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In applications involving large scale systems such as discretized partial differential equations,
it is often of interest to use data to estimate state variables associated with a subregion of the

spatial domain. In this paper we derive an extension of the classical Kalman filter in which
data injection is confined to a subspace of the system states.

1. Introduction

The classical Kalman filter provides optimal

least-squares estimates of all of the states of a linear

time-varying system under process and measurement

noise. In many applications, however, optimal estimates

are desired for a specified subset of the system states,

rather than all of the system states. For example, for

systems arising from discretized partial differential

equations, the chosen subset of states can represent a

subregion of the spatial domain. However, it is well

known that the optimal state estimator for a subset of

system states coincides with the classical Kalman filter

(Gelb 1974, pp. 104–109).
For applications involving high-order systems, it is

often difficult to implement the classical Kalman filter,

and thus it is of interest to consider computationally

simpler filters that yield suboptimal estimates of a

specified subset of states. One approach to this problem

is to consider reduced-order Kalman filters. These

reduced-complexity filters provide state estimates that

are suboptimal relative to the classical Kalman filter

(Bernstein and Hyland 1985, Hippe and Wurmthaler

1990, Haddad and Bernstein 1990, Hsieh 2003).

Alternative variants of the classical Kalman filter have

been developed for computationally demanding

applications such as weather forecasting (Farrell and

Ioannou 2001, Heemink et al. 2001, Ballabrera et al.

2001, Fieguth et al. 2003), where the classical Kalman

filter gain and covariance are modified so as to reduce

the computational requirements.
The present paper is motivated by computationally

demanding applications such as those discussed in

Farrell and Ioannou (2001), Heemink et al. (2001),

Ballabrera et al. (2001) and Fieguth et al. (2003). For

such applications, a high-order simulation model is

assumed to be available, but the derivation of

a reduced-order filter in the sense of Bernstein and

Hyland (1985), Hippe and Wurmthaler (1990),

Haddad and Bernstein (1990), Hsieh (2003) is not

feasible due to the high dimensionality of the analytic

model. Instead, we use a full-order state estimator

based directly on the simulation model. However,

rather than implementing the classical Kalman filter,

we derive an optimal spatially localized Kalman filter

in which the structure of the filter gain is constrained

to reflect the desire to estimate a specified subset of

states. Our development is also more general than the

classical treatment since the state dimension can be

time varying, which is useful for variable-resolution

discretizations of partial differential equations.

Some of the results in this paper appeared in

Barerro et al. (2005).
The use of a spatially localized Kalman filter in place

of the classical Kalman filter is also motivated by com-

putational architecture constraints arising from a multi-

processor implementation of the Kalman filter (Lawrie

et al. 1992) in which the Kalman filter operations can

be confined to the subset of processors associated with

the states whose estimates are desired.
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2. Spatially localized Kalman filter

We consider the discrete-time dynamical system

xkþ1 ¼ Akxk þ Bkuk þ wk, k50, ð1Þ

with output

yk ¼ Ckxk þ vk, ð2Þ

where xk2R
nk , uk2R

mk , yk2R
lk , and Ak ,Bk ,Ck are

known real matrices of appropriate size. The input uk
and output yk are assumed to be measured, and
wk2R

nkþ1 and vk2R
lk are zero-mean white noise

processes with variances and correlation

E wkw
T
j

h i
¼ Qk�kj, E wkv

T
j

h i
¼ Sk�kj,

E vkv
T
j

h i
z ¼ Rk�kj, ð3Þ

where �kj is the Kronecker delta, and E½�� denotes
expected value. We assume that Rk is positive definite.
The initial state x0 is assumed to be uncorrelated with
wk and vk. Note that the dimension nk of the state xk
can be time varying, and thus Ak2R

nkþ1�nk is not
necessarily square.
For the system (1) and (2), we consider a state

estimator of the form

x̂kþ1 ¼ Akx̂k þ Bkuk þ GkKkð yk � ŷkÞ, k50, ð4Þ

with output

ŷk ¼ Ckx̂k, ð5Þ

where x̂k2R
nk , ŷk2R

lk , Gk2R
nkþ1�pk , and Kk2R

pk�lk .
The non-traditional feature of (4) is the presence of
the term Gk, which, in the classical case is the identity
matrix. Here, Gk constrains the state estimator so that
only estimator states in the range of Gk are directly
affected by the gain Kk. For example, Gk can have the
form

Gk ¼

0

Ipk

0

2
64

3
75, ð6Þ

where Ir denotes the r� r identity matrix. We assume
that Gk has full column rank for all k � 0.
Next, define the state-estimation error state ek by

ekXxk � x̂k, ð7Þ

which satisfies

ekþ1 ¼ ~Akek þ ~wk, k � 0, ð8Þ

where

~AkXAk � GkKkCk, ~wkXwk � GkKkvk: ð9Þ

Furthermore, we define the state-estimation error

JkðKkÞXE ðLkekþ1Þ
TLkekþ1

� �
, ð10Þ

where Lk2R
qk�nkþ1 determines the weighted error

components. Then,

JkðKkÞ ¼ tr Pkþ1Mk½ �, ð11Þ

where the error covariance Pk2R
nk�nk is defined by

PkXE eke
T
k

� �
ð12Þ

and MkXLT
kLk2R

nkþ1�nkþ1 . We assume that Mk is
positive definite for all k50. The following lemma
will be useful.

Lemma 1: The error (7) satisfies

E ek ~w
T
k

� �
¼ 0: ð13Þ

It thus follows from (8) and (13) that

E ekþ1e
T
kþ1

� �
¼ ~AkE eke

T
k

� �
~AT
k þ E ~wk ~w

T
k

� �
: ð14Þ

Note that (3) and (9) imply that

E ~wk ~w
T
k

� �
¼ ~Qk, ð15Þ

where

~QkXQk � GkKkS
T
k � SkK

T
kG

T
k þ GkKkRkK

T
kG

T
k : ð16Þ

It thus follows from (12), (14) and (15) that Pk satisfies

Pkþ1 ¼ ~AkPk
~AT
k þ ~Qk: ð17Þ

Therefore,

JkðKkÞ ¼ tr ð ~AkPk
~AT
k þ ~QkÞMk

h i
: ð18Þ

1864 J. Chandrasekar et al.
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It follows from (9) and (16) that Jk(Kk) can be
expressed as

JkðKkÞ

¼ tr
�
ðAk�GkKkCkÞPkðAk�GkKkCkÞ

T
þ ~Qk

�
Mk

h i
: ð19Þ

3. Removing the noise correlation

In the classical case where nk¼ n and Gk ¼ In for all
k50, the correlation Sk can be removed by introducing
a linear combination of the measurements as
deterministic inputs to the plant (Lewis 1986, pp.
181–183]. For the case Gk 6¼ In, we now state a condition
under which we can derive an equivalent system with
uncorrelated process and sensor noise.

Proposition 1: Let k50 and suppose there exists
Hk2R

pk�lk such that

GkHkRk ¼ Sk: ð20Þ

Then

JkðKkÞ ¼ JkðKkÞ, ð21Þ

where

JkðKkÞXtr
h�
ðAk � GkKkCkÞPkðAk � GkKkCkÞ

T

þQk þ GkKkRkK
T

kG
T
k ÞMk

i
, ð22Þ

KkXKk �Hk, AkXAk � GkHkCk, ð23Þ

and

QkXQk � GkHkS
T
k � SkH

T
kG

T
k þ GkHkRkH

T
kG

T
k : ð24Þ

Proof: It follows from (24) that (18) can be
expressed as

JkðKkÞ ¼ tr
h�

ðAk � GkKkCkÞPkðAk � GkKkCkÞ
T

þQk þ GKkRkK
T

kG
T
k � GkKkS

T
k � SkK

T

kG
T
k

þ GkKkRkH
T
kG

T
k þ GkHkRkK

T

kG
T
k

�
Mk

i
:

Using (20) yields (22). œ

Note that replacing Ak, Qk, and Kk in (18) by Ak,
Qk, and Kk, respectively, and setting Sk¼ 0 in (18)
yields (22). Hence, JkðKkÞ is the cost of a system with

uncorrelated process and sensor noise. It follows from
(21) that JkðKkÞ can be minimized with respect to Kk,
and Kk can be determined by using (23). If Gk is
square and thus invertible by assumption, then
Hk ¼ G�1

k SkR
�1
k . In general, however, there may not

exist a matrix Hk satisfying (20).

4 One-step spatially constrained Kalman filter

In this section we derive a one-step spatially constrained
Kalman filter that minimizes the state-estimation
error (18). For convenience, we define

ŜkXAkPkC
T
k þ Sk, R̂kXRk þ CkPkC

T
k , ð25Þ

and �k2R
nkþ1�nkþ1 by

�kXGkðGT
kMkGkÞ

�1GT
kMk: ð26Þ

Note that �k is an oblique projector, that is, �2
k ¼ �k,

but is not necessarily symmetric. Next, define the
complementary oblique projector �k? by

�k?XInkþ1
� �k: ð27Þ

Proposition 2: The gain Kk that minimizes the cost
Jk(Kk) in (18) is given by

Kk ¼ GT
kMkGk

� ��1
GT
kMkŜkR̂

�1
k , ð28Þ

where the error covariance Pk is updated using

Pkþ1 ¼AkPkA
T
k þ�k?ŜkR̂

�1
k ŜT

k�
T
k?

þQk� ŜkR̂
�1
k ŜT

k : ð29Þ

Proof: Setting J0kðKkÞ ¼ 0 and using the fact
that GT

kMkGk is positive definite for all k50 yields
(28). It follows from Bernstein (2005, p. 286) that,
for all 0 < � < 1, all distinct A1,A22R

n�m,
and positive-definite B2R

m�m, tr �ð1� �ÞðA1 � A2Þ�½

BðA1 � A2Þ
T
� > 0. Hence, the mapping A ! trðABATÞ

is strictly convex. It thus follows that Jk(Kk) is strictly
convex, and hence Kk in (29) is the unique global
minimizer of Jk(Kk). To update the error covariance,
we first note that

GkKk ¼ �kŜkR̂
�1
k , ð30Þ

where �k is defined by (26). Now, using (30) with (17)
yields (29). œ

Kalman filtering with constrained output injection 1865
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If either Mk ¼ Inkþ1
or Lk ¼ GT

k , then �k is the
orthogonal projector

�k ¼ GkðGT
kGkÞ

�1GT
k , ð31Þ

and it follows from (28) that

Kk ¼ GT
kGk

� ��1
GT
k ŜkR̂

�1
k : ð32Þ

Alternatively, specializing to the case in which Gk is
square yields �k ¼ In and �k? ¼ 0, as well as the
standard Riccati update equation

Pkþ1 ¼ AkPkA
T
k þQk � ðAkPkC

T
k þ SkÞ

� ðRk þ CkPkC
T
k Þ

�1
ðCkPkA

T
k þ ST

k Þ: ð33Þ

In this case the Kalman filter gain is given by

Kk ¼ ðAkPkC
T
k þ SkÞðRk þ CkPkC

T
k Þ

�1
ð34Þ

and the estimator equation is

x̂kþ1 ¼ Akx̂k þ Bkuk þ Kkð yk � ŷkÞ: ð35Þ

Furthermore, the one-step filter provides optimal
estimates of all of the states, that is, the filter does not
depend on the state-estimate error weighting Lk.
Next, we show that increasing the number of

estimator states that are directly injected with the
output improves the filter performance. Define �̂k and
�̂k? by

�̂kXĜk ĜT
kMkĜk

� ��1

ĜT
kMk, �̂k?XI� �̂k: ð36Þ

where Ĝk has full column rank. Next, let K̂k be the
optimal gain given by (28) with Gk replaced by Ĝk,
that is,

K̂X ĜT
kMkĜk

� ��1

ĜT
kMkŜkR̂

�1
k , ð37Þ

and let P̂kþ1 be the corresponding error covariance
when K̂k is used, that is,

P̂kþ1 ¼ AkPkA
T
k þ �̂k?ŜkR̂

�1
k ŜT

k �̂
T
k?

þQk � ŜkR̂
�1
k ŜT

k : ð38Þ

Proposition 3: Assume that Mk¼ I, let Ĝk ¼ ½Gk Gk�,
and assume Ĝk has full column rank. Then

trðP̂k þ 1Þ4trðPk þ 1Þ: ð39Þ

Proof: Noting that �k and �̂k are symmetric, it follows
from (36) that

�̂k ¼ �k þ �k?Gk GT
k�k?Gk

� ��1
GT

k�k?: ð40Þ

Therefore,

�k? ¼ �̂k? þ �k?Gk GT
k�k?Gk

� ��1
GT

k�k?: ð41Þ

Hence, subtracting (35) from (29) yields

trðPkþ1 � P̂kþ1Þ ¼ tr ð�k? � �̂k?ÞŜkR̂
�1
k ŜT

k

� �
50: h

5. Two-step spatially constrained Kalman filter

In this section, we consider a two-step state estimator.
The data assimilation step is given by

wda
k ¼ �kKw, kð yk � yfkÞ, k50, ð42Þ

and

xdak ¼ xfk þ GkKx, kð yk � yfkÞ, k50, ð43Þ

where wda
k 2R

nk is the data assimilation estimate of wk,
xdak 2R

nk is the data assimilation estimate of xk,
and xfk2R

nk is the forecast estimate of xk. The forecast
step or physics update is given by

xfkþ1 ¼ Akx
da
k þ Bkuk þ wda

k , k50, ð44Þ

yfk ¼ Ckx
f
k: ð45Þ

Here, �k is analogous to Gk in ensuring that only
components of the process noise estimate in the range
of �k are directly affected by the gain Kw,k. We assume
that �k has full column rank for all k � 0. In traditional
notation, xdak is denoted by x̂kjk to indicate that x̂kjk is the
estimate of xk obtained by using the measurements
y0, . . . , yk, while xfk is denoted by x̂kjk�1 to indicate
that x̂kjk�1 is the estimate of xk obtained by using the
measurements y0, . . . , yk�1. The notation xfk and xdak is
motivated by the data assimilation literature
(Scherliess et al. 2004).

Define the forecast state error efk by

efkXxk � xfk ð46Þ

1866 J. Chandrasekar et al.
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and the forecast error covariance Pf
k by

Pf
kXE efk efk

� �Th i
: ð47Þ

It follows from (1) and (44) that

efkþ1 ¼ Ake
da
k þ wk � wadak , k � 0, ð48Þ

where the data assimilation error state edak is defined by

edak Xxk � xdak : ð49Þ

Lemma 2: The forecast error efk satisfies

E efkw
T
k

� �
¼ 0, ð50Þ

E efkv
T
k

� �
¼ 0: ð51Þ

Now, define the process noise estimation error

Jw, kðKw, kÞXE Hk wk � wda
k

� �� �T
Hk wk � wda

k

� �h i
, ð52Þ

where Hk2R
dk�nkþ1 determines the weighted error

components. For convenience, define

NkXHT
kHk, �kX�k �T

kNk�k

� ��1
�T

kNk,

�k?XInkþ1
��k: ð53Þ

Proposition 4: The gain Kw,k that minimizes the cost
Jw, kðKw, kÞ is given by

Kw, k ¼ �T
kNk�k

� ��1
�T

kNkSk CkP
f
kC

T
k þ RkÞ

�1:
�

ð54Þ

Proof: Substituting (42) into (52), and using (3) and
(50) in the resulting expression yields

Jw,kðKw,kÞ ¼ tr
h�

Qk�SkK
T
w,k�

T
k ��kKw,kS

T
k

þ�kKw,kðCkP
f
kCkþRkÞK

T
w,k�

T
k

�
Nk

i
: ð55Þ

As in the proof of Proposition 2, Jw, kðKw, kÞ is strictly
convex. To obtain the optimal gain Kw,k, we set
J0w, kðKw, kÞ ¼ 0, which yields (54), the unique global
minimizer of Jw, kðKw, kÞ. œ

Next, define the state-estimation error

Jx, kðKx, kÞXE Lke
da
k

� �T
Lke

da
k

h i
ð56Þ

so that

Jx, kðKx, kÞ ¼ tr Pda
k Mk

� �
, ð57Þ

where the data assimilation error covariance Pda
d 2R

nk�nk

is defined by

Pda
k XE edak edak

� �Th i
: ð58Þ

It follows from (43), (45), and (49) that

edak ¼ ~Kx, ke
f
k � GkKx, kvk, ð59Þ

where

~Kx, kXI� GkKx, kCk: ð60Þ

Substituting (42) and (59) into (48) yields

efkþ1 ¼ ðAk
~Kx, k ��kKw, kCkÞe

f
k

þ wk � ðAkGkKx, k þ �kKw, kÞvk: ð61Þ

Next, define

R f
kXRk þ CkP

f
kC

T
k ð62Þ

and

Qf
kXQk �

�
AkP

f
kC

T
k þ Sk

��
Rf

k

��1�
AkP

f
kC

T
k þ Sk

�T
þ AkP

f
kC

T
k

�
Rf

k

��1
CkP

f
kA

T
k

þ
�
Ak�k?P

f
kC

T
k þ �k?Sk

��
Rf

k

��1

�
�
Ak�k?P

f
kC

T
k þ �k?Sk

�T
� Ak�k?P

f
kC

T
k

�
Rf

k

��1
CkP

f
k�

T
k?A

T
k : ð63Þ

Proposition 5: The gain Kx,k that minimizes the cost
Jx, kðKx, kÞ is given by

Kx, k ¼ GT
kMkGk

� ��1
GT
kMkP

f
kC

T
k

�
Rf

k

��1
, ð64Þ

where Pda
k and Pf

k are given by

Pda
k ¼ Pf

k � Pf
kC

T
k

�
R f

k

��1
CkP

f
k

þ �k?P
f
kC

T
k

�
R f

k

��1
CkP

f
k�

T
k? ð65Þ

and

Pf
kþ1 ¼ AkP

da
k AT

k þQf
k: ð66Þ

Proof: Using (58) and (59), Pda
k satisfies

Pda
k ¼ ~Kx, kP

f
k
~KT
x, k �

~Kx, kE
�
efkv

T
k

�
KT

x, kG
T
k

� GkKx, kE
�
vk
�
efk
�T� ~KT

x, k þ GkKx, kRkK
T
x, kG

T
k : ð67Þ

Substituting (51) into (67) and substituting the resulting
equation into (57) yields

Jx, kðKx, kÞ ¼ tr ~Kx, kP
f
k
~KT
x, k þ GkKx, kRkK

T
x, kG

T
k

� �
Mk

h i
:

ð68Þ

Kalman filtering with constrained output injection 1867
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To obtain the optimal gain Kx,k, we set J0x, kðKx, kÞ ¼ 0,
which yields (64). As in the proof of Proposition 2, it
can be shown that Jx, kðKx, kÞ is strictly convex, and
hence Kx,k in (64) is the unique global minimizer of
Jx, kðKx, kÞ. Substituting (50) and (64) into (67) yields (65).
To update the forecast error covariance, we substitute

(42) into (48) so that

efkþ1 ¼ Ake
da
k � �kKw, kCke

f
k þ wk � �kKw, kvk:

Hence,

P f
kþ1 ¼ AkP

da
k AT

k þQk þ�kKw, k

�
CkP

f
kC

T
k þ Rk

�
KT

w, k�
T
k

þ AkE
�
edak wT

k

�
þ E

�
wk

�
edak

�T�
AT

k

� AkE
�
edak

�
efk
�T�

CT
kK

T
w, k�

T
k

� �kKw, kCkE
�
efk
�
edak

�T�
AT

k

� AkE
�
edak vTk

�
KT

w, k�
T
k ��kKw, kE

�
vk
�
edak

�T�
AT

k

� E
�
wk

�
efk
�T�

CT
kK

T
w, k�

T
k ��kKw, kCkE

�
efkw

T
k

�
� E

�
wkv

T
k

�
KT

w, k�
T
k ��kKw, kE

�
vkw

T
k

�
þ �kKw, k

�
CkE

�
efkv

T
k

�
þ E

�
vk
�
efk
�T�

CT
k

�
KT

w, k�
T
k : ð69Þ

Substituting (59) into (69), and using (50) and (51) in the
resulting expression yields (11). œ

The two-step estimator can be summarized as follows

Data assimilation step:

wda
k ¼ �kKw, k

�
yk � yfk

�
, ð70Þ

Kw, k ¼
�
�T

kNk�k

��1
�T

kNkSk

�
R f

k

��1
, ð71Þ

xdak ¼ xfk þ GkKx, k

�
yk � yfkÞ, ð72Þ

Kx, k ¼
�
GT
kMkGk

��1GT
kMkP

f
kC

T
k

�
R f

k

��1
, ð73Þ

Pda
k ¼ Pf

k � Pf
kC

T
k

�
Rf

k

��1
CkP

f
k

þ �k?P
f
kC

T
k

�
Rf

k

��1
CkP

f
k�

T
k?: ð74Þ

Forecast step:

xfkþ1 ¼ Akx
da
k þ Bkuk þ wda

k , ð75Þ

P f
kþ1 ¼ AkP

da
k AT

k þQf
k: ð76Þ

Assume that Gk and �k are square for all k50.
Substituting (70) and (72) into (75) yields the familiar
one-step Kalman filter

xfkþ1 ¼Akx
f
kþBkuk

þ
�
AkP

f
kC

T
k þSk

��
RkþCkP

f
kCk

��1�
yk�yfkÞ: ð77Þ

Furthermore, substituting (74) into (75) yields

P f
kþ1 ¼ AkP

f
kA

T
k �

�
AkP

f
kCk þ Sk

�
�

�
Rk þ CkP

f
kC

T
k

��1�
CkP

f
kA

T
k þ ST

k

�
þQk: ð78Þ

Next, as in Proposition 3, we show that when additional
estimator states are directly injected with the output
data, the performance of the two-step filter improves.
Define K̂x, k by (64) with Gk replaced by Ĝk, that is,

K̂x, k ¼
�
ĜT
kMkĜk

��1ĜT
kMkP

f
kC

T
k

�
R f

k

��1
: ð79Þ

Furthermore, let P̂da
k be the corresponding data

assimilation error covariance when K̂x, k is used instead
of Kx,k, that is,

P̂da
k XPf

k � Pf
kC

T
k

�
R f

k

��1
CkP

f
k

þ �̂k?P
f
kC

T
k

�
R f

k

��1
CkP

f
k�̂

T
k?: ð80Þ

Proposition 6: Let Mk¼ I, Ĝk ¼ ½Gk Gk�, and assume
that Ĝk has full column rank. Then

tr
�
P̂da
k Þ4tr

�
Pda
k

�
: ð81Þ

Proof: Subtracting (80) from (65) and using the fact
from (41) that �k? � �̂k? is positive semi-definite,
it follows that

tr
�
Pda
k � P̂da

k

�
¼ tr

�
�k? � �̂k?

�
Pf
kC

T
k

�
R f

k

��1
CkP

f
k

h i
50:

œ

6. Comparison of the one-step and two-step filters

When Gk and �k are square, comparing (33) with
(78) and (35) with (75) shows that the two-step filter
is equivalent to the one-step filter with
Kk ¼ AKx, k þ Kw, k, x̂k ¼ xfk and Pk ¼ Pf

k. When Gk

and �k are not square, we obtain a sufficient condition
under which the one-step and two-step spatially
constrained Kalman filters are equivalent.

Proposition 7: Suppose that x̂0 ¼ xf0 and P0 ¼ Pf
0, and,

for all k50,

Ak�k?P
f
kC

T
k þ �k?Sk ¼ �k?

�
AkP

f
kC

T
k þ Sk

�
: ð82Þ

Then the one-step filter (28), (29) and the two-step filter in
(70)–(76) are equivalent, that is, for all k> 0, x̂k ¼ x f

k

and Pk ¼ Pf
k.

1868 J. Chandrasekar et al.
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Proof: Substituting (63) and (74) into (76) yields

P f
kþ1 ¼ AkP

f
kA

T
k þ

�
Ak�k?P

f
kC

T
k þ �k?Sk

��
R f

k

��1

�
�
Ak�k?P

f
kC

T
k þ �k?Sk

�T
�
�
AkP

f
kC

T
k þ Sk

�
�

�
R f

k

��1�
AkP

f
kC

T
k þ Sk

�T
þQk: ð83Þ

Substituting (88) into (83) yields

P f
kþ1 ¼ AkP

f
kA

T
k þ �k?

�
AkP

f
kC

T
k þ Sk

��
R f

k

��1

�
�
AkP

f
kC

T
k þ Sk

�T
�T
k? þQk �

�
AkP

f
kC

T
k þ Sk

�
�

�
R f

k

��1�
AkP

f
kC

T
k þ Sk

�T
: ð84Þ

Since Pf
0 ¼ P0, it follows from (25), (29), and (62) that,

for all k>0, Pf
k ¼ Pk.

Next, substituting (42) and (72) into (35) yields

x f
kþ1 ¼ Akx

f
k þ Bkuk

þ
�
Ak�kP

f
kC

T
k þ �kSk

��
Rf

k

��1�
yk � yfkÞ: ð85Þ

Now, (62) and (88) imply that

x f
kþ1 ¼ Akx

f
k þ Bkuk þ �k

�
AkP

f
kC

T
k þ Sk

�
�

�
CkP

f
kC

T
k þ Rk

��1�
yk � Ckx

f
kÞ: ð86Þ

It follows from (4) and (28) that, for all k50,

x̂kþ1 ¼ Akx̂k þ Bkuk þ �k

�
AkPkC

T
k þ Sk

�
�

�
CkPkC

T
k þ Rk

��1�
yk � Ckx̂k

�
: ð87Þ

Since x̂0 ¼ xf0 and Pf
k ¼ Pk for all k50, (86) and (87)

imply that x̂k ¼ x f
k for all k50. œ

Note that, if Gk and �k are square, then �k? ¼ 0 and
�k? ¼ 0, and thus (88) is satisfied. Furthermore, if
Sk¼ 0 or �k ¼ �k, then Proposition 7 specializes to the
following result.

Corollary 1: Suppose that x̂0 ¼ xf0, P0 ¼ Pf
0, and, for

all k50, either Sk¼ 0 or �k ¼ �k. If

Ak�k? ¼ �k?Ak, ð88Þ

for all k50, then the one-step filter (28), (29) and the
two-step filter in (70)–(76) are equivalent, that is, for all
k> 0, x̂k ¼ x f

k and Pk ¼ Pf
k.

Next, we present a converse of Proposition 7.

Proposition 8: Assume that the one-step filter (28),
(29) and the two-step filter in (70)–(76) are equivalent,
that is, for all k50, x̂k ¼ x f

k and Pk ¼ Pf
k. Then, for

all k50, there exists an orthogonal matrix Uk2R
lk�lk

such that

�
Ak�k?P

f
kC

T
k þ �k?Sk

��
Rf

k

��1=2
Uk

¼ �k?

�
AkPkC

T
k þ Sk

�
ðRf

k

��1=2
: ð89Þ

Proof: Since Pk ¼ Pf
k for all k50, subtracting (29)

from (84) yields

�k?Ŝk

�
CkPkC

T
k þRk

��1
ŜT
k�

T
k?

¼
�
Ak�k?P

f
kC

T
k þ�k?Sk

��
Rf

k

��1

�
�
Ak�k?P

f
kC

T
k þ�k?Sk

�T
: ð90Þ

Hence, (89) follows from (25) and Bernstein
(2005 p. 193]. œ

Neither the one-step nor the two-step filter performs
consistently better than the other. However, there are
special cases when the performance of one filter is
better than the other.

Proposition 9: Assume that Ck¼ 0 and Pk ¼ Pf
k. If Gk

is square and �k is not square, then

Pkþ14P f
kþ1: ð91Þ

Alternatively, if Gk is not square and �k is square, then

P f
kþ14Pkþ1: ð92Þ

Proof: Assume that Gk is square and �k is not square.
It then follows from (26), (27) and (53) that

�k? ¼ 0, �k? 6¼ 0:

Substituting (74) and (63) into (76), and using Ck¼ 0
and �k? ¼ 0 yields

P f
kþ1 ¼ AkP

f
kA

T
k þ �k?Sk

�
CkP

f
kC

T
k þ Rk

��1

� ST
k�

T
k? � Sk

�
CkP

f
kC

T
k þ Rk

��1
ST
k þQk: ð93Þ

Substituting Ck¼ 0 and �k? ¼ 0 into (29) yields

Pkþ1 ¼ AkPkA
T
k � Sk

�
CkPkC

T
k þ Rk

��1
ST
k þQk: ð94Þ

Subtracting (94) from (93) yields (91).
Alternatively, if �k is square and Gk is not

square, then

�k? 6¼ 0, �k? ¼ 0:

Kalman filtering with constrained output injection 1869
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Substituting (74) and (63) into (76), and using Ck¼ 0
and �k? ¼ 0 yields

P f
kþ1 ¼ AkP

f
kA

T
k � Sk

�
CkP

f
kC

T
k þ Rk

��1
ST
k þQk: ð95Þ

Substituting Ck¼ 0 into (29) yields

Pkþ1 ¼ AkPkA
T
k þ �k?Sk

�
CkPkC

T
k þ RkÞ

�1

� ST
k�

T
k? � Sk

�
CkPkC

T
k þ Rk

��1
ST
k þQk: ð96Þ

Subtracting (95) from (96) yields (92). œ

7. Comparison of the open-loop and closed-loop

covariances

Next, we consider the zero-gain filter

x̂ol, kþ1 ¼ Akx̂ol, k þ Bkuk ð97Þ

with the zero-gain state-estimation error state

eol, kXxk � x̂ol, k: ð98Þ

It follows from (1), (97) and (98) that

Pol, kþ1 ¼ AkPol, kA
T
k þQk, ð99Þ

where the zero-gain error covariance Pol, k2R
nk�nk is

defined by Pol, kXE½eol, ke
T
ol, k�. First, we show that the

performance of the Kalman filter is better than the
performance of the zero-gain filter.

Proposition 10: If �k ¼ Inkþ1
and Pk4Pol, k, then

Pkþ14Pol, kþ1.

Proof: Since �k ¼ Inkþ1
, it follows from (27) that

�k? ¼ 0, and hence (29) implies that

Pkþ1 ¼ AkPkA
T
k þQk � ŜkR̂

�1
k ŜT

k : ð100Þ

Subtracting (100) from (99) yields

Pol, kþ1 � Pkþ1 ¼ Ak

�
Pol, k � Pk

�
AT

k þ ŜkR̂
�1
k Ŝk50: h

If �k 6¼ Inkþ1
, then �k? 6¼ 0, and subtracting (29) from

(99) yields

Pol, kþ1 � Pkþ1 ¼ Ak

�
Pol, k � Pk

�
AT

k

þ ŜkR̂
�1
k ŜT

k � �k?ŜkR̂
�1
k ŜT

k�
T
k?, ð101Þ

which suggests the following negative result.

Proposition 11: If �k 6¼ Inkþ1
and Pk ¼ Pol, k, then

Pkþ14Pol, kþ1 is not always true.

Proof: Let k50, nk ¼ nkþ1 ¼ 2, and

Ak ¼
0 �
0 0:5

� �
, Ck ¼ 0 1½ �,

where 24�2 þ 2� < 1, and

Qk ¼ 0, Sk ¼ 0, Rk ¼ I, Lk ¼ I, Gk ¼
1
2

� �
:

Furthermore, let Pk and Pol, k have the scalar entries

Pk ¼
p1, k p12, k
p12, k p2, k

� �
, Pol, k ¼

pol, 1, k pol, 12, k
pol, 12, k pol, 2, k

� �
:

It follows from (29) and (99) that, if Pk ¼ Pol, k, then

pol, 1, kþ1 � p1, kþ1 ¼
24�2 þ 2�� 1

25

	 

p22, k

1þ p2, k
:

Hence, pol, 1, kþ1 < p1, kþ1, and thus Pol, kþ1 � Pkþ1 is not
positive semidefinite. œ

The following result guarantees that the performance
of the constrained filter is better than the performance of
the zero-gain filter.

Proposition 12: If Pk4Pol, k, then

trðPkþ1MkÞ4 trðPol, kþ1MkÞ: ð102Þ

Proof: It follows from (27) and (101) that

trððPol, kþ1 � Pkþ1ÞMkÞ ¼ tr
�
Ak

�
Pol, k�Pk

�
AT

kMk

�
þ tr

�
�kŜkR̂

�1
k ŜT

kMk

þMkŜkR̂
�1
k ŜT

k�
T
k

� �kŜkR̂
�1
k ŜT

k�
T
kMk

�
: ð103Þ

Since �T
kMk�k ¼ Mk�k ¼ �T

kMk, it follows that

trððPol, kþ1 � Pkþ1ÞMkÞ

¼ tr
�
Ak

�
Pol, k � Pk

�
AT

kMk

�
þ tr

�
�kŜkR̂

�1
k ŜT

k�
T
kMk

�
¼ tr

�
LkAk

�
Pol, k � Pk

�
AT

kL
T
k

�
þ tr

�
Lk�kŜkR̂

�1
k ŜT

k�
T
kL

T
k

�
50 h
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In fact, in the example in Proposition 11, Mk¼ I and

trðPol,kþ1Þ� trðPkþ1Þ ¼
22

25
�þ

3

22

	 
2

þ
5

44

" #
p22,k

1þp2,k
50:

ð104Þ

Hence, trðPkþ1Þ4trðPol, kþ1Þ, and the one-step filter with
constrained output injection performs better than the
zero-gain filter. Although Proposition 12 guarantees
that the performance of the one-step filter with
constrained output injection is better than the
zero-gain filter at time kþ 1, it follows from
Proposition 11 that Pkþ14Pol, kþ1 may not be true.
Hence, Proposition 12 does not guarantee that the
performance of the one-step filter with constrained
output injection is better than the zero-gain filter at
time kþ 2, that is, trðPkþ2Þ4trðPol, kþ2Þ may not be true.
The following result gives a condition under which the

state estimates in the range of Gk are better than the
corresponding estimates from the zero-gain filter.

Proposition 13: If Pk4Pol, k, then

GT
kMkPkþ1MkGk4GT

kMkPol, kþ1MkGk: ð105Þ

Proof: Note that

GT
kMkðPkþ1 � Pol, kþ1ÞMkGk

¼ GT
kMkAkðPk � Pol, kÞA

T
kMkGk

� GT
kMk�kŜkR̂

�1
k ŜT

kMkGk

� GT
kMkŜkR̂

�1
k ŜT

k�
T
kMkGk

þ GT
kMk�kŜkR̂

�1
k ŜT

k�
T
kMkGk: ð106Þ

It follows from (26) that

GT
kMk�k ¼ GT

kMk: ð107Þ

Substituting (107) into (106) yields

GT
kMkðPkþ1 � Pol, kþ1ÞMkGk

¼ GT
kMkAkðPk � Pol, kÞA

T
kMkGk

� GT
kMkŜkR̂

�1
k ŜT

kMkGk40: h

Assume that Gk has the form (6). Then, it follows from
Proposition 13 that, ifMk¼ I, that is, all of the states are
weighted, then the state estimate in the range of Gk

obtained using the Kalman filter with constrained
output injection are better than the state estimates
obtained when data assimilation is not performed.
However, state estimates that are not in the range of

Gk may be worse than estimates obtained when no
data assimilation is performed.

8. Steady-state filters for linear time-invariant systems

Next, we discuss the steady-state behaviour of the
one-step spatially constrained Kalman filter for linear
time-invariant systems. For all k50, let Ak¼A,
Bk¼B, Ck¼C, Gk ¼ G, Lk¼L, Qk¼Q, Sk¼ 0 and
Rk¼R. Assuming R is positive definite, it follows from
Proposition 2 that the optimal gain Kk that minimizes
Jk is given by

Kk ¼
�
GTMG

��1GTMAPkC
TR̂k, ð108Þ

where

R̂kXCPkC
T þ R, MXLTL: ð109Þ

Furthermore, the covariance update is given by

Pkþ1 ¼ APkA
T þQ

þ �?APkC
TR̂�1

k CPkA
T�T

?

� APkC
TR̂�1

k CPkA
T, ð110Þ

where

�XG
�
GTMG

��1GTM, �?XI� �: ð111Þ

If limk!1 Pk exists, then the filtering process reaches
statistical steady state. If G is square and thus by
assumption non-singular, then yk � ŷk is directly
injected into all of the estimator states. In this case,
the following lemma guarantees the existence of
limk!1 Pk.

Lemma 3: If G is square and (A,C ) is detectable, then
PX limk!1 Pk exists and is positive semidefinite. If, in
addition, (A,Q) is stabilizable, then P is positive definite
and A� GKC is asymptotically stable, where
KXG�1APCTðCPCT þ RÞ�1.

Proof: Since G is square, it follows from (26)
and (27) that � ¼ I and �? ¼ 0. Hence, it follows
from (110) that

Pkþ1 ¼APkA
T�APkC

T
�
CPkC

TþR
��1

CPkA
TþQ:

ð112Þ

Since (A,C) is detectable, it follows from Lewis (1986,
pp. 100–101) that, if P0 is positive semidefinite, then

Kalman filtering with constrained output injection 1871
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PX limk!1 Pk exists and satisfies the algebraic Riccati
equation

P ¼ APAT � APCT
�
CPCT þ R

��1
CPAT þQ: ð113Þ

If (A,C) is detectable and (A,Q) is stabilizable, it follows
from Lewis (1986, pp. 101–103) that P is positive definite
and A� GKC is asymptotically stable. œ

When G is not square, the existence of limk!1 Pk is
not guaranteed. In fact, we have the following negative
result when � 6¼ In.

Proposition 14: Assume that � 6¼ In and A is
asymptotically stable. Then limk!1 Pk does not always
exist.

Proof: Consider the example in Proposition 11.
It follows from (110) that

p2,kþ1 ¼ p2,k
1

4
þ

1

100
8ð�� 1Þ2 � 25
� � p2,k

1þ p2,k

	 

: ð114Þ

Hence, if � satisfies

ð�� 1Þ2425 ð115Þ

and

p2, 04
175

8ð�� 1Þ2 � 200
, ð116Þ

then, for all k>0, p2, kþ1 > 2p2, k, which implies that
limk!1 p2, k ¼ 1. Hence, if P02R

2�2 satisfies (116),
then limk!1 Pk does not exist. œ

Next, we present a converse result concerning the
existence of limk!1 Pk. For all M2R

n�m, let RðMÞ

denote the range of M.

Proposition 15: Assume that ðA,GÞ is stabilizable.
If P ¼ limk!1 Pk exists and Rð�APCTÞ ¼ RðGÞ,
then ðA,G,CÞ is output feedback stabilizable.

Proof: Letting k ! 1 in (110) yields

P ¼ APAþQþ �?APC
TR̂�1CPAT�T

?

� APCTR̂�1CPAT, ð117Þ

where R̂XCPCT þ R. We can rewrite (117) as

P ¼ APAT þQ� GKCPAT

� APCTKTGT þ GKR̂KTGT, ð118Þ

where

KX
�
GTMG

��1GTMAPCTR̂�1: ð119Þ

Hence, (118) can be expressed as

P¼ ðA�GKCÞPðA�GKCÞTþQþGKRKTGT: ð120Þ

Next, define ~A and ~G by

~AXA� GKC, ~GXGKR1=2: ð121Þ

Since ðA,GÞ is stabilizable and RðGÞ ¼ Rð�APCTÞ, it
follows from Bernstein (2005, pp. 510 and 551) that
ð ~A, ~GÞ is also stabilizable. Let �2C be an eigenvalue of
~A. Then, there exists an eigenvector x2Cn of ~A such that

x� ~A ¼ �x�: ð122Þ

Furthermore, (120) implies that

x�Px ¼ x� ~AP ~ATxþ x�
�
Qþ ~G ~GT

�
x: ð123Þ

Substituting (122) into (123) yields

ð1� j�j2Þx�Px ¼ x�
�
Qþ ~G ~GT

�
x: ð124Þ

If j�j51, then (124) implies that

x�
�
Qþ ~G ~GT

�
x ¼ 0 ð125Þ

and hence

x� ~G ¼ 0: ð126Þ

It follows from (122) and (126) that � is an unstable and
uncontrollable eigenvalue of ð ~A, ~GÞ, which contradicts
the fact that ð ~A, ~GÞ is stabilizable. Hence, j�j < 1 and
~A is asymptotically stable. Since K given by (119)
renders A� GKC asymptotically stable, ðA,G,CÞ is
output feedback stabilizable. œ

The following result provides a sufficient condition for
Pk to be bounded when C is square and non-singular.

Proposition 16: Assume that C is square and
non-singular. If

spradð�?AÞ51, ð127Þ

then Pk is bounded.

Proof: Since C is non-singular, (110) can be
expressed as

Pkþ1 ¼APkA
TþQþ�?APk

�
PkþC�1RC�T

��1
PkA

T�T
?

�APk

�
PkþC�1RC�T

��1
PkA

T: ð128Þ
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Next, consider the Lyapunov equation

~Pkþ1 ¼
�
A� G ~K

�
~Pk

�
A� G ~K

�T
þQþ G ~K ~KTGT þ A ~RAT, ð129Þ

where

~KX
�
GTMG

��1GMA ð130Þ

and

~RXC�1RC�T: ð131Þ

Using (130), we rewrite (129) as

~Pkþ1 ¼ �?A ~PkA
T�T

? þQþ �AAT�T þ A ~RAT: ð132Þ

Since �?A is asymptotically stable and
Qþ �AAT�T þ A ~RAT is positive semidefinite,
~P ¼ limk!1

~Pk exists for all positive-semidefinite ~P0.
Subtracting (128) from (132) yields

~Pkþ1 � Pkþ1 ¼ A ~R
�
~Rþ Pk

��1 ~RAT þ �AAT�T

þ �?APk

�
Pk þ ~R

��1 ~RAT�T
?

þ �?A
�
~Pk � Pk

�
AT�T

?: ð133Þ

It follows from (133) that, if ~Pk5 ~Pk, then ~Pkþ15Pkþ1.
Hence, if P04 ~P0, then Pk4 ~Pk for all k>0.
Furthermore, since ~Pk converges to ~P for every choice
of ~P0, it follows that Pk is bounded. œ

Numerical results suggest that the following
strengthening of Proposition 15 is true.

Conjecture 1: Assume that C is square and
non-singular. If

spradð�?AÞ < 1, ð134Þ

then limk!1 Pk exists.

Example 1: Let

A ¼
0 5
0 3

� �
, C ¼ I, Q ¼ 0, R ¼ I, ð135Þ

and choose

G ¼
g1
g2

� �
, ð136Þ

where g1, g22R so that

� ¼
1

g21 þ g22

g21 g1g2
g1g2 g22

" #
,

�? ¼
1

g21 þ g22

g22 �g1g2
�g1g2 g21

" #
ð137Þ

Note that

�?A ¼
1

g21 þ g22

0 5g22 � 3g1g2
0 3g21 � 5g1g2

� �
ð138Þ

and hence

spradð�?AÞ ¼
1

g21 þ g22
j3g21 � 5g1g2j: ð139Þ

It follows from Conjecture 1 that, if

�
�
g21 þ g22

�
< 3g21 � 5g1g2 < g21 þ g22, ð140Þ

then limk!1 Pk exists. The shaded region in figure 1
indicates values of g1 and g2 that satisfy (140). Next,
we choose various values of g1, g2 and numerically
evaluate Pk as k ! 1 using (110). The values of g1, g2
for which limk!1 Pk exists, are indicated by ‘‘�’’ and
the values of g1, g2 for which limk!1 Pk does not exist
are indicated by ‘‘�’’. The numerical results are
consistent with Lemma 3.

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–15

–10

–5

0

5

10

15

γ1

γ 2

Figure 1. The shaded region indicates the values of g1, g2
that satisfy (140). The dots indicate the values of g1, g2 for
which limk!1 Pk exists, whereas the values of g1, g2 for
which limk!1 Pk does not exist are indicated by ‘‘�’’.

These numerical results are consistent with Conjecture 1.
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9. N-mass system example

Consider the N-mass system shown in figure 2 with stiff-

nesses k1, . . . , kNþ1 > 0 and dashpots c1, . . . , cNþ1 > 0.

Let qi denote the position of mass mi. Define

qX q1 � � � qN½ �
T, MXdiagðm1, . . . ,mNÞ: ð141Þ

KX

k1þk2 �k2 0 � � � 0 0

�k2 k2þk3 �k3 � � � 0 0

0 �k3 k3þk4 � � � � � � 0

..

. . .
. . .

. . .
. ..

.

0 0 0 � � � �kN kNþkNþ1

2
6666666664

3
7777777775
,

ð142Þ

CX

c1þ c2 �c2 0 � � � 0 0

�c2 c2þ c3 �c3 � � � 0 0

0 �c3 c3þ c4 � � � � � � 0

..

. . .
. . .

. . .
. ..

.

0 0 0 � � � �cN cNþ cNþ1

2
6666666664

3
7777777775
:

ð143Þ

We assume that d masses are disturbed by unknown
force inputs w2R

d, which are zero-mean white

noise with unit intensity, while p masses are

actuated by known force inputs u2Rp. Let u and w

have entries

u ¼ u1 � � � up
� �T

, wX w1 � � �wd½ �
T

ð144Þ

and let Bu and Dw have entries

Bu ¼ Bu, 1 � � � Bu, p

� �
, Dw ¼ Dw, 1 � � � Dw, d

� �
, ð145Þ

where, for all i ¼ 1, . . . , p and j ¼ 1, . . . , d, Bu, i and
Dw, j are defined by

Bu, i ¼ 01�î�1

1

mî

01�N�î

� �T
,

Dwj
¼ 01�ĵ�1

1

mĵ

01�N�ĵ

" #T

ð146Þ

and î and ĵ correspond to the masses on which forces
ui and wj act, respectively. The equations of motion

can be written in first-order form as

_x ¼ Axþ BuþD1w, ð147Þ

where A2R
2N�2N, B2R

2N�m, D12R
2N�d, and x2R2N

are defined by

AX
0N IN

�M�1K �M�1C

� �
, BX

0N

Bu

� �
,

D1X
0N

Dw

� �
,

xX q1 � � � qN _q1 � � � _qN½ �
T: ð148Þ

Next, we assume that measurements of the positions
of l masses are available so that the output y2Rl can

be expressed as

y ¼ Cposxþ v, ð149Þ

m1 m2

u1

mN

un

qnq2q1

cN+1cN

kN+1kN

c1

k1 k2

c2

u2

Figure 2. N-mass system.
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where Cpos2R
l�2N has entries

Cpos ¼

C½1�
pos

..

.

C½l�
pos

2
664

3
775 ð150Þ

and, for all i ¼ 1, . . . ,N, C½i�
pos2R

1�2N is defined by

C½i�
posX 01�ðî�1Þ 1 01�ðN�îÞ 01�N

h i
, ð151Þ

where î corresponds to the index of the mass whose
position measurements are available. With the sampling
time t ¼ 0:1 s, we obtain the zero-order-hold
discrete-time model of (147) and (149) given by

xkþ1 ¼ Axk þ Buk þD1wk, ð152Þ

yk ¼ Cposxk þ vk: ð153Þ

Let N¼ 20, so that the (147) has order n¼ 40 with
known inputs u2R3 and unknown inputs w2R

3.

We assume that w is zero-mean white Gaussian noise

with unit covariance, and the known inputs u2R3 are

chosen to be sinusoids. The masses on which w and u

act and the available measurements are given in

table 1. We assume that the process noise and the

measurement sensor noise are uncorrelated and hence

Sk¼ 0. The values of the masses m1, . . . ,m20, damping

coefficients c1, . . . , c21, and spring constants k1, . . . , k21
are mi¼ 10 kg for i ¼ 1, . . . , 20, ci ¼ 0:8 N s/m and

ki¼ 5 N/m for i ¼ 1, . . . , 21. Finally, we assume that

Table 1. Forcing and measurement signals in the

N-mass system.

Signal Masses

Known force input u m1, m5, m10

Unknown force input w m4, m15, m18

Position measurement y m9, m12
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Figure 3. Noisy measurements of the positions of m9 and m12 with SNR ¼ 20 db and SNR ¼ 1 dB. These measurements are used

to estimate the positions and velocities of masses m1, . . . ,m20.
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the process noise and sensor noise are uncorrelated, that
is, Sk¼ 0 for all k50. Next, we obtain estimates of the
position and velocity of m1, . . . ,m20 using two sets of
measurements y, one with a signal to noise ratio
(SNR) of 20 dB and another with a SNR of 1 dB. The
measurements of position of m9 and m12 with different
signal to noise rations are shown in figure 3.
We first choose Gk ¼ I2N and Lk ¼ I2N, that is, the

available measurements are injected into all of the
states of the estimator, and the errors between all of
the states and the corresponding state estimates are
weighted. In this case, the one-step and two-step
Kalman filters are equivalent. The state estimates are
obtained using the two-step filter (72)–(75). The root
mean square (RMS) value of the error in the estimates
of position of m4 when measurements with a signal to
noise ratio of 20 dB and 1 dB, respectively, are used is
shown in figure 4. The RMS value of the errors in
position and velocity estimates of m1, . . . ,m20 are
plotted in figures 5 and 6, respectively.

Next, we obtain estimates by constraining the output
injection into only some of the states of the estimator.
First, we choose Gk ¼ L1 for all k50, where

L1X½024�8 I24 024�8�
T

ð154Þ

so that the measurements are injected into only the
estimates of the positions and velocities of m5, . . . ,m16.
Furthermore, we choose Lk ¼ I2N so that the errors
in all of the state estimates are weighted equally.
The RMS value of the error in the position estimate of
m4 obtained when Gk ¼ L1 for all k50 is shown in
figure 4. The RMS value of the errors in position and
velocity estimates of m1, . . . ,m20, are shown in figures 5
and 6, respectively. Finally, we choose Gk ¼ L2 for all
k50, where

L2X½08�16 I8 08�16�
T

ð155Þ
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Figure 4. Root mean square value of the error in estimating the position of m4 obtained using the two-step filter with �k¼ I2N
(classical Kalman filter) and �k 6¼ I2N using two different sets of measurements, one with SNR¼ 20 dB and another with
SNR¼ 1 dB. When �k 6¼�1, measurements are directly injected into the estimates of only the positions and velocities of masses
m5, . . . ,m16, whereas when �k 6¼�2, measurements are directly injected into estimates of only the positions and velocities of masses

mg, . . . ,m12. As expected, the performance of the estimators with constrained output injection (�k 6¼ I ) is not as good as the estimator
with �k¼ I2N. Since the zero-gain filter does not use the measurements, its performance does not depend on the value of the SNR of
the measurement.
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so that only the estimates of the positions and velocities
of m9, . . . ,m12 are directly affected by the measurements
y. Again, we choose Lk ¼ I2N for all k50, and the
performance of the estimator with Gk ¼ L2 for all
k50 is shown in figures 4–6.
When Gk ¼ I2N, the measurements are injected

directly into all of the states of the estimator, and
figure 4 confirms the expected fact that the performance
of the classical Kalman filter with Gk ¼ I2N is better than
the estimators with Gk 6¼ I2N. Note that the number of
states into which measurements are injected when
Gk ¼ L2 is less than the number of states that are

directly affected by measurements when Gk ¼ L1, and
it follows from figure 4 that reducing the number of
estimator states that are directly affected by
measurements degrades the performance of the
estimator. These observations are consistent with
Proposition 6.

Although the errors in the position and velocity
estimates of all of the masses are weighted in all three
cases Gk ¼ I2N , Gk ¼ L1, and Gk ¼ L2, figures 5 and 6
demonstrate that the error in the position and velocity
estimates of all of the masses is the least when
Gk ¼ I2N and the measurements are directly injected
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Figure 5. RMS value of the errors in the position estimates of all of the masses when measurements with (a) SNR¼ 20 dB and (b)
SNR ¼ 1 dB are injected into all of the state estimates ðGk ¼ I2NÞ and when measurements are injected into only the position and
velocity estimates of some of the masses ðGk 6¼ I2NÞ. The performance of the zero-gain filter with Kk � 0 is also shown for

comparison. When measurements are injected into a larger number of the estimator states, the performance of the estimator
improves. The arrows indicate the masses whose position measurements are available. As the SNR of the measurement increases,
the difference in the performance of the filters with Gk ¼ I2N and Gk 6¼ I2N decreases.
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into all of the estimator states. Finally, it can be seen
that when the measurements are injected into a subset
of the estimator states, then the estimates of the states
that are not directly affected by the measurements
improve. The performance of the zero-gain filter with
Kk¼ 0 for all k50 is also plotted in figures 4–6 for
comparison.

10. Conclusions

This paper presents an extension of the Kalman filter
that constrains data injection into only a specified
subset of state estimates rather than the entire state
estimate. This extension accounts for correlation

between the process noise and the sensor noise.
Conditions are given under which the one-step and
two-step forms of the filter are equivalent. Future
work will consider reduced-rank square root
formulations of this filter to reduce the computational
burden of propagating the covariance. More general
conditions that guarantee the existence of a
steady-state covariance for linear time-invariant
dynamics are also of interest.
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