariance when $\hat{K}_{x, k}$ is used instead of $K_{x, k}$, that is,

$$
\begin{align*}
\hat{P}_{k}^{\mathrm{da}} \triangleq & P_{k}^{\mathrm{f}}-P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} P_{k}^{\mathrm{f}} \\
& +\hat{\pi}_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} P_{k}^{\mathrm{f}} \hat{\pi}_{k \perp}^{\mathrm{T}} . \tag{80}
\end{align*}
$$

Proposition 6: Let $M_{k}=I, \hat{\Gamma}_{k}=\left[\begin{array}{ll}\Gamma_{k} & G_{k}\end{array}\right]$, and assume that $\hat{\Gamma}_{k}$ has full column rank. Then

$$
\begin{equation*}
\operatorname{tr}\left(\hat{P}_{k}^{\mathrm{da}}\right) \leqslant \operatorname{tr}\left(P_{k}^{\mathrm{da}}\right) \tag{81}
\end{equation*}
$$

Proof: Subtracting (80) from (65) and using the fact from (41) that $\pi_{k \perp}-\hat{\pi}_{k \perp}$ is positive semi-definite, it follows that

$$
\operatorname{tr}\left(P_{k}^{\mathrm{da}}-\hat{P}_{k}^{\mathrm{da}}\right)=\operatorname{tr}\left[\left(\pi_{k \perp}-\hat{\pi}_{k \perp}\right) P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}\left(R_{k}^{\mathrm{f}}\right)^{-1} C_{k} P_{k}^{\mathrm{f}}\right] \geqslant 0
$$

6. Comparison of the one-step and two-step filters

When Γ_{k} and Υ_{k} are square, comparing (33) with (78) and (35) with (75) shows that the two-step filter is equivalent to the one-step filter with $K_{k}=A K_{x, k}+K_{w, k}, \hat{x}_{k}=x_{k}^{\mathrm{f}}$ and $P_{k}=P_{k}^{\mathrm{f}}$. When Γ_{k} and Υ_{k} are not square, we obtain a sufficient condition under which the one-step and two-step spatially constrained Kalman filters are equivalent.

Proposition 7: Suppose that $\hat{x}_{0}=x_{0}^{\mathrm{f}}$ and $P_{0}=P_{0}^{\mathrm{f}}$, and, for all $k \geqslant 0$,

$$
\begin{equation*}
A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}=\pi_{k \perp}\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right) \tag{82}
\end{equation*}
$$

Then the one-step filter (28), (29) and the two-step filter in (70)-(76) are equivalent, that is, for all $k>0, \hat{x}_{k}=x_{k}^{\mathrm{f}}$ and $P_{k}=P_{k}^{\mathrm{f}}$.

Proof: Substituting (63) and (74) into (76) yields

$$
\begin{align*}
P_{k+1}^{\mathrm{f}}= & A_{k} P_{k}^{\mathrm{f}} A_{k}^{\mathrm{T}}+\left(A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}\right)\left(R_{k}^{\mathrm{f}}\right)^{-1} \\
& \times\left(A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}\right)^{\mathrm{T}}-\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right) \\
& \times\left(R_{k}^{\mathrm{f}}\right)^{-1}\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right)^{\mathrm{T}}+Q_{k} . \tag{83}
\end{align*}
$$

Substituting (88) into (83) yields

$$
\begin{align*}
P_{k+1}^{\mathrm{f}}= & A_{k} P_{k}^{\mathrm{f}} A_{k}^{\mathrm{T}}+\pi_{k \perp}\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right)\left(R_{k}^{\mathrm{f}}\right)^{-1} \\
& \times\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right)^{\mathrm{T}} \pi_{k \perp}^{\mathrm{T}}+Q_{k}-\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right) \\
& \times\left(R_{k}^{\mathrm{f}}\right)^{-1}\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right)^{\mathrm{T}} \tag{84}
\end{align*}
$$

Since $P_{0}^{\mathrm{f}}=P_{0}$, it follows from (25), (29), and (62) that, for all $k>0, P_{k}^{\mathrm{f}}=P_{k}$.

Next, substituting (42) and (72) into (35) yields

$$
\begin{align*}
x_{k+1}^{\mathrm{f}}= & A_{k} x_{k}^{\mathrm{f}}+B_{k} u_{k} \\
& +\left(A_{k} \pi_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k} S_{k}\right)\left(R_{k}^{\mathrm{f}}\right)^{-1}\left(y_{k}-y_{k}^{\mathrm{f}}\right) \tag{85}
\end{align*}
$$

Now, (62) and (88) imply that

$$
\begin{align*}
x_{k+1}^{\mathrm{f}}= & A_{k} x_{k}^{\mathrm{f}}+B_{k} u_{k}+\pi_{k}\left(A_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+S_{k}\right) \\
& \times\left(C_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1}\left(y_{k}-C_{k} x_{k}^{\mathrm{f}}\right) . \tag{86}
\end{align*}
$$

It follows from (4) and (28) that, for all $k \geqslant 0$,

$$
\begin{align*}
\hat{x}_{k+1}= & A_{k} \hat{x}_{k}+B_{k} u_{k}+\pi_{k}\left(A_{k} P_{k} C_{k}^{\mathrm{T}}+S_{k}\right) \\
& \times\left(C_{k} P_{k} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1}\left(y_{k}-C_{k} \hat{x}_{k}\right) \tag{87}
\end{align*}
$$

Since $\hat{x}_{0}=x_{0}^{\mathrm{f}}$ and $P_{k}^{\mathrm{f}}=P_{k}$ for all $k \geqslant 0$, (86) and (87) imply that $\hat{x}_{k}=x_{k}^{\mathrm{f}}$ for all $k \geqslant 0$.
Note that, if Γ_{k} and Υ_{k} are square, then $\pi_{k \perp}=0$ and $\chi_{k \perp}=0$, and thus (88) is satisfied. Furthermore, if $S_{k}=0$ or $\pi_{k}=\chi_{k}$, then Proposition 7 specializes to the following result.

Corollary 1: Suppose that $\hat{x}_{0}=x_{0}^{\mathrm{f}}, P_{0}=P_{0}^{\mathrm{f}}$, and, for all $k \geqslant 0$, either $S_{k}=0$ or $\pi_{k}=\chi_{k}$. If

$$
\begin{equation*}
A_{k} \pi_{k \perp}=\pi_{k \perp} A_{k} \tag{88}
\end{equation*}
$$

for all $k \geqslant 0$, then the one-step filter (28), (29) and the two-step filter in (70)-(76) are equivalent, that is, for all $k>0, \hat{x}_{k}=x_{k}^{\mathrm{f}}$ and $P_{k}=P_{k}^{\mathrm{f}}$.

Next, we present a converse of Proposition 7.
Proposition 8: Assume that the one-step filter (28), (29) and the two-step filter in (70)-(76) are equivalent, that is, for all $k \geqslant 0, \hat{x}_{k}=x_{k}^{\mathrm{f}}$ and $P_{k}=P_{k}^{\mathrm{f}}$. Then, for
all $k \geqslant 0$, there exists an orthogonal matrix $U_{k} \in \mathbb{R}^{l_{k} \times l_{k}}$ such that

$$
\begin{align*}
& \left(A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}\right)\left(R_{k}^{\mathrm{f}}\right)^{-1 / 2} U_{k} \\
& =\pi_{k \perp}\left(A_{k} P_{k} C_{k}^{\mathrm{T}}+S_{k}\right)\left(R_{k}^{\mathrm{f}}\right)^{-1 / 2} \tag{89}
\end{align*}
$$

Proof: Since $P_{k}=P_{k}^{f}$ for all $k \geqslant 0$, subtracting (29) from (84) yields

$$
\begin{align*}
& \pi_{k \perp} \hat{S}_{k}\left(C_{k} P_{k} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k \perp}^{\mathrm{T}} \\
&=\left(A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}\right)\left(R_{k}^{\mathrm{f}}\right)^{-1} \\
& \quad \times\left(A_{k} \pi_{k \perp} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}\right)^{\mathrm{T}} . \tag{90}
\end{align*}
$$

Hence, (89) follows from (25) and Bernstein (2005 p. 193].

Neither the one-step nor the two-step filter performs consistently better than the other. However, there are special cases when the performance of one filter is better than the other.

Proposition 9: Assume that $C_{k}=0$ and $P_{k}=P_{k}^{\mathrm{f}}$. If Γ_{k} is square and Υ_{k} is not square, then

$$
\begin{equation*}
P_{k+1} \leqslant P_{k+1}^{\mathrm{f}} \tag{91}
\end{equation*}
$$

Alternatively, if Γ_{k} is not square and Υ_{k} is square, then

$$
\begin{equation*}
P_{k+1}^{\mathrm{f}} \leqslant P_{k+1} \tag{92}
\end{equation*}
$$

Proof: Assume that Γ_{k} is square and Υ_{k} is not square. It then follows from (26), (27) and (53) that

$$
\pi_{k \perp}=0, \quad \chi_{k \perp} \neq 0 .
$$

Substituting (74) and (63) into (76), and using $C_{k}=0$ and $\pi_{k \perp}=0$ yields

$$
\begin{align*}
P_{k+1}^{\mathrm{f}}= & A_{k} P_{k}^{\mathrm{f}} A_{k}^{\mathrm{T}}+\chi_{k \perp} S_{k}\left(C_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1} \\
& \times S_{k}^{\mathrm{T}} \chi_{k \perp}^{\mathrm{T}}-S_{k}\left(C_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1} S_{k}^{\mathrm{T}}+Q_{k} \tag{93}
\end{align*}
$$

Substituting $C_{k}=0$ and $\pi_{k \perp}=0$ into (29) yields

$$
\begin{equation*}
P_{k+1}=A_{k} P_{k} A_{k}^{\mathrm{T}}-S_{k}\left(C_{k} P_{k} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1} S_{k}^{\mathrm{T}}+Q_{k} \tag{94}
\end{equation*}
$$

Subtracting (94) from (93) yields (91).
Alternatively, if Υ_{k} is square and Γ_{k} is not square, then

$$
\pi_{k \perp} \neq 0, \quad \chi_{k \perp}=0
$$

Substituting (74) and (63) into (76), and using $C_{k}=0$ and $\chi_{k \perp}=0$ yields

$$
\begin{equation*}
P_{k+1}^{\mathrm{f}}=A_{k} P_{k}^{\mathrm{f}} A_{k}^{\mathrm{T}}-S_{k}\left(C_{k} P_{k}^{\mathrm{f}} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1} S_{k}^{\mathrm{T}}+Q_{k} \tag{95}
\end{equation*}
$$

Substituting $C_{k}=0$ into (29) yields

$$
\begin{align*}
P_{k+1}= & A_{k} P_{k} A_{k}^{\mathrm{T}}+\pi_{k \perp} S_{k}\left(C_{k} P_{k} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1} \\
& \times S_{k}^{\mathrm{T}} \pi_{k \perp}^{\mathrm{T}}-S_{k}\left(C_{k} P_{k} C_{k}^{\mathrm{T}}+R_{k}\right)^{-1} S_{k}^{\mathrm{T}}+Q_{k} \tag{96}
\end{align*}
$$

Subtracting (95) from (96) yields (92).

7. Comparison of the open-loop and closed-loop covariances

Next, we consider the zero-gain filter

$$
\begin{equation*}
\hat{x}_{\mathrm{ol}, k+1}=A_{k} \hat{x}_{\mathrm{ol}, k}+B_{k} u_{k} \tag{97}
\end{equation*}
$$

with the zero-gain state-estimation error state

$$
\begin{equation*}
e_{\mathrm{ol}, k} \triangleq x_{k}-\hat{x}_{\mathrm{ol}, k} \tag{98}
\end{equation*}
$$

It follows from (1), (97) and (98) that

$$
\begin{equation*}
P_{\mathrm{ol}, k+1}=A_{k} P_{\mathrm{ol}, k} A_{k}^{\mathrm{T}}+Q_{k} \tag{99}
\end{equation*}
$$

where the zero-gain error covariance $P_{\mathrm{ol}, k} \in \mathbb{R}^{n_{k} \times n_{k}}$ is defined by $P_{\mathrm{ol}, k} \triangleq \mathcal{E}\left[e_{\mathrm{ol}, k} e_{\mathrm{ol}, k}^{\mathrm{T}}\right]$. First, we show that the performance of the Kalman filter is better than the performance of the zero-gain filter.

Proposition 10: If $\pi_{k}=I_{n_{k+1}}$ and $P_{k} \leqslant P_{\mathrm{ol}, k}$, then $P_{k+1} \leqslant P_{\mathrm{ol}, k+1}$.

Proof: Since $\pi_{k}=I_{n_{k+1}}$, it follows from (27) that $\pi_{k \perp}=0$, and hence (29) implies that

$$
\begin{equation*}
P_{k+1}=A_{k} P_{k} A_{k}^{\mathrm{T}}+Q_{k}-\hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \tag{100}
\end{equation*}
$$

Subtracting (100) from (99) yields

$$
P_{\mathrm{ol}, k+1}-P_{k+1}=A_{k}\left(P_{\mathrm{ol}, k}-P_{k}\right) A_{k}^{\mathrm{T}}+\hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k} \geqslant 0
$$

If $\pi_{k} \neq I_{n_{k+1}}$, then $\pi_{k \perp} \neq 0$, and subtracting (29) from (99) yields

$$
\begin{align*}
P_{\mathrm{ol}, k+1}-P_{k+1}= & A_{k}\left(P_{\mathrm{ol}, k}-P_{k}\right) A_{k}^{\mathrm{T}} \\
& +\hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}}-\pi_{k \perp} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k \perp}^{\mathrm{T}} \tag{101}
\end{align*}
$$

which suggests the following negative result.

Proposition 11: If $\pi_{k} \neq I_{n_{k+1}}$ and $P_{k}=P_{\mathrm{ol}, k}$, then $P_{k+1} \leqslant P_{\mathrm{ol}, k+1}$ is not always true.

Proof: Let $k \geqslant 0, n_{k}=n_{k+1}=2$, and

$$
A_{k}=\left[\begin{array}{cc}
0 & \alpha \\
0 & 0.5
\end{array}\right], \quad C_{k}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

where $24 \alpha^{2}+2 \alpha<1$, and

$$
Q_{k}=0, \quad S_{k}=0, \quad R_{k}=I, \quad L_{k}=I, \quad \Gamma_{k}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Furthermore, let P_{k} and $P_{\mathrm{ol}, k}$ have the scalar entries

$$
P_{k}=\left[\begin{array}{cc}
p_{1, k} & p_{12, k} \\
p_{12, k} & p_{2, k}
\end{array}\right], \quad P_{\mathrm{ol}, k}=\left[\begin{array}{cc}
p_{\mathrm{ol}, 1, k} & p_{\mathrm{ol}, 12, k} \\
p_{\mathrm{ol}, 12, k} & p_{\mathrm{ol}, 2, k}
\end{array}\right]
$$

It follows from (29) and (99) that, if $P_{k}=P_{\mathrm{ol}, k}$, then

$$
p_{\mathrm{ol}, 1, k+1}-p_{1, k+1}=\left(\frac{24 \alpha^{2}+2 \alpha-1}{25}\right) \frac{p_{2, k}^{2}}{1+p_{2, k}}
$$

Hence, $p_{\mathrm{ol}, 1, k+1}<p_{1, k+1}$, and thus $P_{\mathrm{ol}, k+1}-P_{k+1}$ is not positive semidefinite.

The following result guarantees that the performance of the constrained filter is better than the performance of the zero-gain filter.
Proposition 12: If $P_{k} \leqslant P_{\mathrm{ol}, k}$, then

$$
\begin{equation*}
\operatorname{tr}\left(P_{k+1} M_{k}\right) \leqslant \operatorname{tr}\left(P_{\mathrm{ol}, k+1} M_{k}\right) \tag{102}
\end{equation*}
$$

Proof: It follows from (27) and (101) that

$$
\begin{align*}
\operatorname{tr}\left(\left(P_{\mathrm{ol}, k+1}-P_{k+1}\right) M_{k}\right)= & \operatorname{tr}\left(A_{k}\left(P_{\mathrm{ol}, k-P_{k}}\right) A_{k}^{\mathrm{T}} M_{k}\right) \\
& +\operatorname{tr}\left(\pi_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} M_{k}\right. \\
& +M_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k}^{\mathrm{T}} \\
& \left.-\pi_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k}^{\mathrm{T}} M_{k}\right) \tag{103}
\end{align*}
$$

Since $\pi_{k}^{\mathrm{T}} M_{k} \pi_{k}=M_{k} \pi_{k}=\pi_{k}^{\mathrm{T}} M_{k}$, it follows that

$$
\begin{aligned}
& \operatorname{tr}\left(\left(P_{\mathrm{ol}, k+1}-P_{k+1}\right) M_{k}\right) \\
&= \operatorname{tr}\left(A_{k}\left(P_{\mathrm{ol}, k}-P_{k}\right) A_{k}^{\mathrm{T}} M_{k}\right) \\
&+\operatorname{tr}\left(\pi_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k}^{\mathrm{T}} M_{k}\right) \\
&= \operatorname{tr}\left(L_{k} A_{k}\left(P_{\mathrm{ol}, k}-P_{k}\right) A_{k}^{\mathrm{T}} L_{k}^{\mathrm{T}}\right) \\
&+\operatorname{tr}\left(L_{k} \pi_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k}^{\mathrm{T}} L_{k}^{\mathrm{T}}\right) \\
& \geqslant 0
\end{aligned}
$$

In fact, in the example in Proposition 11, $M_{k}=I$ and

$$
\begin{equation*}
\operatorname{tr}\left(P_{\mathrm{ol}, k+1}\right)-\operatorname{tr}\left(P_{k+1}\right)=\left[\frac{22}{25}\left(\alpha+\frac{3}{22}\right)^{2}+\frac{5}{44}\right] \frac{p_{2, k}^{2}}{1+p_{2, k}} \geqslant 0 \tag{104}
\end{equation*}
$$

Hence, $\operatorname{tr}\left(P_{k+1}\right) \leqslant \operatorname{tr}\left(P_{\mathrm{ol}, k+1}\right)$, and the one-step filter with constrained output injection performs better than the zero-gain filter. Although Proposition 12 guarantees that the performance of the one-step filter with constrained output injection is better than the zero-gain filter at time $k+1$, it follows from Proposition 11 that $P_{k+1} \leqslant P_{\mathrm{ol}, k+1}$ may not be true. Hence, Proposition 12 does not guarantee that the performance of the one-step filter with constrained output injection is better than the zero-gain filter at time $k+2$, that is, $\operatorname{tr}\left(P_{k+2}\right) \leqslant \operatorname{tr}\left(P_{\mathrm{ol}, k+2}\right)$ may not be true.

The following result gives a condition under which the state estimates in the range of Γ_{k} are better than the corresponding estimates from the zero-gain filter.
Proposition 13: If $P_{k} \leqslant P_{\mathrm{ol}, k}$, then

$$
\begin{equation*}
\Gamma_{k}^{\mathrm{T}} M_{k} P_{k+1} M_{k} \Gamma_{k} \leqslant \Gamma_{k}^{\mathrm{T}} M_{k} P_{\mathrm{ol}, k+1} M_{k} \Gamma_{k} . \tag{105}
\end{equation*}
$$

Proof: Note that

$$
\begin{align*}
& \Gamma_{k}^{\mathrm{T}} M_{k}\left(P_{k+1}-P_{\mathrm{ol}, k+1}\right) M_{k} \Gamma_{k} \\
&= \Gamma_{k}^{\mathrm{T}} M_{k} A_{k}\left(P_{k}-P_{\mathrm{ol}, k}\right) A_{k}^{\mathrm{T}} M_{k} \Gamma_{k} \\
&-\Gamma_{k}^{\mathrm{T}} M_{k} \pi_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} M_{k} \Gamma_{k} \\
&-\Gamma_{k}^{\mathrm{T}} M_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k}^{\mathrm{T}} M_{k} \Gamma_{k} \\
&+\Gamma_{k}^{\mathrm{T}} M_{k} \pi_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} \pi_{k}^{\mathrm{T}} M_{k} \Gamma_{k} . \tag{106}
\end{align*}
$$

It follows from (26) that

$$
\begin{equation*}
\Gamma_{k}^{\mathrm{T}} M_{k} \pi_{k}=\Gamma_{k}^{\mathrm{T}} M_{k} \tag{107}
\end{equation*}
$$

Substituting (107) into (106) yields

$$
\begin{aligned}
\Gamma_{k}^{\mathrm{T}} & M_{k}\left(P_{k+1}-P_{\mathrm{ol}, k+1}\right) M_{k} \Gamma_{k} \\
= & \Gamma_{k}^{\mathrm{T}} M_{k} A_{k}\left(P_{k}-P_{\mathrm{ol}, k}\right) A_{k}^{\mathrm{T}} M_{k} \Gamma_{k} \\
& \quad-\Gamma_{k}^{\mathrm{T}} M_{k} \hat{S}_{k} \hat{R}_{k}^{-1} \hat{S}_{k}^{\mathrm{T}} M_{k} \Gamma_{k} \leqslant 0 .
\end{aligned}
$$

Assume that Γ_{k} has the form (6). Then, it follows from Proposition 13 that, if $M_{k}=I$, that is, all of the states are weighted, then the state estimate in the range of Γ_{k} obtained using the Kalman filter with constrained output injection are better than the state estimates obtained when data assimilation is not performed. However, state estimates that are not in the range of
Γ_{k} may be worse than estimates obtained when no data assimilation is performed.

8. Steady-state filters for linear time-invariant systems

Next, we discuss the steady-state behaviour of the one-step spatially constrained Kalman filter for linear time-invariant systems. For all $k \geqslant 0$, let $A_{k}=A$, $B_{k}=B, C_{k}=C, \Gamma_{k}=\Gamma, L_{k}=L, Q_{k}=Q, S_{k}=0$ and $R_{k}=R$. Assuming R is positive definite, it follows from Proposition 2 that the optimal gain K_{k} that minimizes J_{k} is given by

$$
\begin{equation*}
K_{k}=\left(\Gamma^{\mathrm{T}} M \Gamma\right)^{-1} \Gamma^{\mathrm{T}} M A P_{k} C^{\mathrm{T}} \hat{R}_{k} \tag{108}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{R}_{k} \triangleq C P_{k} C^{\mathrm{T}}+R, \quad M \triangleq L^{\mathrm{T}} L \tag{109}
\end{equation*}
$$

Furthermore, the covariance update is given by

$$
\begin{align*}
P_{k+1}= & A P_{k} A^{\mathrm{T}}+Q \\
& +\pi_{\perp} A P_{k} C^{\mathrm{T}} \hat{R}_{k}^{-1} C P_{k} A^{\mathrm{T}} \pi_{\perp}^{\mathrm{T}} \\
& -A P_{k} C^{\mathrm{T}} \hat{R}_{k}^{-1} C P_{k} A^{\mathrm{T}}, \tag{110}
\end{align*}
$$

where

$$
\begin{equation*}
\pi \triangleq \Gamma\left(\Gamma^{\mathrm{T}} M \Gamma\right)^{-1} \Gamma^{\mathrm{T}} M, \quad \pi_{\perp} \triangleq I-\pi \tag{111}
\end{equation*}
$$

If $\lim _{k \rightarrow \infty} P_{k}$ exists, then the filtering process reaches statistical steady state. If Γ is square and thus by assumption non-singular, then $y_{k}-\hat{y}_{k}$ is directly injected into all of the estimator states. In this case, the following lemma guarantees the existence of $\lim _{k \rightarrow \infty} P_{k}$.

Lemma 3: If Γ is square and (A, C) is detectable, then $P \triangleq \lim _{k \rightarrow \infty} P_{k}$ exists and is positive semidefinite. If, in addition, (A, Q) is stabilizable, then P is positive definite and $A-\Gamma K C$ is asymptotically stable, where $K \triangleq \Gamma^{-1} A P C^{\mathrm{T}}\left(C P C^{\mathrm{T}}+R\right)^{-1}$.

Proof: Since Γ is square, it follows from (26) and (27) that $\pi=I$ and $\pi_{\perp}=0$. Hence, it follows from (110) that

$$
\begin{equation*}
P_{k+1}=A P_{k} A^{\mathrm{T}}-A P_{k} C^{\mathrm{T}}\left(C P_{k} C^{\mathrm{T}}+R\right)^{-1} C P_{k} A^{\mathrm{T}}+Q \tag{112}
\end{equation*}
$$

Since (A, C) is detectable, it follows from Lewis (1986, pp. 100-101) that, if P_{0} is positive semidefinite, then
$P \triangleq \lim _{k \rightarrow \infty} P_{k}$ exists and satisfies the algebraic Riccati equation

$$
\begin{equation*}
P=A P A^{\mathrm{T}}-A P C^{\mathrm{T}}\left(C P C^{\mathrm{T}}+R\right)^{-1} C P A^{\mathrm{T}}+Q \tag{113}
\end{equation*}
$$

If (A, C) is detectable and (A, Q) is stabilizable, it follows from Lewis (1986, pp. 101-103) that P is positive definite and $A-\Gamma K C$ is asymptotically stable.

When Γ is not square, the existence of $\lim _{k \rightarrow \infty} P_{k}$ is not guaranteed. In fact, we have the following negative result when $\pi \neq I_{n}$.

Proposition 14: Assume that $\pi \neq I_{n}$ and A is asymptotically stable. Then $\lim _{k \rightarrow \infty} P_{k}$ does not always exist.

Proof: Consider the example in Proposition 11. It follows from (110) that

$$
\begin{equation*}
p_{2, k+1}=p_{2, k}\left(\frac{1}{4}+\frac{1}{100}\left[8(\alpha-1)^{2}-25\right] \frac{p_{2, k}}{1+p_{2, k}}\right) \tag{114}
\end{equation*}
$$

Hence, if α satisfies

$$
\begin{equation*}
(\alpha-1)^{2}>25 \tag{115}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2,0}>\frac{175}{8(\alpha-1)^{2}-200} \tag{116}
\end{equation*}
$$

then, for all $k>0, p_{2, k+1}>2 p_{2, k}$, which implies that $\lim _{k \rightarrow \infty} p_{2, k}=\infty$. Hence, if $P_{0} \in \mathbb{R}^{2 \times 2}$ satisfies (116), then $\lim _{k \rightarrow \infty} P_{k}$ does not exist.

Next, we present a converse result concerning the existence of $\lim _{k \rightarrow \infty} P_{k}$. For all $M \in \mathbb{R}^{n \times m}$, let $\mathcal{R}(M)$ denote the range of M.
Proposition 15: Assume that (A, Γ) is stabilizable. If $P=\lim _{k \rightarrow \infty} P_{k} \quad$ exists and $\quad \mathcal{R}\left(\pi A P C^{\mathrm{T}}\right)=\mathcal{R}(\Gamma)$, then (A, Γ, C) is output feedback stabilizable.

Proof: Letting $k \rightarrow \infty$ in (110) yields

$$
\begin{align*}
P= & A P A+Q+\pi_{\perp} A P C^{\mathrm{T}} \hat{R}^{-1} C P A^{\mathrm{T}} \pi_{\perp}^{\mathrm{T}} \\
& -A P C^{\mathrm{T}} \hat{R}^{-1} C P A^{\mathrm{T}}, \tag{117}
\end{align*}
$$

where $\hat{R} \triangleq C P C^{\mathrm{T}}+R$. We can rewrite (117) as

$$
\begin{align*}
P= & A P A^{\mathrm{T}}+Q-\Gamma K C P A^{\mathrm{T}} \\
& -A P C^{\mathrm{T}} K^{\mathrm{T}} \Gamma^{\mathrm{T}}+\Gamma K \hat{R} K^{\mathrm{T}} \Gamma^{\mathrm{T}}, \tag{118}
\end{align*}
$$

where

$$
\begin{equation*}
K \triangleq\left(\Gamma^{\mathrm{T}} M \Gamma\right)^{-1} \Gamma^{\mathrm{T}} M A P C^{\mathrm{T}} \hat{R}^{-1} \tag{119}
\end{equation*}
$$

Hence, (118) can be expressed as

$$
\begin{equation*}
P=(A-\Gamma K C) P(A-\Gamma K C)^{\mathrm{T}}+Q+\Gamma K R K^{\mathrm{T}} \Gamma^{\mathrm{T}} \tag{120}
\end{equation*}
$$

Next, define \tilde{A} and $\tilde{\Gamma}$ by

$$
\begin{equation*}
\tilde{A} \triangleq A-\Gamma K C, \quad \tilde{\Gamma} \triangleq \Gamma K R^{1 / 2} \tag{121}
\end{equation*}
$$

Since (A, Γ) is stabilizable and $\mathcal{R}(\Gamma)=\mathcal{R}\left(\pi A P C^{\mathrm{T}}\right)$, it follows from Bernstein (2005, pp. 510 and 551) that $(\tilde{A}, \tilde{\Gamma})$ is also stabilizable. Let $\lambda \in \mathbb{C}$ be an eigenvalue of \tilde{A}. Then, there exists an eigenvector $x \in \mathbb{C}^{n}$ of \tilde{A} such that

$$
\begin{equation*}
x^{*} \tilde{A}=\lambda x^{*} \tag{122}
\end{equation*}
$$

Furthermore, (120) implies that

$$
\begin{equation*}
x^{*} P x=x^{*} \tilde{A} P \tilde{A}^{\mathrm{T}} x+x^{*}\left(Q+\tilde{\Gamma} \tilde{\Gamma}^{\mathrm{T}}\right) x \tag{123}
\end{equation*}
$$

Substituting (122) into (123) yields

$$
\begin{equation*}
\left(1-|\lambda|^{2}\right) x^{*} P x=x^{*}\left(Q+\tilde{\Gamma} \tilde{\Gamma}^{\mathrm{T}}\right) x \tag{124}
\end{equation*}
$$

If $|\lambda| \geqslant 1$, then (124) implies that

$$
\begin{equation*}
x^{*}\left(Q+\tilde{\Gamma} \tilde{\Gamma}^{\mathrm{T}}\right) x=0 \tag{125}
\end{equation*}
$$

and hence

$$
\begin{equation*}
x^{*} \tilde{\Gamma}=0 \tag{126}
\end{equation*}
$$

It follows from (122) and (126) that λ is an unstable and uncontrollable eigenvalue of $(\tilde{A}, \tilde{\Gamma})$, which contradicts the fact that $(\tilde{A}, \tilde{\Gamma})$ is stabilizable. Hence, $|\lambda|<1$ and \tilde{A} is asymptotically stable. Since K given by (119) renders $A-\Gamma K C$ asymptotically stable, (A, Γ, C) is output feedback stabilizable.

The following result provides a sufficient condition for P_{k} to be bounded when C is square and non-singular.

Proposition 16: Assume that C is square and non-singular. If

$$
\begin{equation*}
\operatorname{sprad}\left(\pi_{\perp} A\right)<1 \tag{127}
\end{equation*}
$$

then P_{k} is bounded.
Proof: Since C is non-singular, (110) can be expressed as

$$
\begin{align*}
P_{k+1}= & A P_{k} A^{\mathrm{T}}+Q+\pi_{\perp} A P_{k}\left(P_{k}+C^{-1} R C^{-\mathrm{T}}\right)^{-1} P_{k} A^{\mathrm{T}} \pi_{\perp}^{\mathrm{T}} \\
& -A P_{k}\left(P_{k}+C^{-1} R C^{-\mathrm{T}}\right)^{-1} P_{k} A^{\mathrm{T}} . \tag{128}
\end{align*}
$$

Next, consider the Lyapunov equation

$$
\begin{align*}
\tilde{P}_{k+1}= & (A-\Gamma \tilde{K}) \tilde{P}_{k}(A-\Gamma \tilde{K})^{\mathrm{T}} \\
& +Q+\Gamma \tilde{K} \tilde{K}^{\mathrm{T}} \Gamma^{\mathrm{T}}+A \tilde{R} A^{\mathrm{T}}, \tag{129}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{K} \triangleq\left(\Gamma^{\mathrm{T}} M \Gamma\right)^{-1} \Gamma M A \tag{130}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{R} \triangleq C^{-1} R C^{-\mathrm{T}} . \tag{131}
\end{equation*}
$$

Using (130), we rewrite (129) as

$$
\begin{equation*}
\tilde{P}_{k+1}=\pi_{\perp} A \tilde{P}_{k} A^{\mathrm{T}} \pi_{\perp}^{\mathrm{T}}+Q+\pi A A^{\mathrm{T}} \pi^{\mathrm{T}}+A \tilde{R} A^{\mathrm{T}} . \tag{132}
\end{equation*}
$$

Since $\pi_{\perp} A$ is asymptotically stable and $Q+\pi A A^{\mathrm{T}} \pi^{\mathrm{T}}+A \tilde{R} A^{\mathrm{T}} \quad$ is positive semidefinite, $\tilde{P}=\lim _{k \rightarrow \infty} \tilde{P}_{k}$ exists for all positive-semidefinite \tilde{P}_{0}. Subtracting (128) from (132) yields

$$
\begin{align*}
\tilde{P}_{k+1}-P_{k+1}= & A \tilde{R}\left(\tilde{R}+P_{k}\right)^{-1} \tilde{R} A^{\mathrm{T}}+\pi A A^{\mathrm{T}} \pi^{\mathrm{T}} \\
& +\pi_{\perp} A P_{k}\left(P_{k}+\tilde{R}\right)^{-1} \tilde{R} A^{\mathrm{T}} \pi_{\perp}^{\mathrm{T}} \\
& +\pi_{\perp} A\left(\tilde{P}_{k}-P_{k}\right) A^{\mathrm{T}} \pi_{\perp}^{\mathrm{T}} . \tag{133}
\end{align*}
$$

It follows from (133) that, if $\tilde{P}_{k} \geqslant \tilde{P}_{k}$, then $\tilde{P}_{k+1} \geqslant P_{k+1}$. Hence, if $P_{0} \leqslant \tilde{P}_{0}$, then $P_{k} \leqslant \tilde{P}_{k}$ for all $k>0$. Furthermore, since \tilde{P}_{k} converges to \tilde{P} for every choice of \tilde{P}_{0}, it follows that P_{k} is bounded.

Numerical results suggest that the following strengthening of Proposition 15 is true.

Conjecture 1: Assume that C is square and non-singular. If

$$
\begin{equation*}
\operatorname{sprad}\left(\pi_{\perp} A\right)<1, \tag{134}
\end{equation*}
$$

then $\lim _{k \rightarrow \infty} P_{k}$ exists.
Example 1: Let

$$
A=\left[\begin{array}{ll}
0 & 5 \tag{135}\\
0 & 3
\end{array}\right], \quad C=I, \quad Q=0, \quad R=I,
$$

and choose

$$
\Gamma=\left[\begin{array}{l}
\gamma_{1} \tag{136}\\
\gamma_{2}
\end{array}\right]
$$

where $\gamma_{1}, \gamma_{2} \in \mathbb{R}$ so that

$$
\begin{align*}
\pi & =\frac{1}{\gamma_{1}^{2}+\gamma_{2}^{2}}\left[\begin{array}{cc}
\gamma_{1}^{2} & \gamma_{1} \gamma_{2} \\
\gamma_{1} \gamma_{2} & \gamma_{2}^{2}
\end{array}\right], \\
\pi_{\perp} & =\frac{1}{\gamma_{1}^{2}+\gamma_{2}^{2}}\left[\begin{array}{cc}
\gamma_{2}^{2} & -\gamma_{1} \gamma_{2} \\
-\gamma_{1} \gamma_{2} & \gamma_{1}^{2}
\end{array}\right] \tag{137}
\end{align*}
$$

Note that

$$
\pi_{\perp} A=\frac{1}{\gamma_{1}^{2}+\gamma_{2}^{2}}\left[\begin{array}{ll}
0 & 5 \gamma_{2}^{2}-3 \gamma_{1} \gamma_{2} \tag{138}\\
0 & 3 \gamma_{1}^{2}-5 \gamma_{1} \gamma_{2}
\end{array}\right]
$$

and hence

$$
\begin{equation*}
\operatorname{sprad}\left(\pi_{\perp} A\right)=\frac{1}{\gamma_{1}^{2}+\gamma_{2}^{2}}\left|3 \gamma_{1}^{2}-5 \gamma_{1} \gamma_{2}\right| . \tag{139}
\end{equation*}
$$

It follows from Conjecture 1 that, if

$$
\begin{equation*}
-\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)<3 \gamma_{1}^{2}-5 \gamma_{1} \gamma_{2}<\gamma_{1}^{2}+\gamma_{2}^{2}, \tag{140}
\end{equation*}
$$

then $\lim _{k \rightarrow \infty} P_{k}$ exists. The shaded region in figure 1 indicates values of γ_{1} and γ_{2} that satisfy (140). Next, we choose various values of γ_{1}, γ_{2} and numerically evaluate P_{k} as $k \rightarrow \infty$ using (110). The values of γ_{1}, γ_{2} for which $\lim _{k \rightarrow \infty} P_{k}$ exists, are indicated by "•" and the values of γ_{1}, γ_{2} for which $\lim _{k \rightarrow \infty} P_{k}$ does not exist are indicated by " x ". The numerical results are consistent with Lemma 3.

Figure 1. The shaded region indicates the values of γ_{1}, γ_{2} that satisfy (140). The dots indicate the values of γ_{1}, γ_{2} for which $\lim _{k \rightarrow \infty} P_{k}$ exists, whereas the values of γ_{1}, γ_{2} for which $\lim _{k \rightarrow \infty} P_{k}$ does not exist are indicated by " x ". These numerical results are consistent with Conjecture 1 .

9. N-mass system example

Consider the N-mass system shown in figure 2 with stiffnesses $k_{1}, \ldots, k_{N+1}>0$ and dashpots $c_{1}, \ldots, c_{N+1}>0$. Let q_{i} denote the position of mass m_{i}. Define

$$
\begin{gather*}
q \triangleq\left[q_{1} \cdots q_{N}\right]^{\mathrm{T}}, \tag{141}\\
K \triangleq\left[\begin{array}{cccccc}
k_{1}+k_{2} & -k_{2} & 0 & \cdots & 0 & 0 \\
-k_{2} & k_{2}+k_{3} & -k_{3} & \cdots & 0 & 0 \\
0 & -k_{3} & k_{3}+k_{4} & \cdots & \cdots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -k_{N} & k_{N}+k_{N+1}
\end{array}\right] \tag{142}\\
C \triangleq\left[\begin{array}{cccccc}
c_{1}+c_{2} & -c_{2} & 0 & \cdots & 0 & 0 \\
-c_{2} & c_{2}+c_{3} & -c_{3} & \cdots & 0 & 0 \\
0 & -c_{3} & c_{3}+c_{4} & \cdots & \cdots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -c_{N} & c_{N}+c_{N+1}
\end{array}\right] \tag{143}
\end{gather*}
$$

We assume that d masses are disturbed by unknown force inputs $w \in \mathbb{R}^{d}$, which are zero-mean white noise with unit intensity, while p masses are actuated by known force inputs $u \in \mathbb{R}^{p}$. Let u and w have entries

$$
\begin{equation*}
u=\left[u_{1} \cdots u_{p}\right]^{\mathrm{T}}, \quad w \triangleq\left[w_{1} \cdots w_{d}\right]^{\mathrm{T}} \tag{144}
\end{equation*}
$$

and let \mathcal{B}_{u} and \mathcal{D}_{w} have entries

$$
\begin{equation*}
\mathcal{B}_{u}=\left[\mathcal{B}_{u, 1} \cdots \mathcal{B}_{u, p}\right], \quad \mathcal{D}_{w}=\left[\mathcal{D}_{w, 1} \cdots \mathcal{D}_{w, d}\right] \tag{145}
\end{equation*}
$$

where, for all $i=1, \ldots, p$ and $j=1, \ldots, d, \mathcal{B}_{u, i}$ and $\mathcal{D}_{w, j}$ are defined by

$$
\begin{align*}
\mathcal{B}_{u, i} & =\left[0_{1 \times \hat{i}-1} \frac{1}{m_{\hat{i}}} 0_{1 \times N-\hat{i}}\right]^{\mathrm{T}} \\
\mathcal{D}_{w_{j}} & =\left[0_{1 \times \hat{j}-1} \frac{1}{m_{\hat{j}}} 0_{1 \times N-\hat{j}}\right]^{\mathrm{T}} \tag{146}
\end{align*}
$$

and \hat{i} and \hat{j} correspond to the masses on which forces u_{i} and w_{j} act, respectively. The equations of motion can be written in first-order form as

$$
\begin{equation*}
\dot{x}=\mathcal{A} x+\mathcal{B} u+\mathcal{D}_{1} w \tag{147}
\end{equation*}
$$

where $\mathcal{A} \in \mathbb{R}^{2 N \times 2 N}, \mathcal{B} \in \mathbb{R}^{2 N \times m}, \mathcal{D}_{1} \in \mathbb{R}^{2 N \times d}$, and $x \in \mathbb{R}^{2 N}$ are defined by

$$
\begin{align*}
& \mathcal{A} \triangleq\left[\begin{array}{cc}
0_{N} & I_{N} \\
-M^{-1} K & -M^{-1} C
\end{array}\right], \quad \mathcal{B} \triangleq\left[\begin{array}{c}
0_{N} \\
\mathcal{B}_{u}
\end{array}\right] \\
& \mathcal{D}_{1} \triangleq\left[\begin{array}{c}
0_{N} \\
\mathcal{D}_{w}
\end{array}\right] \\
& x \triangleq\left[q_{1} \cdots q_{N} \dot{q}_{1} \cdots \dot{q}_{N}\right]^{T} \tag{148}
\end{align*}
$$

Next, we assume that measurements of the positions of l masses are available so that the output $y \in \mathbb{R}^{l}$ can be expressed as

$$
\begin{equation*}
y=C_{\mathrm{pos}} x+v \tag{149}
\end{equation*}
$$

Figure 2. N-mass system.
where $C_{\text {pos }} \in \mathbb{R}^{1 \times 2 N}$ has entries

$$
C_{\mathrm{pos}}=\left[\begin{array}{c}
C_{\mathrm{pos}}^{[1]} \tag{150}\\
\vdots \\
C_{\mathrm{pos}}^{[l}
\end{array}\right]
$$

and, for all $i=1, \ldots, N, C_{\mathrm{pos}}^{[]]} \in \mathbb{R}^{1 \times 2 N}$ is defined by

$$
C_{\mathrm{pos}}^{[]]} \triangleq\left[\begin{array}{llll}
0_{1 \times(\hat{i}-1)} & 1 & 0_{1 \times(N-\hat{i})} & 0_{1 \times N} \tag{151}
\end{array}\right],
$$

where \hat{i} corresponds to the index of the mass whose position measurements are available. With the sampling time $t=0.1 \mathrm{~s}$, we obtain the zero-order-hold discrete-time model of (147) and (149) given by

$$
\begin{gather*}
x_{k+1}=A x_{k}+B u_{k}+D_{1} w_{k}, \tag{152}\\
y_{k}=C_{\mathrm{pos}} x_{k}+v_{k} . \tag{153}
\end{gather*}
$$

Let $N=20$, so that the (147) has order $n=40$ with known inputs $u \in \mathbb{R}^{3}$ and unknown inputs $w \in \mathbb{R}^{3}$. We assume that w is zero-mean white Gaussian noise with unit covariance, and the known inputs $u \in \mathbb{R}^{3}$ are chosen to be sinusoids. The masses on which w and u act and the available measurements are given in table 1 . We assume that the process noise and the measurement sensor noise are uncorrelated and hence $S_{k}=0$. The values of the masses m_{1}, \ldots, m_{20}, damping coefficients c_{1}, \ldots, c_{21}, and spring constants k_{1}, \ldots, k_{21} are $m_{i}=10 \mathrm{~kg}$ for $i=1, \ldots, 20, c_{i}=0.8 \mathrm{~N} \mathrm{~s} / \mathrm{m}$ and $k_{i}=5 \mathrm{~N} / \mathrm{m}$ for $i=1, \ldots, 21$. Finally, we assume that

Table 1. Forcing and measurement signals in the
N-mass system.

Signal	Masses
Known force input u	m_{1}, m_{5}, m_{10}
Unknown force input w	m_{4}, m_{15}, m_{18}
Position measurement y	m_{9}, m_{12}

Figure 3. Noisy measurements of the positions of m_{9} and m_{12} with $\mathrm{SNR}=20 \mathrm{db}$ and $\mathrm{SNR}=1 \mathrm{~dB}$. These measurements are used to estimate the positions and velocities of masses m_{1}, \ldots, m_{20}.

Figure 4. Root mean square value of the error in estimating the position of m 4 obtained using the two-step filter with $\Gamma_{k}=I_{2 N}$ (classical Kalman filter) and $\Gamma_{k} \neq I_{2 N}$ using two different sets of measurements, one with $\mathrm{SNR}=20 \mathrm{~dB}$ and another with SNR $=1 \mathrm{~dB}$. When $\Gamma_{k} \neq \Lambda_{1}$, measurements are directly injected into the estimates of only the positions and velocities of masses m_{5}, \ldots, m_{16}, whereas when $\Gamma_{k} \neq \Lambda_{2}$, measurements are directly injected into estimates of only the positions and velocities of masses m_{g}, \ldots, m_{12}. As expected, the performance of the estimators with constrained output injection $\left(\Gamma_{k} \neq I\right)$ is not as good as the estimator with $\Gamma_{k}=I_{2 N}$. Since the zero-gain filter does not use the measurements, its performance does not depend on the value of the SNR of the measurement.
the process noise and sensor noise are uncorrelated, that is, $S_{k}=0$ for all $k \geqslant 0$. Next, we obtain estimates of the position and velocity of m_{1}, \ldots, m_{20} using two sets of measurements y, one with a signal to noise ratio (SNR) of 20 dB and another with a SNR of 1 dB . The measurements of position of m_{9} and m_{12} with different signal to noise rations are shown in figure 3.

We first choose $\Gamma_{k}=I_{2 N}$ and $L_{k}=I_{2 N}$, that is, the available measurements are injected into all of the states of the estimator, and the errors between all of the states and the corresponding state estimates are weighted. In this case, the one-step and two-step Kalman filters are equivalent. The state estimates are obtained using the two-step filter (72)-(75). The root mean square (RMS) value of the error in the estimates of position of m_{4} when measurements with a signal to noise ratio of 20 dB and 1 dB , respectively, are used is shown in figure 4. The RMS value of the errors in position and velocity estimates of m_{1}, \ldots, m_{20} are plotted in figures 5 and 6, respectively.

Next, we obtain estimates by constraining the output injection into only some of the states of the estimator. First, we choose $\Gamma_{k}=\Lambda_{1}$ for all $k \geqslant 0$, where

$$
\Lambda_{1} \triangleq\left[\begin{array}{lll}
0_{24 \times 8} & I_{24} & 0_{24 \times 8} \tag{154}
\end{array}\right]^{\mathrm{T}}
$$

so that the measurements are injected into only the estimates of the positions and velocities of m_{5}, \ldots, m_{16}. Furthermore, we choose $L_{k}=I_{2 N}$ so that the errors in all of the state estimates are weighted equally. The RMS value of the error in the position estimate of m_{4} obtained when $\Gamma_{k}=\Lambda_{1}$ for all $k \geqslant 0$ is shown in figure 4. The RMS value of the errors in position and velocity estimates of m_{1}, \ldots, m_{20}, are shown in figures 5 and 6 , respectively. Finally, we choose $\Gamma_{k}=\Lambda_{2}$ for all $k \geqslant 0$, where

$$
\Lambda_{2} \triangleq\left[\begin{array}{lll}
0_{8 \times 16} & I_{8} & 0_{8 \times 16} \tag{155}
\end{array}\right]^{\mathrm{T}}
$$

Figure 5. RMS value of the errors in the position estimates of all of the masses when measurements with (a) $\mathrm{SNR}=20 \mathrm{~dB}$ and (b) SNR $=1 \mathrm{~dB}$ are injected into all of the state estimates $\left(\Gamma_{k}=I_{2 N}\right)$ and when measurements are injected into only the position and velocity estimates of some of the masses $\left(\Gamma_{k} \neq I_{2 N}\right)$. The performance of the zero-gain filter with $K_{k} \equiv 0$ is also shown for comparison. When measurements are injected into a larger number of the estimator states, the performance of the estimator improves. The arrows indicate the masses whose position measurements are available. As the SNR of the measurement increases, the difference in the performance of the filters with $\Gamma_{k}=I_{2 N}$ and $\Gamma_{k} \neq I_{2 N}$ decreases.
so that only the estimates of the positions and velocities of m_{9}, \ldots, m_{12} are directly affected by the measurements y. Again, we choose $L_{k}=I_{2 N}$ for all $k \geqslant 0$, and the performance of the estimator with $\Gamma_{k}=\Lambda_{2}$ for all $k \geqslant 0$ is shown in figures 4-6.

When $\Gamma_{k}=I_{2 N}$, the measurements are injected directly into all of the states of the estimator, and figure 4 confirms the expected fact that the performance of the classical Kalman filter with $\Gamma_{k}=I_{2 N}$ is better than the estimators with $\Gamma_{k} \neq I_{2 N}$. Note that the number of states into which measurements are injected when $\Gamma_{k}=\Lambda_{2}$ is less than the number of states that are
directly affected by measurements when $\Gamma_{k}=\Lambda_{1}$, and it follows from figure 4 that reducing the number of estimator states that are directly affected by measurements degrades the performance of the estimator. These observations are consistent with Proposition 6.

Although the errors in the position and velocity estimates of all of the masses are weighted in all three cases $\Gamma_{k}=I_{2 N}, \Gamma_{k}=\Lambda_{1}$, and $\Gamma_{k}=\Lambda_{2}$, figures 5 and 6 demonstrate that the error in the position and velocity estimates of all of the masses is the least when $\Gamma_{k}=I_{2 N}$ and the measurements are directly injected

Figure 6. RMS value of the errors in the velocity estimates from the optimal filter with $\Gamma_{k}=I_{2 N}$ and $\Gamma_{k} \neq I_{2 N}$ when measurements with (a) $\mathrm{SNR}=20 \mathrm{~dB}$ and (b) $\mathrm{SNR}=1 \mathrm{~dB}$ are used. When $\Gamma_{k} \neq I_{2 N}$, the one-step and two-step filters are not equivalent, and the results presented here are obtained using the two-step estimator. The performance of the estimators with $\Gamma_{k} \neq I_{2 N}$ improves when additional states of the estimator are directly injected with measurements.
into all of the estimator states. Finally, it can be seen that when the measurements are injected into a subset of the estimator states, then the estimates of the states that are not directly affected by the measurements improve. The performance of the zero-gain filter with $K_{k}=0$ for all $k \geqslant 0$ is also plotted in figures 4-6 for comparison.

10. Conclusions

This paper presents an extension of the Kalman filter that constrains data injection into only a specified subset of state estimates rather than the entire state estimate. This extension accounts for correlation
between the process noise and the sensor noise. Conditions are given under which the one-step and two-step forms of the filter are equivalent. Future work will consider reduced-rank square root formulations of this filter to reduce the computational burden of propagating the covariance. More general conditions that guarantee the existence of a steady-state covariance for linear time-invariant dynamics are also of interest.

Acknowledgements

This research was supported by the National Science Foundation Information Technology Research

Initiative, through Grant ATM-0325332 to the University of Michigan, Ann Arbor, USA.

References

A. Gelb, Applied Optimal Estimation, The M.I.T. Press, Cambridge, MA, 1974.
D.S. Bernstein and D.C. Hyland, "The optimal projection equations for reduced-order state estimation", IEEE Trans. Autom. Contr., AC-30, pp. 583-585, 1985.
P. Hippe and C. Wurmthaler, "Optimal reduced-order estimators in the frequency domain: the discrete-time case", Int. J. Contr., 52, pp. 1051-1064, 1990.
W.M. Haddad and D.S. Bernstein, "Optimal reduced-order observerestimators", AIAA J. Guid. Dyn. Contr., 13, pp. 1126-1135, 1990.
C.-S. Hsieh, "The unified structure of unbiased minimum-variance reduced-order filters", Proc. Contr. Dec. Conf., pp. 4871-4876, Maui, HI, December 2003.
B.F. Farrell and P.J. Ioannou, "State estimation using a reduced-order Kalman filter", J. Atmos. Sci., 58, pp. 3666-3680, 2001.
A.W. Heemink, M. Verlaan and A.J. Segers, "Variance reduced ensemble Kalman filtering", Mon. Weather Rev., 129, pp. 17181728, 2001.
J. Ballabrera-Poy, A.J. Busalacchi and R. Murtugudde, "Application of a reduced-order Kalman filter to initialize a coupled atmosphereocean model: impact on the prediction of El Nino", J. Climate, 14, pp. 1720-1737, 2001.
P. Fieguth, D. Menemenlis and I. Fukumori, "Mapping and pseudoinverse algorithms for ocean data assimilation", IEEE Trans. Geoscience and Remote Sensing, 41, pp. 43-51, 2003.
O. Barrero, D.S. Bernstein and B.L.R. De Moor, "Spatially localized Kalman filtering for data assimilation", Proc. Amer. Contr. Conf., Portland, pp. 3468-3473, 2005.
D.I. Lawrie, P.J. Fleming, G.W. Irwin and S.R. Jones, "Kalman filtering: a survey of parallel processing alternatives", Proc. IFAC Workshop on Algorithms and Architectures for Real-Time Control, Pergamon, Seoul, South Korea, pp. 49-56, 1992.
F.L. Lewis, Optimal Estimation, John Wiley and Sons, New York, USA, 1986.
L. Scherliess, R.W. Schunk, J.J. Sojka and D.C. Thompson, "Development of a physics-based reduced state Kalman filter for the ionosphere", Radio Science, 39-RS1S04, pp. 1-22, 2004.
D.S. Bernstein, Matrix Mathematics, Princeton University Press, Princeton, USA, 2005.

[^0]: *Corresponding author. Email: dsbaero@umich.edu

