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1 Introduction nonlinearity A'~(z) consists of a finite number of intervals

Linear system identification has been extensively stufliedf. ~ (PCiNts are considered to be intervals of zero lepgthik. If the
However, nonlinear system identification has received less atté}g_nlmeanty does not initially satisfy this assumption, its domain
! o

. ! . ; n often be restricted such that it will: considéfy) = sin(y) and
tion. Since most real systems are nonlinear, techniques for nonl}@étrict its domain to be bounded. We are unable to identify
ear system identification are broadly applicable. ’

There are two basic approaches o nonlinear svstem 'dent'f'Wi-ener systems with certain pathological nonlinearities, such as
tion. Black bov;/identiflicat?c?n [5-12 assumels little %r no %odéll?ﬁe rational indicator functio(y) ={1 if y is rational, 0 ify is
structure. In contrasgyray boxor block-structuredidentification irational, which have limited engineering applicability. The only

; ? . . ther constraint is that the inverse image of the ouppunust be
[13-28, involves the interconnection of two types of input-outpu ufficiently rich in content to permit inversion of a certain matrix.

blocks. The first ltype of block is a linear dynamic system, fof.c\5st condition is a persistency of excitation condition involv-
exampley =G(q )u,zwhlle the second type is a static nonlineariyg the nonlinearity and the linear system. We do not need to
ity, for exampley=u“. Gray box identification provides physi- agssume that the linear system is stable, but we do need to assume
cally meaningful engineering models of the system componenyt it is controllable and observable. Any modes that cannot be
but requires prior knowledge of the system structure. excited and observed cannot be identified.

Three common block-structured models are the Hammerstein our method consists of minimizing a cost function that depends
nonlinear feedback, and Wiener models. A Hammerstein nonlinesy the vector of unknown system paramet@rand the interme-
system consists of a static nonlinearity followed by a linear sysgiate signaly, which is the not necessarily unique inverse image
tem; a nonlinear feedback system consists of a linear system wihne outputz, that is, ye V' "1(2). This cost function can be
a nonlinearity in feedback; and a Wiener systeee Fig. 1con-  separated into the sum of two nonnegative functions, one of which
sists of a linear system followed by a static nonlinearity. Wiengkyolves the intermediate signgland the inputi but not#8, while
models have been used in biological systef@8], as well as the other can be set to zero by a suitable choicé. dfhe advan-
representing a linear system with a nonlinear sep28,30. tage of this decomposition is that these functions can be mini-

In this work we develop a new method for identifying SISGnized sequentially. Without introducing this decomposition, the
Wiener systems in a deterministic setting, and then demonstrgigimization problem would be significantly more complex.
the algorithm with noise. Unlike previous wofé3-23,30, we  This paper is organized as follows. In Section 2 we present the
consider the identification of systems with nonlinearities that ag@tation used throughout the paper. In Section 3 we define the
known but not necessarily invertible, continuous, differentiable, @flentification problem. In Section 4 we present a decomposition of
analytic. Typical noninvertible nonlinearities encountered in praghe least squares method in non-conventional notation. In Section
tice are polynomial, saturation, deadzone, $&9j, quantization, 5 we consider increasingly complex nonlinear identification prob-
and absolute value functions. We also consider the case where|#ifis involving systems with invertible nonlinearities, noninvert-
nonlinearity is unknown, and the linear syste®{q ') has a ible nonlinearities without constant regions, and noninvertible
nonzero DC gain, that is3(1)# 0 (Section 6. nonlinearities with constant regions. In Section 6 we extend the

The method we develop is based on several assumptions. Spethod to systems with unknown nonlinearities and nonzero DC
cifically, we assume the order of the linear system is known. Next,
we assume that the inverse image of any paiatR under the
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gains. In Section 7 we present simulation results to illustrate the
method. Finally, Section 8 contains concluding remarks.

n
Y(V)éPEl Riflyelu—i,znu
“

2 Notation
g~ ! represents the backward shift operaforepresents the set y(n) 0 Y(1) Opxnsn
of real numbers|v|| represents the standard Euclidean nokg.

represents theXn identity matrix, 0, represents thexm
zero matrix, andv" denotes the transpose 6f

3 Problem Definition

9(n+1)
: (8)

9(2)  Oixn+t

y(n+p—1) Y(P)  Orxnia

Consider the SISO Wiener system withth-order linear We then define the regression matdxR""Px R""P— RP*21+1

dynamics as
botbg 1+ ... +bg™"

V(K 2G(a QU= T o utk), ()

@(u,9)=U(u)—-Y(9)

where we define the vector of system parameters —9(n) —-9(1) u(n+1) -+ u(l)
0=[a; -+ a, by -+ by]Te R, 2 =y(n+1) - =9(2) u(n+2) - u(2)
and the known, but not necessarily invertible, output nonlinearity : : S
z(K) 2 My(K)), ®3) —y(n+tp-1) —9(p) u(n+p) - u(p)
where \:D— R, DCR. To identify this system we determine an 9
estimate@ <[4, --- &, by -+ b,]T of @ such that the system
I - - Thus
. botbg t+ ... +bg™"
A A -1 —
J0EG(Q U= g =g g UK @)
s . Qy=®(u,y)#, (10)
2(k=MY(K)), ®)
approximates the true system. For identification, we assum PXNHD Anfi
knowledge of the signals andz, but we do not assume access talv%ereQe i defined by
the intermediate signal.
Q=[0Opxn 1p] (11)

4 A Decomposition of Least Squares Identification

Here we rederive least squares identification for linear systemnemoves the firsh components of a vector.
In doing so we introduce nonstandard notation that will be useful With this notation we define the standard least squares cost
in formulating the Wiener system identification method. lpet functionJ, g:R"*PXR"*PXR2"* 1R as

=2n+1. For ann+p sequence of inputsi(1),u(2),...,u(n
+p) and intermediate variableg(1),y(2),....,y(n+p) we X X
define Jis(u,9,0)2(|Qy—®(u,9) 4. 12)
u2u(l) u2) ... u(n+p)]TeR"P,
Now we decompose the cost functi@i®) by expanding and com-
y=Iy(D) y(2) ... y(n+p)]TeRMP. pleting the squrfre Y xpancing
Next, let
PE[lp Opxn] € KPP, 3o(u.9,0)=9"QTQy+ 8T (u,9)®(u.9)
Onyp— lnso-
S O — 0T (u,9)QI -5 QB(u,9) B
1 01><n+p71
and —57QTQy+ 8T (u.9)P(u,9) - FTDT(u.9)QY
§;=[01xi—1 1 Opyj_i]"eR], (6)

whereP removes the last components from a vectoR moves —9'Q@(u,9) 6+9'Q"d(u.g)
the first component of a vector to the last position, andis the
ith column of ;. Now, define the input part of the regression
matrix U:R""P—RP*2"*1 and the measurement part of the re-
gression matrixy: R""P— RP*21+1 py

n+1

U(u)= le R 1) 1oni1

X (@T(u,9)P(u,9) " ®T(u,§) QY- QT P(u,)
X (@(u,9)TP(u,9)) " P (u,9)QY

=97QT(I,= ®(u,9)(®T(u,y)P(u,9)) *

Oy U(n+1) - () X@T(1,9)) Q9+ (B~ W(1.9)Q9) TP (1) D(u.g)
o w2 u@) - X (- W(u9)QW)
O U(MEP) - u(p) = I+ 5.0, (49
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where SinceN is not necessarily invertible in this case, it follows that
A y*, and thus@(u,)”/*) need not be unique. For example, consider
Iy(u.y)= I, @ (u, Y)Qy” the quadratic nonlinearityM(y)=y?, where V(y)=M-—y). In
this case there are multiple solutions that minimizg and mul-
3,009, 9)2 [ D(u9) (- W(u.9))]. Eg)rls v?liﬂr?ﬁée;ggstnfezyjiz parameters, all of which are consis
and W:R"PX RM P R2F1XP is the left inverse ofP given by Now we consider a more general case in which we assidine
satisfies the property that, for ak R, the primageN ~%(z) of z
consists of a finite union of intervals. Points are considered to be
W(u,9)2(PT(u,9)P(u,9) ®T(u,9). (14) intervals of zero length. This assumption allows us to consider
nonlinearities that have constant regions such as deadzone or satu-
ration. The inverse imag&’~(z) of z will consist of a union of
(perhaps lower dimensionatubes inR"*P. Since N~ %(2) con-
sists of a finite number of disjoint, convex regionsRA*P, we
minimize J,(u,y) over each region by using a nonlinear optimi-
My21-V(VTV) VT, (15) zation routine, obtaining &possibly local minimum and mini-
mizer for each region. Since the number of regions is finite, if the
Let minima obtained are global then we can determine the global
minimizery*, which yields the estimate of the system parameters
0 (u,y*). Of course,J, is in general not convex and local minima

Note thatd(u,y) is assumed to have full rank which is a persis-
tency of excitation condition. The orthogonal projectbl,
e R"™" is defined as

S N
O(u.9) 2 W (u,9)Qg. (16) " may be obtained.
Thus J,(u,9,0(u,9))=0, leaving J s(u,y,8(u9))=J y(u.9) We can apply a variety of numerical optimization routines to
=11, g QYll, which is the standard least squares result. minimize a nonlinear cost function over a convex region. To use a
uy

We now proceed to describe the Wiener system identificatiéfiadient-based method, we dlfferentldf;éu y) with respect toy
method, where the nonstandard notation introduced in this sectignfind the gradienG e R"*P of J3(u,9) given by
will prove useful in calculating gradients for numerical optimiza-
tion routines. ,

aJ5(u,y)
oA y

5 Wiener Identification Method

First we consider identification of Wiener systems with invert- _ .
ible nonlinearities, then noninvertible nonlinearities with no con- =2Q H(I)(u,f/)Qy
stant regions, and, finally, noninvertible nonlinearities with con- n
stant regions. Tie1mT T AT T .

In the case of an invertible nonlinearity: D— R, the inverse +2,2 REP H‘I’(“ 5 QY QWU+ 1 ans1-
image N ~1(z) of zis single valued. Hence we set

(22)
=N"Y2), (17) _ , _
o We now compute the Hessidhe R""P*"*P of Ji(u,9). Thejth
where the vector of measuremerts R"*P is given by column ofH is given by
z2[2(1) 2(2) -+ z(n+p)]T, (18) 23,(u.9)?
H(u =—| ===
and, for (UPE1= y( ay(]) )
AL~ . . J
J2[9(1) 9(2) - y(n+p)]", (19) = 5 S0 =2QMMh 5, Q8 s

we adopt the vector notation

+2i21 ‘QTVU,J‘)Qy

MPHE[MI(L)) -+ MY(n+p)]T. (20)
and +RTIPTIG, 5 QUGN QW (U, )€ 11 2ns 1
n
N D2{ge D" PINMG) =2 CD"P. (21) + 2[RRI (WT(u9)W(i )
/=1
Then we can proceed as in the previous section by obtaining an +H{‘;>(u o X(1,])D(u,y)
estimate@ (u,y) with ¥ given by (17). T
Next, we no longer assume thafis invertible, but rather we —QYY"QMIy 5, PR 6 i p€hs1—i ns1)

assume that the inverse image of every point in the range space

R"*P of Ais a finite set in the domai® of . HenceN ~1(2) is

also finite for allze R"*P. The least squares decomposition de-

scribed in Section 4 can then be applied to each element of
NY2). We then evaluatéy(u §) at each poin§e N’ ~(2), and

let §* denote a minimizer od,(u,y). Our optimal estimate of the where the symmetric matriced)(i) e RP*P, V(i j) e RP*P,

system parameters is thus given Byu,y*). W(i,j) e R"T1%21%1 andX(i,j) e RP*P are given by

X(PT(u,9)P(U,9) M1y 21l (s (23)
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U<i>éa,n+p9T+9an+p, @ B

; 1l 1 T .
V('vJ)AHtp(u 9) € n+p€n+1-i,2n+1¥(U,Y) o8}

T T Ti-1pTypt
+W(U9)en1-i2n+16 n+pR P I, ) o6

(25)

W(i,j)2®T(u,9)Q99 QMg 5 PR ™€) nsp€hs1—i 1
teni1oimi 18 pR P g5 Q99 QT(U,Y),

0.2r

(26) ¥ of )
X(i,j >éQWTQT\1’T<u,y>en+H 18 0 pRTIPT T
+PR™ J n+pe‘n+1 ion+1 (U, 9)Q99'QT. -o4r 1

(27)

The minima for the examples in Section 7 were computed using
subspace trust region method in the Optimization Toolbox d1-M ~ -0.8-
LAB. Let R denote the number of disjoint regions comprising
N7Y2), let q, denote the dimension of theth region. The - 0
method involvesk minimizations, each one a minimization over & vk, (k)
gb-g;gle,cgsveﬂ?/lngqr variables. However, there are a few S|mplei:ig_ 2 Sinnonlinearity. *'

1. N invertible, R=1, and q;=0 (for example, My)
=arctany)). In this case the problem reduces to a single
function evaluation.

2. N noninvertible, but monotonidR=1 (for example \(y) L1
=sat(y)). In this case the problem reduces to a single min
mization over aj,-cube inq, variables.

3. A noninvertible, but contains no constant regions= 0
(for example M(y) =y?). In this case the problem reduces tc§ |
R function evaluations.

s represent identification data points
(y and Zz), o's represent optimal estimates  (y* and z)

gnitude (dB)
o

100

6 Unknown Nonlinearity With G(1)#0

The first step of the method is to obtain a representation of tI -
nonlinearity, then we proceed as above, with a few modificationg |
We assume that the linear system has a nonzero DC Ggih) .
#0. i

We begin by applying a step input to the system. We then me 00
sure the outpuz=N{(G(1)u). We repeat this experiment with
step inputs of different amplitude until we have sufficiently man, Frequency (rad/sec)
points to characterize the nonlinearityover the range of interest.
In the examples that follow, we have arbitrarily chosen a unifor
distribution of step inputs, but the density of data can be increas
in regions where the nonlinearity has high variation.

Note that the systerH (q~ %) =aG(q 1), M(y)=My/a) has (k) = dan(y(k))
the same input-output map for all nonzete R. Hence without 2s— i i T " ' ' '
loss of generality, we normalize the DC gain of the linear syste
to one, that isG(1)=1.

_We then apply a function approximation technique to obtai sl
N:R—=R,N=N. In the examples that follow we use piecewise
linear interpolation. Hy

Using the approximate nonlinearify, we turn to the problem
of identifying the linear system. Since the DC gain of the syste
has been normalized, we can remove one of the unknowns frC ok
the parameter vector. Hence we set

hase (deg)

|Jﬁlg 3 Frequency response of actual (—) and estimated (--)
eyé.tems of example 3

bo=1+2 a—by;, (28) 4t
i=1

and the previous development is modified accordingly.

7 Numerical Examples

In this section we apply the identification algorithm to several
numerical examples. In all cases we use a discretized secoRd: 4 Deadzone nonlinearity, *'s represent identification data
order spring-mass-dashpot system given by points (y and z), o’s represent optimal Estimates  (y* and z)

y(k), 9 (k)
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2 (k) = quanty(y(K))
1wk 1 T T : * »* " T
— 0
@ -to} 0.8 E
3 20}
= o6l .
P
50| J 04 i
o .
0.2 4
100 T
= o i
. R =
%_D
< b -0.2r-
g
[ -200 _04k —
-300 h Y
-0.6[
-400 ‘n
10 0.8k 4
Frequency (rad/sec)
) ) s S v =2 4 3 8
Fig. 5 Frequency response of actual (—) and estimated (--) y(k), § (k)

systems of example 5
Fig. 8 Signum nonlinearity. *'s represent identification data
points (y and z), o’s represent optimal estimates  (y* and z)

2(k) = quant(y(k))

4 T T T T T
40
3t b 20
=
= o
2F » 4 _Z
2 e
®
1+ EDCE k = -0}
—60
Z of ]
X 100
sl
-1 Fe GOl R @ [
2 wf
S
-2t DS i _:“._ -100+
b B sk
-200
=3 © b -250
-300 ‘n
10
4 \ . . . . . .
-4 -3 -2 -1 0 1 2 3 4 Frequency (rad/sec)
y(k), (k)
] o ) ] S Fig. 9 Frequency response of actual (—) and estimated (--)
Fig. 6 Quantization nonlinearity.  *'s represent identification systems of example 7
data points (y and Zz), o's represent optimal estimates  (y*
and 2)

0.445@;1+0.4299

-1\ 4

o (A )= 47210308 7+ 0.9048 (29)
—_ 0
2 ol For each exampla(Kk) is a realization of a unit variance normally
ié -2 distributed random variable. In addition, we introduce normally
g r distributed, zero mean random measurement ne{$9 such that
s U

It 2(k) = My(K) +w(k)), (30)

0 scaled so that the signal to noise ratio

s
% ly =l
80 0 A
< SINE ——— =10, 31
S ] 5D
_E: -100|
B s where we define the average sigg@t1/n+p='"Py(i).

~200p z data from systems with additive output noise need not lie in

o . the range of\. If we collect a measurement afcorrupted by

e e additive noise such that it lies outside the range\piwe replace

Frequency (rad/sec) it with the nearest point in the range 4f, and then proceed with
the identification method.

Fig. 7 Frequency response of actual (—) and estimated (--) Example 1:Sine LetA{y)=sin(y), which is noninvertible. A
systems of example 6 sequence of 20 input-output pairs were simulated. Figure 2 shows
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