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Abstract. We consider the stabilization of a top with known imbalance to the sleeping
motion. We first define the sleeping motion and show that it is a solution of the equations
of motion of a balanced top. In the general case where the top is unbalanced, we derive
EWOfamilies of control laws that globally asymptotically stabilize a top with known
imbalance to the sleeping motion using torque actuators. The input torque is produced by
two body-fixed torque actuators in one case, and is confined to the inertial XY -plane in

the other. The control~designstrategy is based on Hamilton-Jacobi-Bellman theory with
zero dynamics. The result is global in the sense that the spinning top can be stabilized to
the sleeping motion regardlessof spin rate, and from an arbitrary initial motion that has
a coning angle of up' ,to 900.

"

1 InU:oduction

In the control of industrial rotating machinery, it is well known that one of the
major causes of rotor vibrations is mass imbalance due to off-axis center of mass
location, axis misalignment or both. While mechanical balancing of huge rotors,
such as a turbine, is in itself a difficult task, the integration of the rotor with other
subcomponents often introduces additional imbalance that becomes extremely
difficult to eliminate. The control of the rotation of a rigid, dynamically unbal,
anced body amounts to spin stabilization about a non-principal axis of inertia. In
this light, we shall investigate the motion control of a spinning, unbalanced top,
which is in effect a rotor pivoted at one end. The present paper, which addresses
the case in which the imbalance is known, is part of an effon to investigate the
control of rotating bodies possessing unknown imbalance.

The motion of the spinning top, which is essentially a rigid body rotating about
a fixed point and being subject to gravity, is characterized by the Euler-Poisson
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equarions. Treatments of the general motion of the spinning top can be found in
Crabtree (1914) and Macmillan (1936). A familiar type of top is Lagrange's top,
that is one which possesses an axis of symmetry. One particular motion of
Lagrange's top is the sleeping motion, that is, one in which the top spins about its
symmetry axis, which itself remains vertical. Stability analysis of the sleeping
motion of Lagrange's top is well developed using various methods (see Rumjancev,
1956, 1983; Chetayev, 1961; Leimanis, 1965; Ge & Wu, 1984; Bahar, 1992;
Lewis et al., 1992; Wang & Krishnaprasad, 1992). In Wan et al. (1994a) a family
of control laws was obtained that globally asymptotically stabilize Lagrange's top
to the sleeping motion using two force actuators, while in Wan et ai. (1994b)
torque actuators were used to achieve the same goal.

In this paper, we consider a top that is generally asymmetric and, in addition,
possesses a mass imbalance so that the top axis, defined as the axis joining the
center of mass of the top and its base, is not a principal axis of inertia. It is
impossible for such a top to undergo the sleeping motion while spinning under the
sole influence of gravity. In other words, the sleeping motion is not a solution of
the equations of motion of a freely spinning, uncontrolled top with imbalance.
Nevertheless, we show in this paper that, when the imbalance is known, the top
can be put to sleep using external torque actuators. Two distinct actuation
schemes are considered, namely, body-fixed and inertially fixed torques. In both
cases and with two mutually orthogonal input torques, we obtain a family of
control laws that asymptotically stabilize the sleeping motion of a top with
imbalance. Moreover, this control objective is achieved regardless of the spin rate.
In addition, the obtained results are global in the sense that the top can be
stabilized from an initial motion that has a coning angle of up to 90°. These
control laws are derived using Hamilton-Jacobi-Bellman theory with zero dynam-
ics (see Bernstein, 1993; Wan & Bernstein, 1995). Some terminology in differen-
tial geometry is used; however, the stability analysis in this paper is done solely in
the Lyapunov framework.

2 Equations of motion and problem statement

2.1 Dynamical equations of the freely spinning top

Figure 1(a) shows a rigid, fixed-base, freely spinning top under the influence of
gravity, where the ijk-frame is the body frame attached to the top and rotating in
the inertial XYZ-frame. The inertially stationary base of the top is chosen as the
origin of both reference frames. The k-axis is chosen so that it passes through the
center of gravity of the top. We shall call this axis the 'top axis'. We allow the top
to be completely arbitrary with regard to its mass distribution. In other words, the
top mayor may not possess symmetry in mass distribution with respect to the top
axis, while the i, j, k-axes mayor may not be principal axes of inertia.

Let J E 1R3x3 be the inertia matrix of the top resolved in the ijk-frame. In
general, J has non-zero (1,3)- and (2,3)-elements, in which case the top is said to
be 'unbalanced'. The top is said to be 'balanced' with respect to the top axis if the
top axis is a principal axis of inertia, that is, if J has the form

[

Jll JI2 0

]
J= J12 J22 0

o 0 J3
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Fig. 1. Spinning top.

In this case, Ja is called the 'axial' moment of inertia. If diagonalization of the i,
j-coordinates yields two distinct eigenvalues, the top is balanced but 'asymmetric'.
If however, diagonalization of the i, j-coordinates yields a repeated eigenvalue Jt,
then the top is said to be 'symmetric', and Jt is called the 'transverse' moment of
inertia. Such a top is also known as Lagrange's top.

When the top is spinning in a manner such that the top axis is vertical, that
is, parallel to the gravity direction, we say that it is 'sleeping'. In particular,
when the spin is null, the sleeping position of the top corresponds to the
(unstable) equilibrium of an invened pendulum. However, due to mass imbal-
ance, this position is no longer an equilibrium under the gyroscopic
effect of the spin. As we shall see later, the particular case in which the
sleeping motion remains an equilibrium with non-zero spin occurs if and only if
the top is balanced.

- --
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The dynamics of the rigid, fixed-base, freely spinning top are completely
described by the Euler-Poisson equations (see Hughes, 1986; Greenwood, 1988).

JO)= - w X Jw + mgy X 1 (1)

Y= )I X w (2)

where W = [WI W2 W3]T E 1R3, )I = [)II )12Y3]TE 1R3,and 1= [00 f]T E 1R3are, respect-
ively:> the angular velocity of the top, the unit vector in the negative gravity
direction and the position vector of the center of mass with e being the distance
from the origin to the center of mass, all of these vectors being resolved in body
coordinates. Furthermore, g is the gravity constant, m is the mass of the top and
J is the inertia matrix of the top resolved in the body frame. The vector equations
(1) and (2) therefore comprise six scalar equations. However, the unit vector )I

satisfies the constraint IIyI12=)11+ Y~+ )15= 1, which means that (1) and (2) can be
reduced to five independent ordinary differential equations as we shall now
demonstrate.

Let us consider hereafter the case in which Y3> 0, that is, the top remains above
the horizontal plane. Then, the redundant dimension in (1) and (2) can be
removed by defining the 'projection vector' v ~[VI V2 1]T, where VI and V2 are
defined by

YI Y2
VI ~-, VI ~- (3)

Y3 Y3

As shown in Fig. 1(b), V is obtained by extending Y to the plane IT, which is
parallel to the body ij-plane and which passes through the point (0,0, 1). Then it
can be shown using (2) and (3) that VI and V2 satisfy

(4)

Furthermore, the constraint IIyl12= 1 can be rewritten as

1
- = (1 + vi + V~)1I2
Y3

Finally, replacing y with (3) and (5) in equation (1) yields

(5)

(6)

The equations (4) and (6) completely describe the five-dimensional motion of the
freely spinning top above the horizontal plane. By using the vector v, we have
effectively mapped the precessional and nutational attitude of the top into the 1R2
space. Specifically, the sleeping position defined earlier is mapped on to itself,
whereas the positions in which the top axis lies in the horizontal plane are mapped
on co infinity. Although we consider only the case in which the top remains above
the borizontal plane, it is not difficult to see that the same approach can be applied
to the study of a hanging top instead of the conventional one by simply changing
the sign of the gravity constant g.
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The sleeping motion now corresponds to the case w =Ws==(0, 0, Q), where Q is
a non-zero constant, and VI=V2 = o. This motion is in general not a solution of (4)
an.d (6). Replacing w by Ws and V by 0 in (4) and (6) yields

[

VI

] [

0

]
V = 0

~ - J-I(ws X Jws)

Therefore, the sleeping motion w = ws, VI = V2 = 0 is a solution of (4) and (6) if
an.d only if the right-hand side of (7) is o. Now suppose that the top axis, that is,
the k-axis, is a principal axis of inertia. Then Ws is an eigenvector of J, and hence
(I). and Js are colinear so that J-I(ws XJws) in (7) is zero. This implies that the
sleeping motion is a solution of (4) and (6). Conversely, if the sleeping motion is
a solution of (4) and (6), then the right-hand side of (7) is 0, which implies that
(I). xJws is o. Since Q *0, it follows that if WsxJws = 0 then Ws is an eigenvector
of J, that is, the k-axis is a principal axis of inertia. These observations are
sUI11marized by the following result.

(7)

Proposition 1. The sleeping motion w = ws, VI = V2 = 0 is a solution of the equa-
tions of motion (4) and (6) if and only if the top axis is a principal axis of inertia,
that is, if and only if the top is balanced.

2.2 Dynamical equations and stabilization of the controlled top

The sleeping motion of Lagrange's top and the stability thereof have been widely
discussed in the previous literature (see Rumjancev, 1956; Chetayev, 1961;
Liemanis, 1965; Ge & Wu, 1984; Wan et al., 1994a). In this section, we investigate
the asymptotic stabilization of the sleeping motion in the more general case, that
is, one in which the top axis is not necessarily a principal axis of inertia. Here, the
Euler equation (1) is rewritten with a control torque, on the right-hand side as

Jw = w XJw + l~iI V x 1+ ,

or, equivalently,

w = - J-I(W xJw) + J-I(I~iI V x I) + J-I,

where ,= ('I '2, '3) E 1R3. Our aim is to determine a feedback control law
,= ,((I), v) that brings the top to sleep from an arbitrary initial position above the
horizontal plane. Following the discussion leading to Proposition 1, it can be seen
tha t in order to put an unbalanced top to sleep, the sleeping motion must be
ren.dered a solution of the equations of motion by means of an offset control
torque that equals, at steady state, 's = Ws xJws so as to render the right-hand side
of (7) O. To put the top to sleep from an arbitrary initial position, one might
propose to offset the control torque , with 's, such as 0= Os + T, and derive a
control law for T using techniques that work for a balanced top, such as those
presented in Wan et al. (1994a,b). However, it can be easily verified that 's does
not: cancel the effects of imbalance except when the top is sleeping. Moreover, the
spin rate at sleep, that is Q, cannot be deduced solely from the initial conditions
exc ept in the special case of control torques confined to the inertial XY-plane,
which we shall discuss later. More precisely, Q depends on the motion that the top

(8)
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undergoes while approaching the sleeping position. Thus, rather than applying
control laws found in Wan et al. (1994a,b) by offestting with !u we shall derive
control laws for an unbalanced top by directly accounting for the presence of mass
imbalance.

We now consider two cases of actuation.

Case 1. The input torque is produced by two body-fixed torque actuators along
the i- and j-axes. In this case, the control torque ! in (8) takes the form

,~b,u, b, ~[~ !] E 11m, u E~' (9)

Body-fixed torques can be implemented externally by two pairs of gas jets
mounted on the top. In each of these pairs, the jets produce equal and opposing
thrusts resulting in a perfect couple along the i- or j-axis. Such an actuation scheme
is often used in spacecraft control. Various studies of spacecraft control using
body-fixed torque can be found in Byrnes et al. (1988), Hughes (1986), Lebedev
(1990) and Zhao and Posbergh (1993).

Case 2. The input torque is confined to the inertial XY-plane. In this case, 't is
constrained to remain perpendicular to the unit vector y, that is,

Since !3 = - 'tIVI - !2V2, the input torque! can be written as

!=b2(v)u, b2(V)=
[

~ ~
]

eIR3X2, ueIR2 (11)
- VI - V2

Input torques confined to an inertial plane can be implemented by using magnetic
moments. For instance, the top may be located in a uniform magnetic field whose
field strength vector is parallel to the local vertical. Then, a moment lying in the
horizontal plane can be created by electromagnets or coils embedded in the top.
Such actuation schemes can be found in some spacecraft control applications,
where the external magnetic field is in effect the local earth magnetic field (see
Rodden, 1984).

Let Ho ~yTJw, that is, the component of the angular momentum along the
inertial Z-axis. Note that since the input torque is confined to the XY-plane, that
is, perpendicular to the Z-axis, H 0 is therefore a constant of motion. Furthermore,
for the sleeping motion, since y = (0, 0, 1) and w = (0, 0, Q), it follows that
Q = H oIJ33.In other words, the spin rate of the sleeping top is predetermined by
the value Ho, which depends solely on the initial conditions. Note that this is only
a special case; in other actuation schemes, including that of body-fixed actuators,
H 0 is in general not a constant of motion and Q cannot be determined solely from
the initial conditions.

It is not difficult to see that Case 2 is equivalent to that of a pair of independent,
inertially fixed torque actuators. Indeed, ! satisfying (10) or, equivalently, (11),
can always be synthesized by two mutually orthogonal torque actuators lying in the
XY-plane. An equivalent scheme, that is, stabilization using two inertially fixed
force actuators, was applied to Lagrange's top in Wan et al. (1994a). In that paper,
the equations of motion of the symmetric top were formulated in Euler angles, and
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the control torque was expressed in terms of its X, Y-components. In the present
paper, we propose an alternative model of the dynamics, namely equations (4), (8)
and (11). However, notice that VI and v210cate the local vertical in the body frame,
bu.t not the azimuth (X and Y) directions. Thus, the design of a controller with
inertially fixed torque actuators needs to be carried out in two steps. First, in
Section 4, the control law is derived using (4), (8) and (11). Next, to implement
the control law using a pair of actuators fixed in the X- and Y-axes, the control
torque! = b2(v)u(w, v) as defined by (11) needs to be resolved on to the X, Y-axes.
This can easily be done by transforming from the variable w and v to a chosen set
of Euler angles, for example, the 2-1-3 Euler angles. The main advantage of this
tw<>-step design process is that it avoids the use of Euler angles, which are
cumbersome for modeling the dynamics of the unbalanced top.

3 Hamilton-Jacobi-Bellman theory with zero dynamics

In this section, we briefly review Hamilton-Jacobi-Bellman theory with zero
dynamics (see Bernstein, 1993; Wan et ai., 1994b) by considering the system

x =f(x) + g(x)u, x(O) =Xo (12)

where x E ~n and u E ~m, and f ~nl--+ ~n and g:~ml--+ ~n satisfy f(O) = 0 and
g(O) =O. For system (12), consider the cost functional

J(xo, u(.)) ~ f"L(x(t), u(t))dt (13)

where

(14)

LI: ~nl--+~b ~: ~nl--+~I Xm satisfies ~(O) = 0, and R E ~mxm is (symmetric)
positive definite.

Consider next an output function for (12) of the form

y=h(x) (15)

where y E ~m, and h: ~nl--+~m satisfies h(O) = O. We recall (see Isidori, 1989) that
the 'zero-dynamics' of the non-linear system (12) and (15) are the dynamics of the
system subject to the constraint that the output yet) be identically zero. Then, the
system (12) and (15) is 'minimum phase' if its zero dynamics are stable. Further-
more, the system (12) and (15) is said to have relative degree {rb r2, . . ., rm}at the
origin if there exists a neighborhood Do of the origin such that

X E Do, 1 $, i, j $, m (16)

and the m x m matrix

[

Lg\L? ~ Ihi (x)

Lg.L'i" - Ihm(x)

. ~. LgmL?~ Ih((X)

]. .. LgmL'f'-lhm(x)

(17)

is non-singular for all x E Do, where Ljz(x) ~h'(x)f(x) denotes the derivative of h(')
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along/(.). In particular, the system (12) and (15) has relative degree {I,..., I} if
the: matrix

(18)

is non-singular for all x E Do. Finally, a smooth vector field 1defined on a manifold
.II C ~n is complete if the flow of 1 is defined on the entire Cartesian product
~ ><At. The following lemma is given in Byrnes and Isidori (1989).

Le71lma 1. Assume that the system (12) and (15) is minimum phase with relative
degree {I,..., I}. If the vector field g(Lgh) -I is complete, then there exists a
diffeomorphism «1>:~n ~ ~", a C':Ofunction 10: ~"- m~ ~"- m,and a CO:function
r: m,,-m X ~m~ ~("-m)xm such that, by the change of coordinates

[:]';'<I>(x) (19)

the differential equation (12) can be rewritten in the normal form

[
Y

] l.
Ljh(x)

] [
Lgh(X

~
= + u (20)

Z o(z) + r(z, y)y 0

Remark 1. In (20) withy as the output, the zero dynamics is therefore the system
Z = lo(z), which is asymptotically stable at the origin due to the minimum phase
assumption.

Theorem 1. Assume that the nonlinear system (12) and (15) is minimum phase
wi"th relative degree {I,..., I}, and assume that the vector field g(Lgh) - 1 is
co:mplete so that equations (19) and (20) hold. Furthermore, let Vo: ~"- m~ IRbe
a Lyapunov function for z =lo(z), that is, Vo: ~"-m~ ~ is positive definite such
that LfoVO(z) is negative definite, and let PE ~mxm and R E ~mxm be positive-
de:tinite matrices. Define

LI(x) ~R[Lgh(x)] -1[p-IrT(z,y) VOT(z) + 2Lfh(x)]

V(y, z) ~ Vo(z) + yTPy

Then the control law

(21)

(22)

as~ptotically stabilizes (12) and minimizes J(xo, u(.)) in the sense that there exists
a meighborhood Do C ~n of the origin such that

J(xo, 4J(x(.))) = min J(xo, u(.)) = V(xo) (24)
u(o) E .</(xo)

for all XoE Do, where J(xo, u(.)) is defined as in (13) and (14) with

L1(x) ~4JT(x)R4J(x) - LfV(y, z) (25)

an.d [/(Xo) is the set of controls u = 4J(x) such that the solution of the dosed-loop
sy:stem (12) and (23) with x(O) = Xo satisfies lim x(t) = 0 as t--+ 00. Furthermore,

VCy, z) is a Lyapunov function for the resulting dosed-loop system. If, in addition,

-- ----
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Lg-h(x) is non-singular for all x E Wand the diffeomorphism (19) is global, and if
V()(z) is radially unbounded, then the control law (23) globally asymptotically
stabilizes (12).

The proof of Theorem 1 can be found in Wan and Bernstein (1995). We can
specialize Theorem 1 by considering the case in which Vo(z) is positive definite,
but LloVo(z) is negative semi-definite. Then, it can be shown similarly as in Wan
and Bernstein (1995), that V(y, z) = 0 if and only if y = 0 and Llo Vo = O. Thus, by
applying the invariant set theorem, we have the following corollary.

Corollary 1. Assume that the nonlinear system (12) and (15) has relative degree
11:>. . ., I}, and that there exists a diffeomorphism (19) so that (12) has the normal
form (20). Furthermore, let Vo: IRn- m>---+IRbe a positive-definite function such that
Llo Vo(z) is negative semi-definite, and let V(y, z) be defined in (22). Then there
exists a neighborhood A'o of the origin such that every solution of the closed-loop
system obtained with the control law (23) and originating in . i '0 asymptotically

approaches the set {(y, z) E . Vo: Y = 0, LloVo(z)= O}. Furthermore, if Lgh(x) is
nOD-singular for all x E IRnand the diffeomorphism (19) is global, and if V(z) is
radially unbounded, then the convergence is global, that is, .'1,'0= IRn.

Next we consider the case in which VoO is only positive semi-definite and that
L/o VoO is only negative semi-definite. Under these weaker conditions, the follow-
ing results show that the control law (23) asymptotically stabilizes the system (12)
and (15) with respect to a subset of the state variables. The need to consider
partial-state stability arises from the fact seen in Section 2.1 that the sleeping
motion lies in the subspace {VI = V2 = WI = <02 = 0,OJ3 E IR} instead of the origin.
Hence, bringing the top to sleep requires that the four states WI, W2,VI and V2
approach 0, while W3 approaches a constant value Q. Related results can be found
in Peiffer and Rouche (1969) and Rumjancev (1970). In the particular case of
Lagrange's top, W3 is a constant of motion and can thus be omitted as a state
variable, that is, the sleeping motion corresponds to the origin of a four-dimen-
sional state space (see Wan et at., 1994a).

Definition 1. Consider the system

XI (0) = XOI, X2(0) = X02 (26)

where XI E IRP,X2 E IRn- P,p::S n, and II and fz are sufficiently smooth so that (26)
has a unique solution for all (XOI,X02) E IRPX IRn- p. Assume that II (0, X2) = 0 for all
X2 E IRn- p. The system (26) is Lyapunov stable with respect to XI if for all 8> 0,
there exists () > 0 such that Ilxodl < () implies IIXI (t)11 < 8 for all t 2: O. The system
(26) is asymptotically stable with respect to Xl if it is stable with respect to XI and
if there exists <5>0 such that IIxodl<J implies XI(t)-.O as t-'OO. Moreover, (26)
is globally asymptotically stable with respect to Xl if the latter holds with J = 00.

Lemma 2. If there exists a CI positive-definite function V: iRP>---+IR such that
V' (..xI)/1(XI, X2)::S0, (XI, X2) E IRPX IRn- P, then the system (26) is stable with respect
to .xl. If, in addition, there exists a continuous, strictly increasing function
W: (0, + 00) >---+(0, + 00), with W(O) = 0, such that

(27)
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then (26) is asymptotically stable with respect to Xl. If, furthermore, V(.) is radially
unbounded, then the system (26) is globally asymptotically stable with respect to Xl.

Proof. Let e>O, and define '~e~{Xl E ~P: Ilxlll:::;e}. Next, let

# E (0, min V(Xl»)' and define o.p ~{Xl E !?4e:V(Xl) :::;/3}. Since, along the trajecto-
IIxllI=e

ries of (26), V(Xl(t» = V' (Xl)!l (Xh Xz) :::;0, it follows that V(Xl(t» is a non-increas-
ing function of time, and hence o.p X ~n-p is a positive-invariant set of (26). Since
V(.) is continuous and V(O) = 0, there exists (j > 0 such that !?4~C o.p. Therefore,
for all (XOhXOZ)E!?4/JX ~n-p, it follows that (Xl(t), Xz(t» E o.p x IRn-PC!?4ex IRn-p
for all t;;?:0, which proves that (26) is Lyapunov stable with respect to Xl'

Now, assume in addition that there exists a continuous, strictly increasing
function W: (0, + (0) ~ (0, + (0), with W(O) = 0, such that (27) holds. To prove
asymptotic stability, we need to show that if IlxOll1E f!4/J,then Xl(t) tends towards O.
Since V(Xl(t» is non-increasing in time, and is lower-bounded by zero, it admits
a limit c;;?:O. If c> 0, then Oc~{Xl E lAe: V(Xl):::;c} is non-empty and V(Xl(t»;::: c
for all t;;?:0, and thus, Xl(t) never enters 0.,. Since V(.) ia continuous and V(O) = 0,
there exists d> 0 such that ~dC Oc and Wed) > o. It then follows that for all
XOl E f!4,),

c

V(Xl(t»:::; V(Xol) + J V' (Xl (V»!l (Xl (v), xz(v»dv
o

c

s /3+ J W(llxl(v)ll)dvo
< /3- W(d)t

wh.ich eventually becomes negative and contradicts the positive definiteness of
V(.). Hence, c = 0, which proves that V(Xl(t» -0 as t- 0 for all XOl E J4/J. Now, by
continuity of V(.), and the earlier established fact that all Xl(t) starting in !?4,j
remains in the compact set o.fI, it follows that Xl(t) -0 as t- 00, that is, (26) is
asymptotically stable with respect to Xl.

Finally, assume that V(.) is radially unbounded. Let XOlE IRP, and define
b 6 V(XOl) and o.b~{Xl E IRP:V(Xl) S b}. Then, radial unboundedness implies that
there exists r> 0 such that o.bC!?4" and hence that o.b is compact. Since the
solution Xl(t) starting at XOlremains in o.b, we can reiterate the earlier argument to
prove that for all XOlE ~P, V(Xl(t» -0 as t-O. This completes the proof that (26)
is globally asymptotically stable with respect to Xl.

Remark 2. By setting p = n, Lemma 2 specializes to the case of the autonomous
system Xl = !1(Xl). In this case, (27) is equivalent to the assumption that
V' (Xl)!I(Xl) is negative definite (see Vidyasagar, 1993, p. 149), so that Lemma 2
yields at the standard Layapunov stability theorem. There is a slight difference
be~een Definition 1 and Lemma 2, and the definitions and stability theorems of
partial stability given in Peiffer and Rouche (1969) and Rumjancev (1970), where
V may be a function of both Xl and Xz, positive definite and decrescent in Xl. For
such a Lyapunov function candidate, the results of Peiffer and Rouche (1969) and
Rumjancev (1970) requires that both XOl and Xoz lie in a neighborhood of the
origin, whereas in Lemma 2 Xoz is arbitrary.

We now consider the problem of panial-state stabilization.

- -- ---



STABIUZATION OF A TOP 349

Definition 2. Consider the system

[
~I

]
=

[

II (Xl> XZ)

]
+

[

gl (Xl> XZ)

]
u

Xz fz(Xl> xz) gZ(Xl>xz)
(28)

T11e feedback control law u {}1jJ(XI,xz) is asymptotically stabilizing with respect to
Xl if the resulting closed-loop system is asymptotically stable with respect to Xl.
Furthermore, the feedback control law u {}1jJ(Xl>xz) is globally asymptotically
stabilizing with respect to XI if the closed-loop system is globally asymptotically
stable with respect to XI.

Tbe following result is a generalization of Theorem 1 to the case in which
stabilization with respect to a subset of the state variables is desired and where the
system is not assumed to be minimum phase.

Theorem 2. Assume that the system (12) and (15) has relative degree {I, . . ., I},
and assume that the diffeomorphism (19) exists so that (20) holds. Let R E IRmxm
be a positive-definite matrix, and assume that there exists A.o> 0 such that, for all
X E IRn,

(29)

where A.minOdenotes the minimum eigenvalue. Furthermore, partition the partial
state-vector Z E IRn-m as

where 0 < p < n - m, and its differential equation in the form

[

ZI

]

= f/ol(Zl> zz) + rl(zl> ZZ'Y)Y

]Zz lroz(Zl>zz) + rz(zl>Zz, y)y

Assume moreover that there exists a CI positive-definite function Vo:IRP~ IR,
and a continuous, strictly increasing function Wo:(O, + 00)~ (0, + 00), with
Wo(O) = 0, such that

VO(zl)/ol(Zl>zz):5 - Wo(llzdl), (Zh zz) E W X IRn-m-p (31)

(30)

Then the control law (23) is asymptotically stabilizing with respect to (y, ZI) with
V(y, ZI) {}VO(ZI)+ yTPy as the Lyapunov function with respect to (y, ZI). More-
over, if Lgh(x) is non-singular for all X E IRn,the diffeomorphism (19) is global, and
VoO is radially unbounded, then (23) is globally asymptotically stabilizing with
respect to (y, ZI).

Proof Using (30), the closed-loop system consisting of the system (20) and the
control law (23) can be written in the form

[
~
] [

- ~ p-IrT(z,y)[Vb(z)]T - R-I[Lgh(X)]TPh(X)

]
ZI = 101(Zl> zz) + rl (Zl> Zz, y)y

Zz loz(zl> zz) + rZ(zh zz,y)y
(32)

Let the subsystem of (32) which comprises the variables y and ZI be denoted by
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[:,] ~ h~, z" zv
and let V: ~m x ~P.- ~ be the Lyapunov function candidate

V(y, Zl) = VO(ZI) + yTPy

where Vb(ZI)!OI(ZhZ2) satisfies (31), and PE ~mxm is a symmetric, positive-
definite matrix. It is clear then that Vis Cl and positive definite. From (29), (31)
and (32) it follows that

V'(y, ZI)!I(Y, Zb Z2) = Vb(ZI)ZI + 2yTPy
= Vb(ZI)!OI(ZbZ2)- 2yTp[Lgh(x)]R-1[Lgh(x)]TPy
:5 - Wo(llzlll)- UQYTp2y
:5 - Wo(llzIII)- 2A.o,{~(P)llYI12

with lmin(P)> 0 since P is positive definite. Let W:(O, + 00)'- (0, + 00)be defined by

W(r) ~ min (Wo(llzIII)+ 2A.o).~(P)llYI12)
11(y, z\>11 = r

where (y, Zl) E ~m X ~p. It follows from Lemma A4 of the appendix that W is a
continuous, strictly increasing function satisfying W(O) = o. It then follows that
V' (y, ZI)!I(Y, Zb Z2):5 - Wcll(y, zl)II), (y, Zl) E ~m X ~P, that is, V satisfies all the
conditions of Lemma 2. Therefore, we conclude that the control law (23) is
asymptotically stabilizing with respect to (y, Zl).

Remark 3. In Theorem 2, the system (12) and (15) is not assumed to be
minimum phase. More precisely, the state Z2 in the zero dynamics may not be
asymptotically stable. Our goal, however, is not to stabilize Z2but rather to achieve
asymptotic stability with respect to the remaining state variables, namely y and Zl.
Hence, in Theorem 2, we bypass the use of Lemma 1 by assuming that a
diffeomorphism exists, and instead of minimum phase, we assume that there exists
a Lyapunov function with respect to Zl.

4 Global partial-state stabilization of the spinning top

Recall that equations (4) and (8) describe the motion of a torque-controlled
spinning top. For both of the actuation schemes discussed in Section 2.2, (4) and
(8) can be rewritten in the form of (12) with X~(Wb W2,W3,Vb V2) E ~5,
u ~(Uh U2)E ~2 and

g(x) ,,[r 'b']
,

02x2
i E {l, 2} (33)

In the following subsections, we shall consider each actuation scheme separately.

4. 1 Case 1: two body-fixed torque actuators

In this case, define the output

[

WI + k1v2

]
Y = hex) ~

(1)2- k2VI

E ~2 (34)

- - - - - --
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where kl > 0 and kz > 0 are to be chosen. Next, let

(35)

where Jij denotes the (i,J)-element of the inertia matrix J. Note that the state Z3 is
the body component of the angular momentum along the k-axis, and that by (34)
and (35) the sleeping motion is mapped on to the set

s ~ { (Yb yz, Zb Zz, Z3) E IR5: YI =Yz = ZI = Zz = 0, Z3 E IR}

Hence, finding a control law that globally asymptotically stabilizes the sleeping
motion is equivalent to finding u in (20) that is globally asymptotically stabilizing
with respect to (YbYb Zb zz). We then have the following proposition.

Proposition 2. Consider the system (12) and (15) where 1('), g(-), h(-) and Z are
defined in (33), (34) and (35). Then, the system has relative degree {l, . . _,I},
there exist ;'0> 0 and R E lR"'x", such that Lgh(x) satisfies (29), and the transform-
ation <I>given by (19), (34) and (35) is a global diffeomorphism on 1R5and
transforms the system (12) and (15) into the form of (20). Furthermore, define
Vo: IRz~ IRby

1 2 1 Z
VO(Zb zz) ~- Zl + - Zz

2 2
(36)

Then the control law

[

WI + k1vz

l [ [

vz

l J
cjJ(x)= -R-1LghTp -Lgh-I 11~llzp-I + Liz (x)

Wz- kzvI - VI

(37)

is globally asymetrically stabilizing with respect to (Yb yz, Zb zz).

Proof From (34), it is clear that

[

1 0 0 0 kl

] [ (

0 kl

J~

h'(x) - - bT
- 0 1 0 - kz 0 - I - kz 0

(38)

where bl is the constant matrix given by (9). From (33) and (38), we have

(39)

Now, since Lgh(x) is a constant, positive-definite matrix, the system has relative
degree {I, . . ., I}, and it is easy to see that Lgh(x) satisfies (29) for all positive-
definite matrices R E IR'"'<"'_ The transformation <I>with Y and z defined in (34)
and (35) is given by <I>(x) = Fx, where

100
010

F=I 0 0 0
000

J13 JZ3 J33

o kl
- k2 0

1 0
o 1
o 0
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and clearly det(F) =J33 *"O. Hence, <I>is a global diffeomorphism. To see that <I>
transforms (12) and (15) into the form of (20), we first note that ZI and Zz are
simply VI and Vz. Moreover, since the input torque is perpendicular to the k-axis,
it can be shown with (8) and (9) that

Z3 = (JlI - JZZ)WI Wz +J12W~ - JWY + (J13WZ- JZ3WI)W3 (40)

Since the input u does not appear in (40) it can be seen that <I>transforms (12) and
(15) into the form of (20). Using the transformation <I>and settingYI andyz to 0
in the derivatives of z, it follows that

[

- kzzl (1 + Zy) - klzlz~ + (Z3 + kIJ13ZZ - kZJZ3ZI)ZZ

]

.f ( )
_ - klzz(1 + ~) - kzzIzz - (Z3+ klJ13Zz - kZJz3ZI)ZI

)0 Z - k k (J
Z _2 Z

J
Z

- I Z II - JZZ)ZIZZ + kVlzZI - kl ZIZZ
I

+ ]33(kZJ13Z1 + kIJZ3ZZ) (Z3 + klJ13Zz - kzJZ3ZI)

[

ZIZZ - J13Z2 - (1 + zI) - J23ZZ

]
r(z,y) = (1 +~) + J13Z1 - ZIZ2 + J23Z1

r31(z,y) r3Z(z,y)

(41)

(42)

Then along the trajectories of z =Jo(z), we have

Vo(ZI>zz) = - (klz~ + k2zy)(1 + zI + z~) (43)

for all (Zl>Zz, Z3) E IR3, which satisfies (31). With the above results, we can
conclude by Theorem 2 that the control law (23) is globally asymptotically
stabilizing with respect to (YI>Y2,Zl>zz).

We have thus obtained a family of control laws, parameterized by the positive real
numbers kl and k2 and the 2 X 2 positive-definite matrices P and R that globally
asymptotically stabilize the sleeping motion of the top with a pair of body-fixed
torque actuators. The result is 'global' in the sense that the sleeping motion has
been stabilized for all initial motions of the top above the horizontal plane.
Replacing r(z,y) with (42), the control law (23) can be simplified in this case to
the form of (37).

4.2 Case 2: torque confined to the inertial XY-plane

In this case, define

[

WI + klV2 - W3VI

]
y = hex) §i. E 1R2,

W2- kzvI - W3VZ
(44)

Note that, as in Proposition 2, the sleeping motion is mapped on to the set Y.
Note also that Z3 = y;Ho. Since Ho is a constant of motion, as we have seen in
Section 2.2, it follows that

1
Z3 = -"""2 Hoh = Z3(WIV2 - WZVI) (45)

Y3

that is, Z3 is an uncontrolled state. We now have the following proposition.

Proposition 3. Consider the system (12) and (15) where J('), g('), h(-) and z are
defined in (33) and (44). Then, the system has relative degree {I, . . ., I}, and the
transformation <I>given by (19) and (44) is a global diffeomorphism on 1R5and
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transforms the system (12) and (15) into the form of (20), let Vo: 1R3~ IRbe the
positive-definite function

(46)

Tben the control law

[

WI + klv2 - W3VI

] ~ [

V2

] )
cjJ(x) = -R-ILghT(X)p -Lgh-I(X) Ilvl12p-1 +Lfh(x) (47)

W2- k2vI - W3VI - VI

is globally asymptotically stabilizing with respect to (YbY2, Zb Z2).

Proof. From (44), we have

[

1 0 - VI - W3 kl

] [ (

- W3 kl

J~

h'(x) = = b2(v)T (48)
o 1 - V2 - k2 - W3 - k2 - W3

where b2(v) is given by (11). Hence, we have

Lgh(x) = bI(v)J-Ib2(v) (49)

which is positive definite for all x E IRn. This proves that the system has relative
degree {l,. .., I}. The transformation <I>with Y and Z defined in (44) has the
Jacobian

where alO and a20 are functions of x. By row combinations of (50), it can be
shown that for all x E IRS,

where PIO and P2(') are functions of x. In (51), the second equality is obtained
by noting that J is positive definite, which implies that the (3,3)-element of the
second matrix is non-zero for all (Vb V2) E 1R2.Equation (51) shows, by the inverse
function theorem, that <1>(')is a global diffeomorphism on IRs.Since ZI=Vb Z2 =V2

and .2'3is given by (45), it can be seen that <1>(')transforms the system (12) and
(15) into the form of (20). <1>(')and setting YI and Y2 to 0 in the derivatives of z,
it can be shown that

(52)

(53)

1 0 - VI -W3 kl

01 -V2 -V2 -W3

<1>'(x) = I0 0 0 1 0 I (50)
o 0 0 0 1

vTJ al (x) a2(x)

1 0 - VI - W3 kl
01-v2-v2 -W3

rank ( (x») = rank I 0 0 vTJv PI(x) P2(X)I= 5
(51)

o 0 0 1 0
o 0 0 0 1
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(a) Ellipsoidal Top

(b) Unbalanced Ellipsoidal Top

Fig. 2. Examples of asymmetric and unbalanced tops.

Then along the trajectories of z =Jo(z), we have

Vo(z) = - (klz~ + k2zD(I + zI + z~ + z~) (54)

which is negative semi-definite, and is null on the set {z E 1R3:Z1= Z2 = O}. From
Corollary 1, we hence conclude that all trajectories of the closed-loop system
obtained with the control law (23) approach the set !/, that is, the control law (23)
is globally asymptotically stabilizing with respect to (YhY2, Zh Z2).

Finally, substituting (53) into (23) and rescaling P yields the control law given by
(47). Recall in this case that the input u = cf>(x)is an element of 1R2,and is defined
by (II) as the i- and j-components of the input torque !. However, this case is
different from Case 1 in that! now has a k-component !3= - UIVI - U2V2,and we
have already seen that this will result in ! lying in the inertial XY-plane.

Remark 4. The steady-state control input for both actuation schemes can be
obtained by setting x =XS~(O, 0, n, 0, 0) in (37) and (47). Then, we have
cf>(xs)= - Lgh - I (xs)Lfh(xs). Now, it can be seen from (9) and (11) that b2(xs)= bl

and hence, following (39) and (49), Lgh(xs) = bTJ-Ibl for both actuation schemes.

- - - -
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Fig. 3. Control of top using body torques: kl = k2 = 1, P = 0.1 /2x 2, R = h x 2. Locus of center of mass
(length dimensions are normalized bye).
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Fig. 5.Controlof top using body torques: k) = k2 = 1,p= 0.1 h x 2,R =h x 2.Angular velocity versus time.

Moreover, using (33), (34) and (44), it can be verified that
Lfh(x.) = - bTJ(w.X Jw.) for both actuation schemes, where w. =(0, 0, Q) as intro-
duced in Section 2.1. Hence, the steady-state control torques for both cases are
identical and are given by

(55)

Next, we observe that since w. XJw. has a zero k-component. It then follows that
w. X Jw. =b1bT(w. XJ(1).). Substituting this expression into (55) yields 1:(x.)=1:.,
where 1:.is the steady-state offset torque introduced in Section 2.2. Hence, the
control torques resulting from both (37) and (47) converge to 1:.. This is not
surprising since we have already seen in Section 2.2 that 1:.is the torque required
to keep the top in the sleeping motion regardless of the actuation scheme.

S Examples

Consider the top shown in Fig. 2(a), which consists of a uniform, flat ellipsoid
mounted at its center of mass on a massless rod of length f so that the i, j and
k-a:xes are principal axes of inertia. In this case, we have a balanced, asymmetric
top, and the inertia matrix J with respect to the pivot point 0 and resolved in body
coordinates is diagonal with the diagonal terms
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Fig. 6. Control of top using body torques: kl = k2 = I, P = O.llz x2, R =12x 2. Input body torques versus
time.
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Fig. 8. Control of top using inertia torque: k1 = k2 = I, P = 0.0112 x 2, R = 12x 2. Euler angles versus time.

For the purpose of illustration, let m = 5 kg, a = 0.5 m, b = 0.3 m, c = 0.01 m and
f=O.1 m, which give Jxx=0.1401 kgm2, J»=0.3001 kgm2, Jzz=0.3400kgm2.
The top is initially released with a spin of !0800/second (or 180 rpm) at a coning
angle of 50°, and the control is enabled 4 seconds later.

Figure 3 shows the locus of the top's center of mass in the inertial frame when
the body-fixed torque control law (37) is applied. As indicated by the dotted lines
joining points on the locus and the origin, the uncontrolled top precesses as well
as nutates. However, when the control is enabled, the precession and nutation
cease and the top is brought to sleep. This is also apparent in Fig. 4, where, for
illustration, the Euler angles 1/1and () as defined in Fig. 1(c) are plotted against
time. Here, it can be seen that the motion converges to the sleeping motion in
about 4 seconds after the control is enabled. Figure 5 shows the body components
of the angular velocity, and Fig. 6 shows the input body torques.

Figures 7-10 show the results for the same top as above, but here the inertially
fixed torque control law (47) is applied. In Fig. 7, the top is brought to sleep in
quite a different manner than in Fig. 3, and a comparison of Figs 5 and 9 reveals
that with inertial torques, the change in W3 is more significant wherein the top
de-spins while going to sleep. In fact, as shown in Section 2.2, W3 converges to
Q = HoIJ33.In Fig. 10, U1 and U2 are the X- andY-components of the input torque
in the inertial frame, computed using (11) and (47).



STABIUZATION OF A TOP 359

1200

.................................
solid line : WI

dashed line : W2

dotted line: W31000
."

800

."
."
"':::.
,.. ...

0-
Q)

.!l1
CI
Q) 600
:s
enw
E 400
u
o
...J
W
>
c:
«
...J
::J
(!)
Z
«

-200

" ., . ". . . ....
. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-400

-600
o 2 4 6

TIME(see)
8 10 12

Fig. 9. Control of top using inertia torque: kl = k2 = 1, p= 0.01 /2x 2, R =/2 x2. Angular velocity ve~sus
time.

Next, consider the case in which the same ellipsoid is mounted on the rod at
a skew angle rx with respect to the i-axis. Consequently, the inertia matrix J
becomes

[

J""cos2rx+ Jzz sin2rx+ mP
J= 0

(J"" - Jzz) sinrx cosrx

(J"" - Jzz) osinrx cosrx

]J"" sin2rx + Jzz cos2rx

(56)

that is, an imbalance occurs as a result of the skewed top. In effect, (56) shows that
for ex'* 0 the top axis is not a principal axis of inertia. For rx= 10°,

[

0.1476
J= 0

- 0.0427

o
0.3001

o
- 0.g427

]0.3325

Figures 11-14 illustrate the results obtained with the body-fixed control law (37).
Note in particular that in Fig. 14 the control torques do not go to zero as time
progresses; instead, they approach constant offset values. This is because the
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Fig. 10. Control of top using inertia torque: kl =k2 = 1, P= 0.01 h x2, R =12x 2. Input inertia torque
versus rime.

sleeping motion, that is, spin about the top axis, is not a solution of the
uncontrolled top; therefore, non-zero control effort is required to maintain the
sleeping motion.

6 Conclusion

In this paper, we considered the stabilization of an unbalanced top to the sleeping
motion. We saw that the sleeping motion is not a solution of the Euler-Poisson
equations of motion of a top in general. However, we derived two families of
control laws, (37) and (47), that globally asymptotically stabilize a top with known
imbalance to the sleeping motion using tOrque actuators. In (37), the control
torque is produced by two body-fixed torque actuators perpendicular to the top
axis, whereas in (47), the control torque is confined to the inertial XY-plane. As
we have seen earlier, the latter case is equivalent to having two torque actuators
inertially fixed along the X- and Y-axes. The control-design strategy was based on
Hamilton-Jacobi-Bellman theory with zero dynamics, and the result is global in
the sense that the spinning top can be stabilized to the sleeping motion regardless
of spin rate, and from an arbitrary initial motion having a coning angle of up to
90°. The behavior of the closed-loop systems were demonstrated in simulation.

The imbalance given in (56) is very particular and is only one of the many types
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versus time.

of imbalance caused by manufacturing defects to the top. For instance, if the
ellipsoid is tilted with respect to both the i- and j-axes, all of the off-diagonal terms
of J will be non-zero. We can imagine other examples such as asymmetry due to

actuators on non-principal axes of inertia, and imbalance due to an irregularly
shaped top.

We note that the control laws obtained are feedback laws, where the feedback
variables are the angular velocity vector w measured in the body frame, and the
projection vector v which locates the local vertical in body coordinates. In practical
implementation, these variables can be measured using, for example, gyroscopes
and accelerometers mounted on the top. Hence, the feedback control laws we
obtained are physically realizable.

As with many non-linear control designs, the control laws derived in this paper
rely on exact knowledge of the top model; in particular, knowledge of the inertia
matrix is vital in order for the control laws to work. It has been verified in
simulation that if the actual imbalance differs from the assumed imbalance model,
then the control laws (37) and (47) will bring the top to some coning motion
instead. The work presented in this paper is part of the ultimate objective of
controlling rotating bodies with unknown imbalance.
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Appendix: complement to proof of Theorem 2

The following lemmas are used in the proof of Theorem 2.

Lemma Ai. Let WI: IR~ IR and Wz: IR~ IR be continuous, strictly increasing
functions satisfying WI (0) = 0 and WzCO) = O. Next, consider the partition
x = (x\) xz), where x E IRn, Xl E IRnl and Xz E IRnz, so that nl + nz= n. Then, the
function it/": W~ IR, 'IfI"Cx)~ WICllxdl)+ WzCllxzll)is continuous on IRn.

Proof Let x = Cx\)xz) E IRn,and e > O. Since for each i E {I, 2}, Wi is continuous
on IR, there exists ()i> 0 such that IW;CllYdl)- WiCllxill)1 <&e for allYi E 1Rn;, verifying

IIlYill-llxilll < bi. Let () ~minC()\) c5z), and Y = (y\) yz) E [Rn verifying lIy - xii < D.

Then, IIIYill-llxilll < IlYi- xiii < b, i E {I, 2}, and it follows that

l'ifl"(y)- ifI.Cx)I:s;lwlcllYdl)- wlCllxdl)1+ WzCIIYzll) - WzCllxzll)1<&e + &e = e

This completes the proof that 'It'"is continuous on [Rn.

Lemma A2. Let x E [Rn.Then, for all ex< 1, 1f'"Cexx)< 1rcx).

Proof Since WI and Wz are strictly increasing, it follows that

which completes the proof for Lemma A2.
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Since "Ir as defined in Lemma Al is continuous on ~n, its minimum exists on any
compact subset of IRn. Hence, let the function W': IR+ ~ IR+ be defined by
W(r) ~min "If"(x). Then, for all r E IR+, there exists XmE {lRn: Ilxll= r} such that

IIxll=r
iP'(xm) = W(r).

Lemma A3. W: IR~ ~ as defined above is a continuous, strictly increasing
function verifying W(O)= O.

Proof. The property W(O)= 0 is trivial. To show that W is strictly increasing,
suppose that there exists (r, r') E IR~ such that r> r' 2:::0, and W(r):5 W(r'). Let
Xm E {x E IR": Ilxll= r} be such that 'if/(xm) = W(r). Then,

ir(Xm) :5 W(r') = min "Ir(x) :5 ir (~Xm )IIxll=r' r

where r'/r< 1, which contradicts Lemma A2. Hence, Wis strictly increasing. Next,
let: ro> O. Then, 1r is uniformly continuous on the compact set 0 ~{x E IRn:
r0/2 :5llxll:5 3r0l2}. Let B< O. Then, there exists 1>> 0 such that Iir(x) - tr(y)1 < B

for all (x,y) E 02 satisfying Ilx- yll < b. Now, let (rl>r2) E [r0l2, 3r0l2] such that
Irl - r21 < b, and assume without loss of generality that rl < r2. Let x E ~n,llxll= rl>
be such that tr(x) = W(rl)' and let y = (r~rl)x. Then (x,y) E 02,
Ilx - yll = r2 - rl < b, and it follows that

0< W(r2) - W(rl) = min if/(z) - 'Ifi'(x) :5 "IfI'(y)- 1r(x) < B
IlzlI=r2

Therefore, W is uniformly continuous on [r0l2, 3r0l2], and hence is continuous at
roo Finally, continuity at 0 results from the fact that 0:5 W(r) :5 WI (r) + W2(r) -t 0
as r-t O.

Finally, recognizing W2(r) = kr, k> 0, as a particular continuous, strictly increas-
ing function satisfying W2(0) = 0, we thus have the following corollary which is
required for the proof of Theorem 2.

Lemma A 4. Let WI: ~ + ~ IR+ be a continuous, strictly increasing function
such that WI (0) = 0, and let k> O. Then, W: IR+ ~ ~ + defined by
W(r) ~min(WI (1IXlll) - kllx2112)is also continuous, strictly increasing and verifies

IIxll=r

W(O) = O.

-- - - - -


