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This paper introduces a method of parameter estimation working on errors-in-variables poly-
nomial non-linear models in which all measurements are corrupted by noise. The first step is to
develop the linear regression models which are equivalent to polynomial non-linear systems.
A main idea is to extend the parameter vector by even-order components of noise and to
augment the regression vector by appropriate constants or measurements. Applying the
method of least correlation, which has a capability to cope with errors-in-variables linear
models, to the equivalent model with extended parameters and augmented regressors yields
an extended least-correlation estimator. Analysis shows that, for non-linear systems with
third or lower order polynomials, the parameters estimated by the proposed method
asymptotically converge to the true values. Numerical examples also support analytical
results. Applications of the approach to Volterra models, Hammerstein models and Weiner
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non-linear systems are included.

1. Introduction

The method of least squares works on linear systems
provided that they are described by the linear regression
model and measurements included in the regressors are
free from noise (Rugh 1981, Johansson 1993, Doyle
et al. 2002). A generalized approach to modelling noise
is to view all variables as contaminated by noise,
called errors-in-variables (EIV) models (Scherrer and
Deistler 1998, Ljung 1999, Soderstrom et al. 2002,
van Huffel and Lemmerling 2002). Noises included
in regressors make identification problems challenging.
Nonlinearities in system models make the problems
more challenging.

There are previous contributions for EIV non-linear
models which are described by polynomials (Vajk and
Hetthessy 2003), Volterra models (Mattera and Paura
1998, Mattera 1999), Wiener—Hammerstein models
(Tan and Godfrey 2002), and general non-linear
functions (Vandersteen et al. 1996, Fazekas and
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Kukush 1997, Hermey and Watson 1999, Baran 2000,
Li2002). Vajk and Hetthessy (2003) generalize the classi-
cal eigenvalue-decomposition method to polynomial
non-linear systems with a priori knowledge about the
structure of the noise covariance matrix. Works for
Volterra models assume that the input signal is ampli-
tude-modulated cyclostationary (Mattera and Paura
1998) or consider the polyperiodic non-linear models
(Mattera 1999). Tan and Godfrey (2002) identify the
linear subsystems of a Wiener-Hammerstein model
through the measurements of second-order Volterra
kernels in frequency domain. Vandersteen et al. (1996),
Fazekas and Kukush (1997), and Baran (2000) introduce
estimators for systems which are described by
general non-linear functions including polynomials, but
they need a priori knowledge of every moment of noise.
Li (2002) identifies parameters based on the estimated
statistics of input variable. Hermey and Watson (1999)
treat a kind of fitting problem to Huber function.

The method of least correlation (Jun and Bernstein
2006) has a capability to find out the best fit to a given
structure of EIV linear models without a priori knowl-
edge about noise covariance. Direct application of the
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method to EIV polynomial non-linear systems, however,
yields error-prone estimates affected by noises included
in regressors. In the present paper, we introduce a
procedure to extend the parameter vector by even-
order components of noise and to augment the regressor
vector by appropriate constants or measurements.
Applying the method of least correlation to the new
models with the augmented regressors and the extended
parameters gives extended least-correlation (ELC)
estimates.

The ELC estimator does not need « priori information
about the noise covariance, but previous estimators
(Vandersteen er al. 1996, Fazekas and Kukush 1997,
Hermey and Watson 1999, Baran 2000, Li 2002, Vajk
and Hetthessy 2003) available for polynomial non-
linear systems need the knowledge. Analysis shows
that the ELC estimates used for systems with third or
lower non-linear degree asymptotically converge to the
true values. Monte Carlo simulations for simple exam-
ples support the analytical results. For fourth
or higher order polynomials, unfortunately, the ELC
estimates tend to include a bit of bias unless the augmen-
ted regressors are completely decoupled from the
extended parameters. We applied the method of ELC
to Volterra models, Hammerstein non-linear systems,
and Wiener models.

The next section states system models, definition of
problem, and assumptions on systems and signals.
Section 3 contains main idea and analysis for second,
third and higher-order polynomial non-linear systems.
We introduce applications of the ELC method to
Volterra, Hammerstein and Wiener non-linear models
in §4. Section 5 shows numerical examples. In §6 we
discuss the capability and limitation of the ELC
estimate. And a recursive version of the ELC estimate
is also introduced in §6. Some proofs of theorems are
stated in Appendix.

2. System models and assumptions

Consider the discrete-time Volterra models (Rugh 1981,
Doyle et al. 2002)

L
20 =20+ Y X0 +m (), (M
=1
M M n )
X =D ... i)
0=0 =0 j=1
X ui(t —ip) - u(t — ip), (2

where z(f) € R is the system response at rth sampling,
zo 1s a constant, 1n(f) € R denotes possible modelling
errors, uj(?) is the jth element of input vector u(f) € R”,

L denotes the non-linear degree of model, and M is its
dynamic order. The equations (1) and (2) state a general
Volterra model, but we will impose some restrictions on
it in later sections.

Suppose that both z(7) and u(¢) are measured in noise
as depicted in figure 1. Let y(7) € R and »(¢) € R" be the
available measurements of z(¢) and u(f) given by

(1) = 2(t) + m(2), (€)
(1) = u(?) +v(0), 4)

respectively, where 1n,(f) € R and v(¢) € R" denote
measurement noises. Using (3) and (4) to (1) and (2)
gives the EIV model

L
Y1) = yo+ D X (0) + (o), (5)
=1
M M n )
Xod =D D i, i)
i1=0 ip=0 j=1

x {vit — i)+ vi(t — i) = wilt,in, .. .0}, (6)
wi) = vt — i) -+ vt — de-1)vi(t — i)
+ vt —i1) - vt — fg—2)vi(t — ip—1)

x [vi(t — i) — vt — ip)]

+ vt — i)t — i) — vt — )] -+
X [vi(t —ig) — vt —ip)], (7

where 1(f) 2 (1) + n2(7). Now let us state the estimation
problem.

n(®

u(t)

V() n

(1)

Figure 1. Description of EIV nonlinear dynamic models.
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Problem 1: Given the system model (1) and (2) and the
measurement model (3) and (4), determine an estimate
of the system parameters o,(i,...,i;) based on the
available measurements v(¢) and y(¢).

Identification problems frequently work with signals
which are described as stochastic processes with
deterministic components. For a common framework
for deterministic and stochastic signals, we employ
the definition of quasi-stationary signals and the
notation

N

- .1
ELADI2 lim = FLAD)] ®)

=1

which works on the deterministic components as well as
the stochastic parts of quasi-stationary signal f{f), where
E denotes the mathematical expectation (Ljung 1999,
p.34). We implicitly assume that the limit in (8) exists
when E is used.

We introduce the following assumptions.

Al. The structure of model, the non-linear degree L,
the dynamic order M, and the number of inputs
n are known a priori. If the system is dynamic,
it is asymptotically stable.

A2. Measurements v(f) and y(¢f) are quasi-stationary
and jointly quasi-stationary.

A3. Noises 7n(7) and v(¢) are zero-mean, stationary and
Ei(0]=0,j=1,...,nforall odd L. There exists
7 > 0 for all |k| > 7 such that

E[v(in"(t — k)] =0, )
E[v())n(t — k)] = 0. (10)

A4. For t in A3, none of the elements of w(¢) is
constant and v(¢) satisfies

rank{R,,(t,t — T, N) + R(t — T,t, N)} =n,  (11)

where N denotes the number of samples and the
empirical correlation R, (t,,, N) with t; =t,1, =
t—torty=t—rt,t, =t1is defined by

_ 1 N
Ru(t1, 12, N) 2 —— 3 7 w(t)v!(12),

=1+t
T2 — 1. (12)

Assumptions A3 and A4 express that correlations
between signals are stronger than those between noises
as well as those between signals and noises.

Conditions (9) and (10) are equivalent to

E[u(ty™(t — k)] =0,
E[u(tyn(1 — k)] = 0,

E[vpT(t— k)] =0, (13)
E(nn(t — k)] =0,  (14)

for all |k| > = > 0, respectively.

3. Main results

Discussions in this section focus on static non-linear
systems with multi-input single-output. The results
can be extended with ease to multi-input multi-output
systems.

3.1 Second-order non-linear systems

Consider a second-order non-linear model
2(0) =Y ap (1) + mi(2) (15)
Jj=1

which is obtained from the Volterra model (1)—~(2) by
Z():O7 M:O, L:2,
&)(0) = 0,05(0,0) =aj,j=1,...,n. (16)

Using (3) and (4) with (15) or applying (16) to (5)—(7)
yields

70 =Y aj(v(t) = vi(0) (@) + (D). (17)
=1

For v;(¢) included in each term where the odd-order
of vj(¢) appears in the expansion of (17), substituting
vi(1) = ui(1) + vj(1) gives

n

0 = Y a0 =0 = 200m0] + 0. (18)

=
Let (18) be a linear regression form
2(8) =Yg (D6(1) + e(1) (19)

with the error e(f), the augmented regression vector
Va() e R™" and the extended parameter vector
0,(1) € R™! defined by

e(ty=n(t)—2 Z ajuj(t)vj(t), (20)
Jj=1

V) A0 - ) —1], 1)

b 2[a” YL (0], (22)
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where a”2[a;---a,). Given an estimate 6, and
Ny 2 N — g(v), consider a criterion

2
Jz(éa» 7, N) = <]\1/ (YO - leOéa)T(YT - lIjtéa)) P (23)

where Yy, Y;, ¥y and W, are defined by

T y(N) ] [ ¥(No) ]
Y(Ny) V(Ney1)
Y, & , Y. A , (24)
Ly(1+7) ] L y(1)
BRAN . BAGCSE
vI(Ny) Y (Netr)
IS , v A (25)
Lyl(1+ 1) Lyl

Necessary and sufficient condition to minimize (23)
yields the ELC estimate

A —1
bule. M) = (W5, e0) W5 Yoo, (26)

where the relevant matrices and vectors are composed of

\IJO lIJr Yt
Wy, A , Wyl , Yol : 27
0/t = [\Dr:| 7/0 [Wo] 7/0 |:Y0 ( )

The matrix Wi, W/ has a full rank since each compo-
nent of v(¢) is independent of and is not constant. The
ELC estimate (26) has the following property.

Theorem 1:  Suppose that A1-A4 are satisfied. Then as
N goes to infinity, the ELC estimate 6,(t, N) in (26) for
(19)—(22) converges to the expectation of 0,(t) in (22),
that is,

Jim A8 = B =[a" Thiael]. @9)

2
vj

Proof: Refer to Appendix A. ]

where o7 is the variance of vi(t).

Theorem 1 addresses the consistency of ELC estimates
in the sense that the first n elements of 6,(t, N) converge
to the true parameters a as N goes to infinity. Above
procedure to derive the ELC estimate is applied to
multi-input multi-output systems according to the

steps of least-squares estimate (Johansson 1993,
pp. 97-98).

3.2 Third-order non-linear systems

For the third-order non-linear system
2(1) =Y aul () + m(o), (29)
j=1

the EIV model is written as

n

y(0) =" a;(v(0) = vi(0) (1), (30)

=1
Rearranging (30) for the even-order terms of v;(f) to

be with v;(¢) and for the odd-order terms of vy() to
be with u;(¢) yields (19) with

OELOEDD q,-(3u]?(z)uj(x) - 2uf(z)), 31)

j=1
Yalt) = [R(@) 20 — 3T (0], (32)
0u(0) = [aan(1) - - a2(1)] (33)

Applying the method of least correlation to (19) with
(31)—~(33) gives an ELC estimator with the following

property.

Theorem 2:  Suppose that A1-A4 are satisfied. Then as
N goes to infinity, 6,(t,N) for (19) with (31)—~(33)
converges to the expectation of 0,(t) in (33), that is,

lim Gu(r, N) = B0 ()] = [a” a0 - a0l ],
N—oo n
(34)
where 05/_ is the variance of vi(t).

Proof. Refer to Appendix B. Ll

3.3 Higher-order non-linear systems

Consider higher-order non-linear systems
n
2= aul () +m). L=4. (35)
=1

The EIV model of (39),

n

W0 =Y (v = vi(0) +n(0), (36)

J=1
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is rearranged for even L to

n

y([) = Z ajl:,BijL(l) + ,32ij—2([)])].2(0

J=1

o B0+ mf(r)] Few,  G7)

=3 a_,[ﬂlufl(z)vj(z) T Bt )

J=1

+ --+ﬂL_1uf(z)y,ﬁ‘(r)} ). (38)

and for odd L to

n

50 = Y| Bost )+ vt 00

=1

et B v (z)} few,  (9)

=3 a [ﬁluL o) + Bt (00

J=1

bt mf(z)] + (1), (40)

Table 1 shows B¢ in (37)—-(40) for systems with up to
8th-order non-linearity.

Each of (37) and (39) has an equivalent realization
(19) with (38) and

vl =[vd Wiy - od Bl @D

ol = v b Vi n] @)

Table 1. Examples of the coefficients So=1,8,,£ =1,...,8.
L B B2 Bs B Bs Bs B Bs
I -1

2 =2 -1

3 -3 =3 2

4 -4 -6 8 5

5 =5 =10 20 25 —16

6 -6 —15 40 75 =96 —61

7 =7 =21 70 175 =336 —427 272

8 -8 28 112 350 —-896 —1708 2176 1385

for even L, or with (40) and

%T(f):[v(m Wiy V(lT)] (43)
ol = v, v vy (44)

for odd L, where y; (1) 2 Do V] L(#), and v(g)(t) v(z)(l)
£=0,1,..., L are defined by

V(e)(t) Br- e[ vy - Vﬁ(f)],
v(e)(t) A [alvl(z‘) a,,vf;(t)]

For (19) with either (38) and (41)-(42) or (40) and
(43)-(44), applying the method of least correlation
yields 6,(t, N) in (26). The ELC estimate is evaluated as

lim 0u(z. N) = Elu(0] + Ry, (DE@L 1 = 1), (45)

where each component of &£(¢,¢ — 1) is given by (C20)
and (C21) for even L and by (C25) for odd L, respec-
tively, in Appendix C. The second term of (45) does
not vanish unless the extended regressors are decoupled
with the augmented parameters.

4. Applications

4.1 Second-order Volterra models

Consider the second-order Volterra model

M
) =z0+ Y ar(iut — i)
i=0

Ma

M
+ Zaz(i,j)u(t—i)u(t—j)+m(t) (46)
J=

Il
<]

I

which is obtained from (1) and (2) by setting
L =2,n=1. Applying (3) and (4) to (46) yields

M
(1) = () +yo + Z a1 ()t — i) — v(t — i)]

M M
+ Y Y (i v — i) — vt — D)

Jj=0

i=0
x [v(r = j) = vt = )], (47)

~.

where  7(f) 2 n,(f) + n2(r). Letting the even-order
terms of v be with v and the odd-order terms of v be
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with u yields

PO =30 = Y Yl )it = Dt =)

M M
i=0 j=0

M
+ Y (it — i)

i

S

=0
M
+ 3 (i (e — vt —j) + (), (48)

=0

J

Il
=}

I

e(t) = n(1) — (i j)

M=

M
° =0

J

X |:u(t — it —j) — v(t — Du(t —j)i|. (49)

Il
S

The EIV Volterra model (48) is equivalent to (19) with
_ | -
(1)
v(t — M)
vA(0)
wa(t) =

V(1 — M) ’
v(v(t —1)

v()v(t — M)

Lv(t — M+ DHv(t — M) |
i Yo(1) T
a1(0)

a(M)
Olz((), 0)

0a(1) = . (50)

(XQ(M, M)
a2(0, 1) + a2(1,0)

Ol2(09 M) + Olz(M, 0)

Loo(M — 1, M) + ar(M, M — 1) |

where (1) 2 yo — Yo S Mg (i j)v(t — it — ).

Corollary 1:  Suppose that A1-A4 are satisfied. Then
as N goes to infinity, 6,(t,N) for (19) with (49)
and (50) converges to the expectation of 0,(t, N) in (50),
that is,

Jlim 0T, N) = E[0,(1)].

Proof: Using the steps in Appendix A for (49)—(50)
instead of (20)—(22) yields Corollary 1. ]

4.2 Hammerstein models

Consider Hammerstein non-linear models (Doyle ef al.
2002, p. 22). Figure 2 shows an EIV Hammerstein
non-linear model. In this model, we restrict the non-
linear part to a polynomial with finite degree L and
the linear part to a class of FIR models with finite
length M.

To the Hammerstein model written as

M L
20y =) gli) Y B (t — i)+ m(0). (51)
i=0 =0
applying (3) and (4) gives the EIV Hammerstein model
M L
v =Y gi))_ Bulvt— i) — vt =D +n(0). (52)

i=0 £=0

We consider two cases L=2,3. For L=2, (52) is
rearranged as

M
w0y = e+ > gd[Bo — Bt — )

i=0

+ Bt — i) + Bt — D)), (53)
M

e(t) = n(1) — Zg(i)[ﬁW(t — )+ 2Bou(t — vt — i)] (54)
i=0

N0

Hammerstein Model

Figure 2. Description of EIV Hammerstein non-linear
dynamic models.



262 B.-E. Jun and D. S. Bernstein

and (53) is represented by (19) with

! (0 ]
V() B12(0)
V= | =m0 | 6= pean |- 69
V(1) Ba2(0)
| V(¢ — M) | | B2g(M) _

where yo(0) 2 3, g(i)[ o — Bov2(1 = )]

Corollary 2:  Suppose that A1-A4 are satisfied. Then
Ou(t, N) for (19) with (54) and (55) asymptotically con-
verges to E[0,(1)].

Proof: Applying the approach in Appendix A to
(54) and (55) in place of (20)—(22) leads to Corollary 2.
U

For L =3, (52) is written as

M
y(0) = e+ Y gO[{Bo— Bt — D)}

i=0
+ {81 =3BV (t — )yt — i)
+ B (L — i)+ B3’ (1 — )], (56)

M
e(t) =283 Y g(i)[uP(t — i) — v (t — i)]u(t — i)
=0
M
=Y g@IB1 + 2Bault — Dv(t — ) + (1) (57)
i=0
and (56) is equivalent to (19) with

C L] [ Mo g)[Bo — B2v?(t = )] ]

(1) vlB1 = 3837 (1]
Wt — M) vlB1 = 3837 (1 — M)]
V(1) Ba2(0)
Wa([) = . 5 ga(t) = X
V(1 — M) Brg(M)
v (1) B32(0)
L v (1= M) _ Bag(M)

(58)

Corollary 3:  Suppose that A1-A4 are satisfied. Then
Oa(T, N) for (19) with (57) and (58) asymptotically
converges to E[0,(1)].

Figure 3. Errors-in-variables Wiener non-linear dynamic
models.

Proof: Applying the steps in Appendix B to (57) and
(58) instead of (31)—(33) proves Corollary 3. O

4.3 Wiener models

Consider the Wiener non-linear models (Doyle er al.
2002, p. 24). Figure 3 shows EIV Wiener models,
where we restrict the linear part to a class of FIR
models and the non-linear part to a polynomial of
degree L.

To the Wiener model

L M ¢
A=Y B (Zg(z‘)u(z— i)) +m@). (59

£=0 i=0

applying (3) and (4) yields the EIV Wiener model

L M ¢
=Y 8 (Zg(f)[v(z— = i - i)]) +r). (60)

=0 i=0

Consider a case with L=2. In this case, (60) is
expressed as

M
W0 =Po— By LDV — )
i=0

M-1 M
=28 x Y Y glbg(v(t — (it — )

i=0 j=i+1
M M
+ B Y gt — i)+ B2 Y gt — i)
i=0 i=0
M—-1 M
+2B ) > gt — iyt —j) + (), (61)
i=0 j=i+l

M
e(r)=n(t)— B Y_ gliyu(t — i)
i=0

M—-1 M
=28 ) Y gldg(lult — iyl — j)

=0 j=i+1
—u(t — jv(t —0)]. (62)
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Equation (61) is represented by (19) with

r 1 70(?)
w(1) B1£(0)
v(t— M) B1g(M)
v2(1) B2g*(0)
() = : , Oq(0) = :
val?) V(1 — M) © Bag* (M)
Wt —1) 2p,8(0)g(1)
WOt — M) 2p,8(0)g(M)
L v(t — M+ 1)v(t — M) | L 2B28(M — 1)g(M) |
(63)
where yo(t) 2 By — B2 22y (VP (1 — i) — 22 x

S gDg((t — iyt — ).

Corollary 4:  Suppose that A1-A4 are satisfied. Then
Ou(T, N) for (19) with (62) and (63) asymptotically
converges and to E[0,(1)].

Proof: Using the steps in Appendix A to (62) and (63)
instead of (20)—(22) gives Corollary 4. O

5. Numerical example

Consider the simple non-linear model

2(0) =0ut(t), L=234 0=1,
u(t) = ~/2sin 271,

(64)
(65)

and the measurements (3) and (4). For simplicity,
we assume that n(zr) =0 and v(¢) is white Gaussian
with variance o2. Each simulation chooses o2 such that
the signal-to-noise ratio (SNR),

SNR; = 1010g10<w> [dB],

E2(0)] (66)

is realized.
6 =643500),

where 0 and &(é) denote the empirical mean and stan-
dard deviation of 6, respectively. Figure 4, shows
a clear trend that the ELC estimators decrease 6 as the
number of data increases, which supports Theorem 1.
Observations on Figures 5-7 give a confidence that the

1.5

"+" : True Parameter; Bars : mean+ 3 o

1.4r
1.3
1.2¢
1.1f

Estimate 8
“

0.9r
0.8f
0.7
0.6f

0.5

Figure 4. Effect of number of samples:

SNR; = 5dB.

3 4 5 6
Number of Samples [10%]

"+": True Parameter; Bars : mean + 3o

Estimate e
b~ e ]
N =) [

&
(S

oI ] += +m —+-

Il Least-Squares
e I Least-Correlation

Figure 5.

0 5 10 15 20
Signal-to-Noise Ratio [dB]

Input noise effect: L =2,7 = 1,10° samples.

“+" . True Parameter;, Bars : mean & 3o

I e
o] - N
T T

Estimate o
o
L=

0.4f

0.2}

Bl |east-Squares ]
0 Least-Correlation
+ + = i

Figure 6.

5 10 15 20 25
Signal-to-Noise Ratio [dB]

Input noise effect: L=3,t =1, 10° samples.

263

L=2 t=1,
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"+" : True Parameter; Bars : mean & 3o

B |east-Squares
f.4r 0 Least-Correlation

Estimate e
=
=

10 15 20 25 30
Signal-to-Noise Ratio [dB]

Figure 7. Input noise effect: L = 4,7 = 1,10° samples.

“+" : True Variance; Bars : mean % 3 std
016 T T ¥

0141

=
-
o*]

v

o
-

Estimate o>

0.08r

0.061

.0 2 3 4

Nonlinear Degree of Model

Figure 8. Input noise effect: SNR; = 5dB,t =1,

10° samples.

ELC estimators work well for the EIV non-linear
models. Even though the ELC estimator is employed
for a system with fourth-order non-linearity, figure 7
shows quite good estimates.

As a byproduct the method of ELC gives an estimate
of noise variance. Figure 8 shows the expectation of the
estimates. In the figure, ‘+’ denotes the true variance
and the bar means the expected range of variance esti-
mates defined by

02 =02 +35(02),
where o2 and 6(o?2) denote the empirical mean and stan-

dard deviation of o2, respectively. One thing observed in
figure 8 is that the larger the non-linear degree L is the

more data the estimate needs. It is thought that this
trend is related to the condition number of Ry,y,
which tends to increase as L increases.

6. Concluding remarks

In the present paper, we are interested in non-linear sys-
tems which contain polynomials and have equivalent
realizations known as the linear regression model, and
in which all measurements are contaminated by noise.
The conventional method of least squares applied to
the systems tends to give error-prone estimates. On the
other hand, recently proposed estimators (Vandersteen
et al. 1996, Fazekas and Kukush 1997, Hermey and
Watson 1999, Baran 2000, Li 2002, Vajk and
Hetthessy 2003) need a priori information about the
moments of noise.

A main idea is to propose a way of augmenting regres-
sors and extending parameters of the linear regression
models so that the new models are equivalent to the ori-
ginal systems. Applying the method of least correlation
to the equivalent model with extended parameters and
augmented regressors yields the ELC estimator which
has many good properties as follows. For third or
lower order polynomials the ELC estimator gives consis-
tent estimates of system parameters without a priori
knowledge about noise covariance. It is easy to apply
the method to Hammerstein models, Wiener models as
well as Volterra models. The ELC estimate, moreover,
conserves many good properties of the least-correlation
estimator such as simple structure, clear understanding
of minimization policy and recursive realization
(Jun and Bernstein 2006).

The ELC estimator is designed for post processing or
off-line application. For online or real-time application,
the ELC estimator is realized to a recursive procedure,
recursive least-correlation (RLC) algorithm (Jun and
Bernstein 2006), expressed as

0u(e. 1) = Gu(r. 1 = 1)+ KO (e = V1 Bzt = D)

—1
K0 = P( = Do (T4 UL P = D)
P(1)=P(t— 1) — Ky, Pt — 1),

where %/H é [ Wzt(i) wa(l - T) ]a wifr/i é [ Wa(l - t)X
Yal, vicep 2 [y —1) 1] for 1> 7 provided that
P(7) and 6,(t,t) are given. Computational burden of
the RLC algorithm is approximately double the corre-
sponding RLS (recursive least-squares) algorithm since
Yijir € R"™2 or Vi € R"™2 in the RLC plays the
role of the regression vector with order » in the RLS.
For fourth or higher order non-linearity, unfortu-
nately, the ELC estimator tends to give estimates
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containing a bit of error which is due to the correlation
between the augmented regressors v,(r) and the
extended parameters 6,(f). Actually the correlation
keeps the bicorrelation ty,y 0, (7, ) from being divided
into Ry,y, (v) and E[6,(¢)] unless ,(f) is decoupled
from 6,(¢). The rank condition of correlation matrices
in A.4, which is related to the sufficient excitation or
identifiability of the ELC estimate, is another weak
point of the ELC estimate. When input signals are per-
1odic, for instance, there exists a time-intervals t which
makes Ry, y, (7) singular. Designing system inputs, if pos-
sible, will be an approach to avoiding the singularity.

Appendix

A. Proof of Theorem 1
With the empirical correlations defined by

Ry (i, 0,2 > v, (AD

T =141

Pt 12, N) & < LY e a2

Ti=l+t

where T2 — 1) and =t h=t—1 or
ty=t—1, tp =t, (20) is rewritten as

{R'//al/fa(l: t—1,N)+ Ié]/,“%(l — 1,1, /\’)}71
X {fllfay(t’ -1, N) + fllfay(t - 1,1, N)} (A3)

éa(fa N) =

Using (19) to (A2) gives

Fuo(t1, 12, N) = ty 0,11, 12, 12, N) + Fyo(11, 12, N),
(Ad)

where the empirical bicorrelation Ewm,e,,@b 1, 12, N)
(Koh and Powers 1985) and the empirical correlation
Fye(t, t2, N) are defined by

Z V(1)U (12)0u(12), (AS)

Tt 1471

Fy,e(tt, lz,N)é ~— Z Ya(t1)e(t2), (A6)

Ti=l+1

ty,v.0.(11, 12, 12, N)

respectively.

Suppose that N increases to infinity. Then
Ié]/,a,,,u(tl,tz,]\f) and  7y.(t1,t, N) converge to
Ry,y,(t1 — 1) and ry (t; — t2), respectively, due to the
ergodic theory (Ljung 1999, Theorem 2.3 in p. 43).
Ry .y, (t1 — t2) and ry,(ty — 1), moreover, depend on

T =\t — ] owing to A2. Now (Al) and (A6) are
expressed as

Jim Ry, (11,2, N) = Ry,y,(0) (A7)
]\}i_r};o ’_‘l//“(’(tl b ZZ, N) == r‘l/fac’(r)’ (AS)

respectively, where Ry, y, (t) and ry(7) are evaluated
as follows:

v (vl (t =) —V<2)(f)} (A9)

R T
v (7) = |: —v(2)(l —1) 1

Elra(n(t — )]
— Y GEY (Dt — vt — D] =0, (A10)
J=1

r%i’(f) =

with vl (1) £ [v{(1) vi(n)]. Similarly the bicorrela-
tion in (AS) is evaluated as

RO Y a3 -0 -0 -1) ]
ti/ftﬂ/fueu(rﬂ T) = E 2([) Z | a]( T) _ Uz(t _ T))
~Ya(Re-n—v-0) |

= Ry,y, (D) E[0.(1)]. (Al1)
Using (A10) and (A11) for (A4) at N — oo yields

Py, (T) = Ry,y, (D E0.(1)]. (A12)
Finally applying (A7) and (A12) to (A3) at N— oo
gives (28). O

B. Proof of Theorem 2

Equations (A1)—(A8) in Appendix A work on (19)
with (31)-(33). For the third-order model, Ry, y, (1) is
evaluated as

R,3,5(7) —3Ry (T):| (B13)

R =
wuta(7) [—312,,1‘,_«,(1) IR, ()
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where  Ryx(1) 2 E[V([)([)V(T];)(f —1)] for
Applying ty, y.0,(t, 7) and ry (1) evaluated as

Lk =1,3.

t% Yaba (t’ T)

vi(1) p aj(vf(t — 1) =3yt — t)vf(l - r))

O T (v =7 = 3y = D - 1)

=E
—3v1(1) ZJ"ZI aj(v;(t —1) =3t — ‘E)sz(t — r))
30 Y aj(v}(z — 1) = 3wt — OV — z)) |
= Ry, y,(DE0(1)], (B14)

Fye(T) = E[Yu()n(t — 1)] = 3E [%(l) Y a1 =Tyt — T)}
=1

+ 2E'[1pa(z) Xn:ajvf(r — r):|
J=1

—0, (B15)

respectively, to (A4) at N—oo yields (Al2).
Finally using (A7) and (A12) with (A3) at N— oo
gives (34). ]

C. Proof of equation (45)

Refer to (A1)—(A8) in Appendix A. First suppose that L
is even. Then Ry, y, () is expressed as

RVILV/L(T) R\/Lv/z(‘[) ryL
R‘/’Mpa(r) = ' ' ' s (C16)
Ryoyi(7) Ry (7)1
A T o)
e T i 'BL

where each component of the matrix is given by

Ryegi(t) & Elv (v (t = D), (C17)
rye 2 BB Elvio(D] = BB Elvp(t — )], (C18)

for €,k e {L,L —2,...,2}. The bicorrelation ty, g, (7, 7)
is expressed as

ty,0, (T 1) = Ryy,(DEO(] + E1 1 = 1) (C19)

where E(r,t—1)=[E] &},
&y are given as

52T 5()]T and &,

€= (BLE (1 = vyt = ]

=L,

7, E[v;L,l)(t)]), (C20)
&= (l:?[v’(k)(t)vg)(z — gyt — D]

=L,

—Ryiye (T)E[v’(H)(,)]), ©21)

respectively, for £, ={L —2,...,2} and ke {L,L —2,
...,2}. Then ry,(7) is evaluated as

Fye(T) = Elra(Dn(t — 7)]
+ ﬁlé[m(z) > a1 = o — r)}
Jj=1

+- 4+ 5Llf_’7|:¢a(f) i‘?i”j(’ — oy (- f):|
=

=0. (C22)
For odd L, Ry,y,(7) and ry,(7) are written as

RV’LV’L(T) RV/LV’I ('L’)

Ry,y, () = : ... : , (C23)
RV/IV’L(T) Rv/l J1 (‘L')

Fye(T) = Elra(On(t — 7)]
+ ,31E|:1/fa(f) Z aj; ™ (1 — T)vi(t — T)i|
=
+ -+ ,BLE|:1//a(t) Zajv{‘(t — 'L’):|
J=1
=0, (C24)

and each component of &(r,1—1)=
T £T" is given by

respectively,
(&1 €1

&= Z (E[v/(k)(l)v/({)(t — Dyt — )]

=L,

Ry (D (1)]), (C25)

for L,={L—2,...,3} and ke{L,L-—2,...,3, 1}
Employing either (C16)—(C22) or (C23)—(C25) to (A4)
at N — oo, and applying the results to (A3) at N— oo
yields (45). O
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