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In this paper we develop a method for identifying SISO Wiener-type nonlinear sys
that is, systems consisting of a linear dynamic system followed by a static nonline
Unlike previous techniques developed for Wiener system identification, our appr
allows the identification of systems with nonlinearities that are known but not necess
invertible, continuous, differentiable, or analytic.@DOI: 10.1115/1.1409256#
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1 Introduction
Linear system identification has been extensively studied@1–4#.

However, nonlinear system identification has received less at
tion. Since most real systems are nonlinear, techniques for no
ear system identification are broadly applicable.

There are two basic approaches to nonlinear system identi
tion. Black boxidentification @5–12# assumes little or no mode
structure. In contrast,gray boxor block-structuredidentification
@13–28#, involves the interconnection of two types of input-outp
blocks. The first type of block is a linear dynamic system,
exampley5G(q21)u, while the second type is a static nonlinea
ity, for exampley5u2. Gray box identification provides physi
cally meaningful engineering models of the system compone
but requires prior knowledge of the system structure.

Three common block-structured models are the Hammers
nonlinear feedback, and Wiener models. A Hammerstein nonlin
system consists of a static nonlinearity followed by a linear s
tem; a nonlinear feedback system consists of a linear system
a nonlinearity in feedback; and a Wiener system~see Fig. 1! con-
sists of a linear system followed by a static nonlinearity. Wien
models have been used in biological systems@28#, as well as
representing a linear system with a nonlinear sensor@29,30#.

In this work we develop a new method for identifying SIS
Wiener systems in a deterministic setting, and then demons
the algorithm with noise. Unlike previous work@13–23,30#, we
consider the identification of systems with nonlinearities that
known but not necessarily invertible, continuous, differentiable
analytic. Typical noninvertible nonlinearities encountered in pr
tice are polynomial, saturation, deadzone, step@29#, quantization,
and absolute value functions. We also consider the case wher
nonlinearity is unknown, and the linear systemG(q21) has a
nonzero DC gain, that is,G(1)Þ0 ~Section 6!.

The method we develop is based on several assumptions.
cifically, we assume the order of the linear system is known. N
we assume that the inverse image of any pointzPR under the

1This work was supported in part by the Air Force Office of Scientific Resea
under grant F49620-98-1-0037, the Air Force Research Laboratory Space Ve
Directorate, and the NASA Graduate Student Research Program.
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nonlinearity N 21(z) consists of a finite number of interval
~points are considered to be intervals of zero length! in R. If the
nonlinearity does not initially satisfy this assumption, its doma
can often be restricted such that it will: considerN(y)5sin(y) and
restrict its domain to be bounded. We are unable to iden
Wiener systems with certain pathological nonlinearities, such
the rational indicator functionN(y)5$1 if y is rational, 0 ify is
irrational%, which have limited engineering applicability. The on
other constraint is that the inverse image of the outputz must be
sufficiently rich in content to permit inversion of a certain matri
This last condition is a persistency of excitation condition invo
ing the nonlinearity and the linear system. We do not need
assume that the linear system is stable, but we do need to as
that it is controllable and observable. Any modes that canno
excited and observed cannot be identified.

Our method consists of minimizing a cost function that depe
on the vector of unknown system parametersu and the interme-
diate signaly, which is the not necessarily unique inverse ima
of the outputz, that is, yPN 21(z). This cost function can be
separated into the sum of two nonnegative functions, one of wh
involves the intermediate signaly and the inputu but notu, while
the other can be set to zero by a suitable choice ofu. The advan-
tage of this decomposition is that these functions can be m
mized sequentially. Without introducing this decomposition, t
minimization problem would be significantly more complex.

This paper is organized as follows. In Section 2 we present
notation used throughout the paper. In Section 3 we define
identification problem. In Section 4 we present a decomposition
the least squares method in non-conventional notation. In Sec
5 we consider increasingly complex nonlinear identification pro
lems involving systems with invertible nonlinearities, noninve
ible nonlinearities without constant regions, and noninverti
nonlinearities with constant regions. In Section 6 we extend
method to systems with unknown nonlinearities and nonzero
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Fig. 1 Block diagram of a Wiener system
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gains. In Section 7 we present simulation results to illustrate
method. Finally, Section 8 contains concluding remarks.

2 Notation
q21 represents the backward shift operator,R represents the se

of real numbers.ivi represents the standard Euclidean norm.In
represents then3n identity matrix, 0n3m represents then3m
zero matrix, andVT denotes the transpose ofV.

3 Problem Definition
Consider the SISO Wiener system withnth-order linear

dynamics

y~k!,G~q21,u!u~k!5
b01b1q211 . . . 1bnq2n

11a1q211 . . . 1anq2n u~k!, (1)

where we define the vector of system parameters

u,@a1 ¯ an b0 ¯ bn#TPR2n11, (2)

and the known, but not necessarily invertible, output nonlinea

z~k!,N~y~k!!, (3)

whereN:D→R, D,R. To identify this system we determine a
estimateû,@ â1 ¯ ân b̂0 ¯ b̂n#T of u such that the system

ŷ~k!,G~q21,û!u~k!5
b̂01b̂1q211 . . . 1b̂nq2n

11â1q211 . . . 1ânq2n u~k!, (4)

ẑ~k!,N~ ŷ~k!!, (5)

approximates the true system. For identification, we assu
knowledge of the signalsu andz, but we do not assume access
the intermediate signaly.

4 A Decomposition of Least Squares Identification
Here we rederive least squares identification for linear syste

In doing so we introduce nonstandard notation that will be use
in formulating the Wiener system identification method. Letp
>2n11. For ann1p sequence of inputsu(1),u(2), . . . ,u(n
1p) and intermediate variablesy(1),y(2), . . . ,y(n1p) we
define

u,@u~1! u~2! . . . u~n1p!#TPRn1p,

y,@y~1! y~2! . . . y~n1p!#TPRn1p.

Next, let

P,@ I p 0p3n#PRp3n1p,

R,F0n1p2131 In1p21

1 013n1p21
GPRn1p3n1p,

and

ei j,@013 i 21 1 013 j 2 i #
TPRj , (6)

whereP removes the lastn components from a vector,R moves
the first component of a vector to the last position, andei , j is the
i th column of I j . Now, define the input part of the regressio
matrix U:Rn1p→Rp32n11 and the measurement part of the r
gression matrixY:Rn1p→Rp32n11 by

U~u!,P(
i 51

n11

Ri 21ue2~n11!2 i ,2n11
T

5F 013n u~n11! ¯ u~1!

013n u~n12! ¯ u~2!

] ] ]

013n u~n1p! ¯ u~p!

G , (7)
Journal of Dynamic Systems, Measurement, and Control
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Y~ ŷ!,P(
i 51

n

Ri 21ŷen112 i ,2n11
T

5F ŷ~n! ¯ ŷ~1! 013n11

ŷ~n11! ¯ ŷ~2! 013n11

] ] ]

ŷ~n1p21! ¯ ŷ~p! 013n11

G . (8)

We then define the regression matrixF:Rn1p3Rn1p→Rp32n11

as

F~u,ŷ!,U~u!2Y~ ŷ!

5F 2 ŷ~n! ¯ 2 ŷ~1! u~n11! ¯ u~1!

2 ŷ~n11! ¯ 2 ŷ~2! u~n12! ¯ u~2!

] ] ]

2 ŷ~n1p21! ¯ 2 ŷ~p! u~n1p! ¯ u~p!

G .

(9)

Thus

Qy5F~u,y!u, (10)

whereQPRp3n1p defined by

Q,@0p3n I p# (11)

removes the firstn components of a vector.
With this notation we define the standard least squares

function JLS :Rn1p3Rn1p3R2n11→R as

JLS~u,ŷ,û!,iQŷ2F~u,ŷ!ûi . (12)

Now we decompose the cost function~12! by expanding and com-
pleting the square

JLS
2 ~u,ŷ,û!5 ŷTQTQŷ1ûTFT~u,ŷ!F~u,ŷ!û

2ûTFT~u,ŷ!Qŷ2 ŷTQTF~u,ŷ!û

5 ŷTQTQŷ1ûTFT~u,ŷ!F~u,ŷ!û2ûTFT~u,ŷ!Qŷ

2 ŷTQTF~u,ŷ!û1 ŷTQTF~u,ŷ!

3~FT~u,ŷ!F~u,ŷ!!21FT~u,ŷ!Qŷ2 ŷTQTF~u,ŷ!

3~F~u,ŷ!TF~u,ŷ!!21FT~u,ŷ!Qŷ

5 ŷTQT~ I p2F~u,ŷ!~FT~u,ŷ!F~u,ŷ!!21

3FT~u,ŷ!!Qŷ1~ û2C~u,ŷ!Qŷ!TFT~u,ŷ!F~u,ŷ!

3~ û2C~u,ŷ!Qŷ!

5Jy
2~u,ŷ!1Ju

2~u,ŷ,û!, (13)
DECEMBER 2001, Vol. 123 Õ 567
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Jy~u,ŷ!,iPF~u,ŷ!
' Qŷi ,

Ju~u,ŷ,û!,iF~u,ŷ!~ û2C~u,ŷ!Qŷ!i ,

andC:Rn1p3Rn1p→R2n113p is the left inverse ofF given by

C~u,ŷ!,~FT~u,ŷ!F~u,ŷ!!21FT~u,ŷ!. (14)

Note thatF(u,ŷ) is assumed to have full rank which is a pers
tency of excitation condition. The orthogonal projectorPV

'

PRn3n is defined as

PV
',I2V~VTV!21VT. (15)

Let

û~u,ŷ!,C~u,ŷ!Qŷ. (16)

Thus Ju(u,ŷ,û (u,ŷ))50, leaving JLS(u,ŷ,û (u,ŷ))5Jy(u,ŷ)
5iPF„u,ŷ…

' Qŷi , which is the standard least squares result.
We now proceed to describe the Wiener system identifica

method, where the nonstandard notation introduced in this sec
will prove useful in calculating gradients for numerical optimiz
tion routines.

5 Wiener Identification Method
First we consider identification of Wiener systems with inve

ible nonlinearities, then noninvertible nonlinearities with no co
stant regions, and, finally, noninvertible nonlinearities with co
stant regions.

In the case of an invertible nonlinearityN:D→R, the inverse
imageN 21(z) of z is single valued. Hence we set

ŷ5N 21~z!, (17)

where the vector of measurementszPRn1p is given by

z,@z~1! z~2! ¯ z~n1p!#T, (18)

and, for

ŷ,@ ŷ~1! ŷ~2! ¯ ŷ~n1p!#T, (19)

we adopt the vector notation

N~ ŷ!,@N~ ŷ~1!! ¯ N~ ŷ~n1p!!#T. (20)

and

N 21~z!,$ŷPDn1puN~ ŷ!5z%,Dn1p. (21)

Then we can proceed as in the previous section by obtaining
estimateû (u,ŷ) with ŷ given by ~17!.

Next, we no longer assume thatN is invertible, but rather we
assume that the inverse image of every point in the range s
Rn1p of N is a finite set in the domainD of N. HenceN 21(z) is
also finite for allzPRn1p. The least squares decomposition d
scribed in Section 4 can then be applied to each elemen
N 21(z). We then evaluateJy(u,ŷ) at each pointŷPN 21(z), and
let ŷ* denote a minimizer ofJy(u,ŷ). Our optimal estimate of the
system parameters is thus given byû (u,ŷ* ).
568 Õ Vol. 123, DECEMBER 2001
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SinceN is not necessarily invertible in this case, it follows th
ŷ* , and thusû (u,ŷ* ) need not be unique. For example, consid
the quadratic nonlinearity,N(y)5y2, whereN(y)5N(2y). In
this case there are multiple solutions that minimizeJLS and mul-
tiple estimates of the system parameters, all of which are con
tent with the measured data.

Now we consider a more general case in which we assumN
satisfies the property that, for allzPR, the primageN 21(z) of z
consists of a finite union of intervals. Points are considered to
intervals of zero length. This assumption allows us to consi
nonlinearities that have constant regions such as deadzone or
ration. The inverse imageN 21(z) of z will consist of a union of
~perhaps lower dimensional! cubes inRn1p. SinceN 21(z) con-
sists of a finite number of disjoint, convex regions inRn1p, we
minimize Jy(u,ŷ) over each region by using a nonlinear optim
zation routine, obtaining a~possibly local! minimum and mini-
mizer for each region. Since the number of regions is finite, if
minima obtained are global then we can determine the glo
minimizer ŷ* , which yields the estimate of the system paramet
û (u,ŷ* ). Of course,Jy is in general not convex and local minim
may be obtained.

We can apply a variety of numerical optimization routines
minimize a nonlinear cost function over a convex region. To us
gradient-based method, we differentiateJy

2(u,ŷ) with respect toŷ
to find the gradientGPRn1p of Jy

2(u,ŷ) given by

G~u,ŷ!,
]Jy

2~u,ŷ!

] ŷ

52QTPF~u,ŷ!
' Qŷ

12(
i 51

n

RTi21PTPF~u,ŷ!
' QŷŷTQTCT~u,ŷ!en112 i ,2n11 .

(22)

We now compute the HessianHPRn1p3n1p of Jy
2(u,ŷ). The j th

column ofH is given by

H~u,ŷ!~ :, j !5
]

] ŷ S ]Jy~u,ŷ!2

]y~ j ! D
5

]

] ŷ
ej ,n1p

T G52QTPF~u,ŷ!
' Qej ,n1p

12(
i 51

n H QTV~ i , j !Qŷ

1RTi21PTPF~u,ŷ!
' QU~ j !QTCT~u,ŷ!en112 i ,2n11

1(
l 51

n

@RTl 21PT~CT~u,ŷ!W~ i , j !

1PF~u,ŷ!
' X~ i , j !F~u,ŷ!

2QŷŷTQTPF~u,ŷ!
' PRi 21ej ,n1pen112 i ,2n11

T !

3~FT~u,ŷ!F~u,ŷ!!21en112l ,2n11#J , (23)

where the symmetric matricesU( i )PRp3p, V( i , j )PRp3p,
W( i , j )PR2n1132n11, andX( i , j )PRp3p are given by
Transactions of the ASME
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U~ i !,ei ,n1pŷT1 ŷei ,n1p
T , (24)

V~ i , j !,PF~u,ŷ!
' PRi 21ej ,n1pen112 i ,2n11

T C~u,ŷ!

1CT~u,ŷ!en112 i ,2n11ej ,n1p
T RTi21PTPF~u,ŷ!

' ,
(25)

W~ i , j !,FT~u,ŷ!QŷŷTQTPF~u,ŷ!
' PRi 21ej ,n1pen112 i ,2n11

T

1en112 i ,2n11ej ,n1p
T RTi21PTPF~u,ŷ!

' QŷŷTQTF~u,ŷ!,
(26)

X~ i , j !,QŷŷTQTCT~u,ŷ!en112 i ,2n11ej ,n1p
T RTi21PT

1PRi 21ej ,n1pen112 i ,2n11
T C~u,ŷ!QŷŷTQT.

(27)

The minima for the examples in Section 7 were computed usin
subspace trust region method in the Optimization Toolbox in MAT-

LAB. Let R denote the number of disjoint regions comprisi
N 21(z), let qr denote the dimension of ther th region. The
method involvesR minimizations, each one a minimization over
qr-cube, involvingqr variables. However, there are a few simp
special cases:

1. N invertible, R51, and q150 ~for example, N(y)
5arctan(y)!. In this case the problem reduces to a sing
function evaluation.

2. N noninvertible, but monotonic,R51 ~for example,N(y)
5sat(y)!. In this case the problem reduces to a single mi
mization over aq1-cube inq1 variables.

3. N noninvertible, but contains no constant regions,qr50
~for example,N(y)5y2!. In this case the problem reduces
R function evaluations.

6 Unknown Nonlinearity With G„1…Å0
The first step of the method is to obtain a representation of

nonlinearity, then we proceed as above, with a few modificatio
We assume that the linear system has a nonzero DC gain,G(1)
Þ0.

We begin by applying a step input to the system. We then m
sure the outputz5N(G(1)u). We repeat this experiment with
step inputs of different amplitude until we have sufficiently ma
points to characterize the nonlinearityN over the range of interest
In the examples that follow, we have arbitrarily chosen a unifo
distribution of step inputs, but the density of data can be increa
in regions where the nonlinearity has high variation.

Note that the systemH(q21)5aG(q21), M(y)5N(y/a) has
the same input-output map for all nonzeroaPR. Hence without
loss of generality, we normalize the DC gain of the linear syst
to one, that isG(1)51.

We then apply a function approximation technique to obt
N̂:R→R,N̂'N. In the examples that follow we use piecewi
linear interpolation.

Using the approximate nonlinearityN̂, we turn to the problem
of identifying the linear system. Since the DC gain of the syst
has been normalized, we can remove one of the unknowns f
the parameter vector. Hence we set

b0511(
i 51

n

ai2bi , (28)

and the previous development is modified accordingly.

7 Numerical Examples
In this section we apply the identification algorithm to seve

numerical examples. In all cases we use a discretized sec
order spring-mass-dashpot system given by
Journal of Dynamic Systems, Measurement, and Control
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Fig. 2 Sin nonlinearity. * ’s represent identification data points
„y and z…, o’s represent optimal estimates „ŷ * and z…

Fig. 3 Frequency response of actual „—… and estimated „--…
systems of example 3

Fig. 4 Deadzone nonlinearity, * ’s represent identification data
points „y and z…, o’s represent optimal Estimates „ŷ * and z…
DECEMBER 2001, Vol. 123 Õ 569
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Fig. 5 Frequency response of actual „—… and estimated „--…
systems of example 5

Fig. 6 Quantization nonlinearity. * ’s represent identification
data points „y and z…, o’s represent optimal estimates „ŷ *
and z…

Fig. 7 Frequency response of actual „—… and estimated „--…
systems of example 6
570 Õ Vol. 123, DECEMBER 2001
G~q21!,
0.4450q2110.4299

q2221.0300q2110.9048
. (29)

For each exampleu(k) is a realization of a unit variance normall
distributed random variable. In addition, we introduce norma
distributed, zero mean random measurement noisew(k) such that

z~k!5N~y~k!1w~k!!, (30)

scaled so that the signal to noise ratio

S/N,
iy2 ȳi

iwi
510, (31)

where we define the average signalȳ,1/n1p( i 51
n1py( i ).

z data from systems with additive output noise need not lie
the range ofN. If we collect a measurement ofz corrupted by
additive noise such that it lies outside the range ofN, we replace
it with the nearest point in the range ofN, and then proceed with
the identification method.

Example 1:Sine LetN(y)5sin(y), which is noninvertible. A
sequence of 20 input-output pairs were simulated. Figure 2 sh

Fig. 8 Signum nonlinearity. * ’s represent identification data
points „y and z…, o’s represent optimal estimates „ŷ * and z…

Fig. 9 Frequency response of actual „—… and estimated „--…
systems of example 7
Transactions of the ASME
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the nonlinearity along with the true and estimated data poi
while Figure 3 compares the frequency response of the true
estimated linear systems.

Example 2:Deadzone LetN(y)5dzn(y), which is a noninvert-
ible nonlinearity with a constant region. A sequence of 30 inp
output pairs were simulated. Figure 4 shows the nonlinea
along with the true and estimated data points, while Fig. 5 co
pares the frequency response of the true and estimated l
systems.

Example 3:Quantization LetN(y)5quant(y), where quant is a
quantization function similar to an analog-to-digital converter
noninvertible nonlinearity composed exclusively of constant
gions. A sequence of 50 input-output pairs were simulated. Fig
6 shows the nonlinearity along with the true and estimated d
points, while Fig. 7 compares the frequency response of the
and estimated linear systems.

Example 4: Signum Let N(y)5sign(y), where sign is the
signum function that maps positive values to11 and negative
values to21, a noninvertible nonlinearity composed of only tw
constant regions. A sequence of 60 input-output pairs were si
lated. Figure 8 shows the nonlinearity along with the true a
estimated data points, while Fig. 9 compares the frequency
sponse of the true and estimated linear systems.

8 Conclusion
We developed a method for identifying Wiener nonlinear s

tems with known noninvertible nonlinearities. We presented
extension to Wiener systems with nonzero DC gains and unkn
nonlinearities. We presented several numerical examples to i
trate the effectiveness of the method. Future work will focus
identification techniques for multivariable nonlinear systems a
Wiener systems with unknown nonlinearities.
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