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This paper uses subspace methods to identify a class of multi-input multi-output discrete-time
non-linear time-varying systems. Specifically, we identify systems that are non-linear in mea-
sured data and linear in unmeasured states. Numerical examples are presented to demonstrate

the efficacy of the method.

1. Introduction

System identification is the process of constructing
models based on measured data. These identified
models can then be used for controller and observer
design, system analysis, and output prediction. Linear
system identification has been well studied (Moonen
et al. 1989, Soderstrom and Stoica 1989, Juang 1993,
Van Overschee and De Moor 1996, Larimore 1999b,
Ljung 1999, Pintelon and Schoukens 2001), while non-
linear system identification has received increasing
attention (Larimore 1988, Chen and Fassois 1992,
Greblickl 1992, 1997, Westwick and Kearney 1992,
Vincent et al. 1994, Wigren 1994, Verhaegen and Yu
1995, Westwick and Verhaegen 1996, Al-Duwaish and
Nazmul Karim 1997, Bai 1998, Johansson et al. 2000,
Lovera et al. 2000, Lacy et al. 2001, Voéros 2001, Lacy
and Bernstein 2003a, Schoukens et al. 2003)

Subspace identification methods have been applied to
linear systems in Moonen et al. (1989), Verhaegen and
Dewilde (1992a, b), Verhaegen (1993), Van Overschee
and De Moor (1994, 1995, 1996), Deistlet et al. (1995),
Viberg (1995), Ljung and McKelvey (1996), McKelvey
et al. (1996), Peternell et al. (1996), Viberg et al.
(1997), Johansson et al. (1999), Larimore (1999b),
Lovera et al. (2001), Van Gestel et al. (2001), Lacy
and Bernstein (2003b). Several of the most developed
and widely used algorithms, CVA, N4SID, DynaMod,
and MOESP, have been implemented in MATLAB
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packages (Haverkamp and Verhaegen 1997, Larimore
1999a, Blaurock 2003, MARLAB 2003). These methods
are computationally tractable and are naturally applic-
able to MIMO systems. Subspace algorithms may be
used to initialize more complex prediction-error and
maximum likelihood methods (Larimore 1999a, Ljung
1999, Blaurock 2003, MARLAB 2003).

Several authors have extended subspace identification
methods developed for identifying linear time-invariant
systems to the identification of non-linear and time-
varying systems. In Westwick and Verhaegen (1996)
and Lovera et al. (2000) the authors apply subspace
methods to the identification of Wiener systems.
Hammerstein systems are studied in Verhaegen and
Westwick (1996). Subspace identification methods are
used to identify time varying systems in Verhaegen
and Yu (1995). Finally, non-linear friction characteris-
tics are investigated using subspace identification
methods in Johansson et al. (2000).

The present paper considers non-linear systems of a
particular form in which the inputs to the non-linearities
are measured, or, equivalently, that are non-linear in
measured data and linear in the unmeasured states, see
figure 1. This specialized model structure includes classi-
cal model structures such as single-input single-output
Hammerstein and non-linear feedback structures as spe-
cial cases. The literature on identifying Hammerstein
systems is generally confined to the single input case
(Greblicki and Pawlak 1989, Al-Duwaish and Nazmul
Karim 1997, Vorés 1997, Bai 1998, 2002), due in part
to the need for handling arbitrary sets of basis functions.
The system structure studied in this work includes
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Figure 1. Non-linear system with measured-input non-
linearities. N is a non-linear function of current and past
data, and £ is a linear dynamic system. The measured signals
are u and y. The signal z is not measured.

multi-input multi-output Hammerstein systems. The
number of basis functions increases with the dimension
of the input vector, depending on the nature of the basis
functions selected. However, the number of basis func-
tions does not vary with the dimension of the state
vector.

For non-linear systems with measured input non-
linearities we rewrite the non-linear system identification
problem as a linear system identification problem. The
overall approach consists of three steps. First, we
select a set of basis functions to approximate the non-
linearities in the system. Prior knowledge of the system
can be incorporated through the selection of these
basis functions. We use values of the basis functions as
a new set of inputs to an equivalent linear system.
Next, Theorem 1 is used to estimate the state sequence
in this equivalent linear system. Finally, the estimated
state sequence is used to identify the unknown system
parameters of the equivalent linear system using stan-
dard least squares techniques. These parameters corre-
spond to the dynamics matrix, output matrix, and the
coefficients of the non-linear basis functions of the
non-linear system. Experimental application of this
approach is presented in Lacy and Bernstein (2002).
Methods for basis function selection and optimization
are discussed in Palanth ef al. (2004).

While many different subspace identification
algorithms could be applied in the second step, we
adopt the method of Moonen et al. (1989) and present
a self-contained proof, which is not available in the lit-
erature. The proof of Theorem 1 assumes that noise is
not present, which is consistent with the results given
in Moonen et al. (1989). However, the assumptions,
conclusions, and details of the proof of Theorem 1 are
different from those given in Moonen et al. (1989).
Consistency and asymptotic behaviour of several
subspace methods in the presence of disturbances and
measurement noise is discussed in Deistler et al.
(1995), Peternell et al. (1996), Jansson and Wahlberg
(1998), Bauer et al. (1999), Bauer and Jansson (2000),
Bauer (2001), Knudsen (2001), Li and Qin (2001),
Bauer and Ljung (2002), Pintelon (2002). The proof of
Theorem 1 provides the basis for analyzing the effects
of noise in future work.

This paper is organized as follows. The problem and
the notation to be used throughout the paper is

presented in §2. The main results of the paper are
derived in § 3 in the zero noise case as in Moonen et al.
(1989). The system order and state sequence are esti-
mated in §4. Using the state sequence estimate, the
system coefficients are calculated in §5. Section 6 is a
summary of the identification procedure. Numerical
examples are presented in §7.

2. Non-linear subspace identification
Here we study systems of the form

x(k + 1) = Ax(k) + F(k,u(k), . ..,u(k — b),
v(k), ..., y(k — b))+ w(k), (1)

y(k) = Cx(k) + G(k,u(k), ..., u(k — b),
vk =1),...,y(k = b))+ Ew(k) + v(k). (2)

The model structure (1), (2) encompasses multi-input,
multi-output systems that depend linearly on the unmea-
sured states, but non-linearly on the time k € N and the
measured signals u and y. For convenience we rewrite

(1), (2) as

x(k + 1) = Ax(k) + F(k,u(k — b: k),
y(k — b: k) + w(k), (3)

y(k) = Cx(k) + G(k, u(k — b: k),
vk —b:k — 1))+ Ew(k) + v(k), 4)

where we use the notation

a(i: j) A [ a(i) a()]. i<, ©)
b is the memory depth of N, u(k) € R", x(k) e R",
yk) e R, AeR™ CeR™ F:NxR™* %
RO S R and G: N x R x R 5 2. In
addition, w(k) € R" and v(k) € R” represent state and
measurement noise, respectively. The term Ew(k) in (4)
models correlated state and measurement noise. This
model structure is illustrated by the block diagram in
figure 1, where the non-linear function A is given by

A F]
NZ[G, ©)

and the linear system £ has the form

x(k+ 1) = Ax(k)+ [ 1 0N Gk, u(k — b: k),

y(k — b: k) + w(k), 7)
y(k) = Cx(k) + [0 TNk, uk — b: k),
y(k — b:k)) + Ew(k) + v(k). (8)
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Figure 2. Hammerstein system.

The model (3), (4) includes classical model structures as
special cases. For example, to capture a Hammerstein
system, where the non-linearities are functions of the
current input, we write (3) and (4) as

x(k + 1) = Ax(k) + F(u(k)) + w(k), 9)
y(k) = Cx(k) + G(u(k)) + Ew(k) + v(k), (10)

illustrated in figure 2, where the non-linear function N'y
is given by

g (an

and the linear system Ly has the form

x(k+1)=Ax(k)+ [1 0]Nu(uk)) + w(k), (12)
(k) = Cx(k)+ [0 I|Nn(u(k))+ Ewk)+v(k). (13)

Note that the literature for identifying Hammerstein
systems is generally confined to the single input case
(Greblicki and Pawlak 1989, Al-Duwaish and Nazmul
Karim 1997, Vorés 1997, Bai 1998, 2002), while the
system structure presented in this work encompasses
multi-input multi-output Hammerstein systems due to
the multi-input multi-output nature of subspace iden-
tification algorithms. For a non-linear feedback system,
we write (3), (4) as

x(k + 1) = Ax(k) + Bu(k) + F((k)) + w(k), (14)
y(k) = Cx(k) + Du(k) + Ew(k) + v(k),  (15)

illustrated in figure 3, where
Nnir 2 F, (16)
and Lnpf represents the linear system

x(k 4+ 1) = Ax(k) + Bu(k) + N'nLp(v(k)) + w(k), (17)
y(k) = Cx(k) + Du(k) + Ew(k) + v(k). (18)

We assume that F and G can be represented as linear
combinations of a finite set of known basis functions

fit N x RO S ROH S R i=1,...,r, g:Nx
RO Rt S R, i=1,...,s, and  /;:Nx
R PP 5 R, i =1,...,¢ with unknown matrix

L NLF

\/

Y

NNLF

A

Figure 3. A non-linear feedback system.

coefficients By e R™", D; e R,
D> € R”*! such that

B, e R™, and

F(k, u(k — b: k), y(k — b: k))
= Bif (k, u(k — b: k), y(k — b: k))
+ Boh(k, u(k — b: k), vk — bk — 1)), (19)

Gk, u(k — b: k), v(k — b:k — 1))
— Dg(k, u(k — b: k), y(k — b: k — 1))
+ Doh(k, utk — b: k), y(k — b:k — 1)), (20)

where

flk,u(k — b:k), y(k — b:k))

[ ik, uk — b: k), y(k — b k))
a , Q1)
| Sk utk — b2 ), y(k — b: k)
gk, uk — b k). y(k — b:k — 1))
[ g1k, utk — bi k), y(k — bk — 1)) ]
A . (2
| gu(k.u(k — b: k), y(k — bk — 1)) |
hik, u(k — b: k), y(k — b:k — 1))
[ (e, uk — b ko), y(k — bk — 1)) ]
A . (23)
(ke utk — b: ), y(k — bk — 1)) |

and r, s, and ¢ are the number of basis functions in each
expansion. Note that g and 4 are functions of past
outputs only, while fis a function of both past outputs
and the current output. If the functions F and G cannot
be exactly represented as a finite sum of basis functions,
the expansions (19) and (20) can be regarded as
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approximations. The same set of basis functions can
be used for any choice of state dimension. The number
0B r+s5+1 of basis functions required does not
increase with n. The basis functions in f, g, and & are
sorted according to whether they appear in the expan-
sion of F, G, or both. Specifically, f is a list of the
basis functions that appear only in the expansion of F;
g is a list of the basis functions that appear only in the
expansion of G; and 7 is a list of the basis functions
that appear in the expansions of both F and G.
Without this convention, Zq(k) defined below could
not have full row rank. Methods for selecting and refin-
ing the set of basis functions f;, g; and /; are discussed in
Palanth et al. (2004).

With the notation (19), (20) we can rewrite (3) and
(4) as

x(k+ 1) = Ax(k) + Bf (k, u(k — b: k), y(k — b: k))
+ Boh(k,u(k — b: k), y(k — b: k — 1)) + w(k),
24)
y(k) = Cx(k) + Dg(k, u(k — b: k), y(k — b: k — 1))
+ Dryh(k, u(k — b: k), y(k — b: k — 1))
+ Ew(k) + v(k), (25)
illustrated in figure 4, where

f

NA| g, (26)
h

1>

and £ represents the system

x(k—i—l)zAx(k)—i—[Bl 0 Bz]
x Nk, u(k — b: k), vk —b: k), (27)

0 D D, 0 0 0 e 07
CB, 0 CB O D Dy - 0
L caB o cam, e 0 B0
M2 C42B, 0 CA’B, CAB, 0  CAB, - 0 |
| CA72By 0 CAY2B, CAB; 0 CA3B, --- D, |

y(k) = Cx(k) + [0 Dl Dz]
x N(k,utk — b: k), y(k — b: k). (28)

Using (24) and (25), we construct the block-matrix
equation

Y (k) = Tyx(k: k + € — 2q) + A Zy(k) + Y Ny(k), (29)

u
—_—

w

(Y
y

/\7 >

Y

Figure 4. Equivalent block diagram of a system linear in
unmeasured states. In this formulation, N is a non-linear func-
tion of current and past data, and £ is a linear dynamic system.

where ¢ is a user-defined window length denoting the
number of block rows in (29). The number of columns
in (29) is £ —2¢g + 1, where ¢ is a second user-defined
window length. In practice, ¢ may be taken to be the
number of measurements of # and y available for use
in the identification. In (29), we define the block-
Hankel matrix Y, (k) € Rr4*¢-24F1 a5

yk:k+¢—2q)

yk+1l:ik4+€—-2g+1)
Y(](k)é X >

L yk+qg—1:k+L€—qg—1) |
the extended observability matrix I, € R’ as
- C -
CA
CA?

—
<
1>

L A9 ]

the block-Toeplitz matrix A, € R as

the block-Hankel matrix Z,(k) € R?7*(=27+1 a5
Hhik+0—29)

Fk+1:k+0—2g+1)
Zq(k)é . )

| Hk+qg—1:k+t—g—1)_
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the column vector Z(k) € R as

Fk,uk — b+ k), vk — b: k)
) A | gl ulk —b: k), vk —b: k—1)) |,
ik, u(k — b: k), y(k — b k — 1))

the block-Toeplitz matrix Y, € RP4*4"H7) a5

E I 0 0 0 0 0
c 0 E I 0 0 0
c4A 0 C 0 E I 0
1,4 5
1= Cc42 0 Cc4 0 C 0 0
| €492 0 C493 0 CcaT* 0 .- T ]

and the block-Hankel matrix N, (k) € RY#)*(-24+1 4

w(k: k+4¢—2q)
vk:k+£€—2q)
wk+1:k+€—-2g+1)

Nq(k)é wWk+1:k+€—-2g+1)

wk+qg—1:k+€—qg—1)
| vk+g—1:k+0—qg—1) |

Finally, we define the data matrix A, (k) € RIPTo)*(=24+
as
Y, (k)
Al ta

3. State reconstruction

In this section, we give conditions under which the state
sequence x(k+¢q:k+¢—¢q) can be reconstructed to
within an unknown coordinate transformation using
measured data. For V e R™™ let R(V) denote the
range (column space) of V. Then R(VT) is the row
space  of V. Let VEAWTy)y'WT  and
VRA PT(pT)™" denote left and right inverses of V,
respectively. We also define
My ARy = yT(rvT) 'y and T 27— Ty such
that VTl = V and V11§ = 0.

Theorem 1: Assume the following conditions are
satisfied.:

(i) rankI'y =n.

(i) w(k) and v(k) are zero for all k € N.

(iii) rank [Z,(k) Z,(k+q)] =2q0 for all keN.

(iv) rank (x(k:k+€ — 2q)1'[§ (k)) =rankx(k: k+ ¢ —2¢q)
Sfor all k e N. !

(v) rankx(k: k+ € —4q) = n for all k € N.

(vi) rank(x(k:k4+€—4q)1L ) =rankx(k:k+¢—4q)

Zay(k)
for all ke N.
Then
q > n/p, (31)
=20+ ) +n—1, (32)
rank [ AqA(l‘é(_lf_)q)] =2q0+n forallkeN, (33)
and

ROTk+ ¢k +0—q) = R(A}(k)) N R(Ag(k + q))

for all k e N. (34)

Proof: (31) follows directly from (i). We shall prove

(32) and (33) in the course of proving (30). To prove

(34) we first show that (35) holds with “="" replaced

with “C”. Then the left and right hand sides of (34)

will be shown to have the same dimension. Let k € N.
First, (i) implies that (29) has the form

Y (k) = Tyx(k: k + € —2q) + A, Z, (k) (35)

and

Yk +q) =Tyx(k+q: k+ € —q)+ AZ,(k + g).
(36)

By (i) we can solve (35) and (36) for the state matrices

xkik+0—2q)=[Ty —TpAg]A k) (37)

and
xk+qk+e—q) =Ty —TiA ]Ak+¢q). (38)

Using (24), (37) and (i), the state matrix

x(k+ q: k+¢€— g) can also be written as

(k4 q:k+€—q) = Al%(k: k+ € —2¢) + ¥, Z,(k)
= ATy = TAg Ay k) + W, Zy(k)

=[4TL W, — ATEA A (),
(39)
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where W, € R"*% is defined as

W, A[497'[B; 0 B,] A*7*[B1 0 B,] --- [B1 0 By]].

(40)

Now (38) and (39) imply

R(T(k+q: k+€—q) € R(A}(k)) N R(A}(k + q)).
(41)

Hence (34) holds with “="" replaced with “C”.
Next we show that the left and right hand sides of (34)
have the same dimension. By (iii), it follows that

rank Z,(k) = qo and thus T1}  exists. Multiplying

Zy(k) ~
(35) on the right by HZU() and using Zq(k)l'lz(k) =0
yields
Y (T ) =Tgx(kik+€ =207 . (42)

Using (42), (1), (iv), and (v) it follows that

rank ( Yq(k)l'l%

z‘,(k)) = rank (qu(k: k4 € —2¢q)IT% )

Z,(k)
= rank (x(k: k+¢—2¢)I% )

Z,(k)
=rankx(k: k+ ¢ — 2q)
=n. (43)

. ~T
Using (43), ’R/(Hz“q(k) Y}(k)) - R(Hz”q(k)) = R(Zq (k)),

Z~q(k)l'lz ® Y Z(k) =0, and (iii) we can now calculate

i Yq(k)}
rank (A,(k)) = rank

| Z,(k)

Yq(k)(nZ,(k) + HZ(k)) :|

Z,(k)

=rank

B ~T
= rank | [T ) Yg(k)—l—l'lz(k) Y (k) Z,(k)

—_

= rank [1'[l~

AR HCIEAC)

= rank (Z,(k)) + rank (Yq(k)l'lz (k))
= qo +n. (44)
Replacing k by k + ¢ in (44) yields

rank (A, (k + 9)) = go + n. (45)

As in (43) and (44) and using (vi) we calculate

rank (Yzq(k)l'lzq(k)) = rank (rqu(k k+e- 44)“2(@)
= rank (x(k:k+ €~ 415 )
=rank x(k: k + ¢ — 4q)
=n, (46)

to find

rank (A,,(k))

i Y2q(k):|
=rank | _
L Z2q(k)
B i L
= rank Yzq(k)<r[224(k) + Hz},,(k)) i|
B ZZq(k)
_ =T
= rank | 12,0 Y5, (k) + qu(k) Y5, (k) qu(k)]

— rank [ i Ylk Z;(k)]

Zyy(k)
= rank (Z2,(K)) + rank (Y2, (0T, )
I y—— (47)
Noting
. Z,(k) Y, (k)
Zoky=| .7 d Yy k) = [ ! }
0 [Zqoc + cp] nd O= kv g
and using (47) we obtain
[ Y,() T
A,k Z,(k
k|: ((K) }_rank Z40)
Agk+q) Yy(k+q)
L Zy(k +q) ]
[ Y, (k) T
Yy(k+q)
= rank .
Z,(k)
[ Zy(k+q) ]
[ YZq(k):|
=rank | _
_ZZq(k)
= rank (A, (k))

= 2¢o + n. (48)
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This proves (33). Also, since

[ Aq(k) :| c [R2q(p+a)><l—2q+l
Aglk +q)

it follows that 2go +n < £ — 2q + 1, which proves (32).
Finally, using (44), (45), (48), and (v) we compute the
dimension of the right hand side of (47) to be

dim (R(A}(k)) N R(A}(k n q)))

= rank (A,(k)) + rank (A,(k + q))

Ay(k)

Ag(k + 61)}
=qo+n+qo+n—(2qo +n)
=n
=rankx(k+q:k+4€—q)
=dim R(xT(k + q: k + ¢ —q)), (49)

— rank |:

which proves (34).

In the next result, we propose a direct computation of
the intersection of the row spaces of Ay(k) and
Ayk +q).

Proposition 1: Let k € N and assume that (1)—(vi) of
Theorem 1 are satisfied. Then

RET() = R(AI0) R(ATKk+0).  (50)
where 8(k) € RE20HIXE204T ojyop by

8(k) A 205 () A ()AL () Ay (k) + Ak + @) Ayl + )"
x AF(k+ @) Ak + q). (51)

see Anderson Jr and Duffin (1969). Then there exists
non-singular T € R™" such that

x(k+q: k+ € — q) = TUT(k)8(k), (52)

where Us(k) € RN s defined through the singular
value decomposition

Ss(k) 0
() = [ Us(h) Un(k)][ &) }Vg(k), (53)

0 0

and Un(k) e R(72q+1><572q7n+l’
Vg(k) c Rl*2q+l><472q+l'

Ss(k) e R™",  and

The calculation of the state sequence (52), while
direct, requires forming the large  matrix

8(k) e RE2a+1xt=2¢+1 1 addition, in the presence of
noise, the row spaces of A, (k) and A,(k + ¢) will gener-
ally intersect only at the origin, in which case §(k) will
have rank near zero! Therefore, when noise is present,
we would like an approximation to this intersection.
Under additional conditions, Propositions 2 and 3
below provide useful approximations to the intersec-
tions of the row spaces of A,(k) and A, (k + ).

The result (34) implies that, for all k € N, there exist
matrices M; € R™4*) and M, € R™ P+ guch that

xXtk+q:k+t—q) =M A k) =MAyk+q). (54)

If either M, or M, were known, (54) could be used to
obtain the state sequence directly from measured data.
The goal of Proposition 2 is to estimate M and M.

In the following result we suppress the dependence of
the matrices T, U11, U12, U21, Uzg, Slls V, Ur, US, S,., Vr,
and V on the time step k for notational convenience and
clarity. If k is taken to be 1, then the last data used in
the algorithm occurs at k = £.

Proposition 2: Let ke N and assume that (1)—(vi)
of Theorem 1 are satisfied. Let M e R‘“™2F1xen pe
non-singular, and let

Ly L 5
L = cR q(p+0)><2q(p+<7)’
Ly Ly

where L]], L]z, Lz], and L22 € Rq(p+a)><q(p+(r), and L]],
Ly, Ly —L12L2_21L21, and L22—L2]L1_11L12 are non-
singular. Consider the singular value decomposition

|: Ay(k) :| |:U11 U12i||:S11 0i| .
L M = yT (55
Ay(k+q) Uy Uxp 0 0

where Sll c R2q0+nx2qa+n’ Ull e Rq(p+a)><2qa+n, U12 c
Rq(p+(r)><2pq—n U21 e Rq(p+(r)><2q(r+l1 U22 e Rq(p-&-(r)prq—n
2 2 E

and V e IRZ—Zq-HXZ—Zq-H. Let U € [Rqu—nxn, S € Rnxn’
and V; € R " be defined through the singular value
decomposition

(UL Ly + U}szl)[(Ln ~ LinLyi L) Uy

- _ -1
—L111L21(L22 —L21L111L12) UZI]SII

S o[ v}
=[u U] o oll =USV]. (56)



Non-linear systems with measured-input non-linearities 913

Furthermore, let U, € R4 S c R™  and
V. € R be  defined through the singular value
decomposition

_ _ -
(U1T2L12 + ngLzz) [L221 L21(L11 - L12L221 LZI) Un

_ -1
— (L — Ly L] 11L12) UZI]SII

S, 0 T
[0, U"][o 0}[5}}:@5,1/3. (57)

Finally, assume that

rank (UT,Li1 + U3y Lo1) Ay(k)
= rank (U};le + ngLzz)Aq(k + Q) = n. (58)

Then there exists non-singular T € R™" such that

xtk+qk+4€—q)
= TU (UL L1 + Ul L) Ay(k)
=T[sv! oyim!
=TSy}’ o]yTm
= —TU; (ULi2 + UnLn) Mgk +¢). (39)

Proof: First we rewrite the singular value decomposi-
tion (55) as

Ui, Uy |:L11 le][ Ay(k) ]

UL UL [LLy L]l Ak +q)
S 0

:[ ! ]VTM_I, (60)
0 0

~ 1
|: Ay(k) i| —L‘1|:U” U121||:511 O]VTM_l B |:(L11 — LinL3 Lyy)
—L5 Ly (Ly1 — leLizlel)_l

_ -1 _ _ -1
|:U11511 O}VTM‘I B |: (Li1 — LiaL5y Lay)” Uy Sty — L' Loy (Lyy — Loy L' Liz)” U Sy 0
—L5 Ly (Liy — L12L2_21L21)_1 UnSi + (L — L21L1_11L12)_1 UnSit 0

Ag(k+q) Uy Un 0 0

UnSii 0

so that

UL [LiiAg(k) + LinAy(k + q)]
+ U [Lor Ag(k) + Loa Ay(k + q)]
UL [LiAg(k) + LiaAg(k + q)]
+UL[La1 Ag(k) + Loa Ag(k + q)]

Sy 0
=" Tlrtu 61)
0 0

We thus have

(ULL + UjpyLoy) Ay(k)
= —(UL L1+ Ugy L) Ay(k + q). (62)

Hence, (62) and (34) imply that

R(((ULL1 + UbL)A,0))
cR(AT0) \R(ATG+9)
=R(x"k+q:k—q+20) (63)

and

R((UTLi + UL La) Ak + )"
c R(aTw0) \R(ATK +9)
=R(x"(k+q:k—q+0). (64)

Furthermore, (v) and (58) imply that the left and right
hand sides of (63) and (64) have the same dimension
n. Therefore,

72(((UszL11 + U;Lzl)Aq(k))T)
= R((UL L2 + UL L) Ak + )"

=R(x"(k+q:k—q+0). (65)

Next, note that (62) has 2pg—n rows, where
2pqg —n > n by (31) of Theorem 1. Rewriting (55) we
have

—Li'Li»(Ly — L21L1_11L12)_l :|
(L — LzlLﬂlle)_l

} VIM!.(66)

Multiplying both sides of (66) by + (UL, L1 + U, Lay),
taking the upper blocks, and using (56) we have

(UL L 4 Ugy Lot ) Ag(k) = (U, Liy 4 Us,y Lay)
(L1 — LiaLy) Lyy) " Uy Sy —
X » 0|V M~
—Li'Lyi (L, — Lo L' L)~ U Spy

=[usy; olv™mM=ul[svS o]yvTmM.
(67)
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Multiplying both sides of (66) by —(U5 L2 + UL Ly),
taking the lower blocks, and using (57) yields

(U12L12 + U, 2Ln) Ay(k + q)
= (UL + Ul Ly)
|:L22 Loy (Lyy — LinLyy) Lzl) LUns
(L» — Loy L L12) Ur1 St
=[usyvy olv'M'=0U[svI olvTmM.
(68)

Using (17), (68), and (65) we have

R((U] (ULLn + UL L) Ag(h))

c R(((ULLu + ULLa)agh)")
=R(x"(k+q: k+—q)), (69)

( UN(UL L + Ul L) Ay(k + Q))T)
(((Ullez + ULLn) A+ 1))
ROTk+q: k + €~ g)). (70)

—~

ﬁ

Also using (67) and (68),

rank U;" (U,L11 + Uy, Lat) Ay(k)
=rank [ S,V o]y !
=n
=rankx(k +q:k + ¢ —q), (71)
rank U,"(UT,L1> + U, L») Ay(k + q)
=rank [S, V] o]y ™M

=n
=rankx(k + g: k + £ — q). (72)
Thus
((UIT(UIZL” + U22L21) q(k))T)
=R(x"(k+q:k+t—q)), (73)
((UIT(UIZle + UgyLon) Ay(k + Q))T)
=R(xT(k+q:k +¢—q)). (74)

and thus there exist non-singular 7}, T, € R™" such that

xtk+qk+t—q)= T/UT(UT2L11+U L21) (k)

=-T. UT(UTZle + U Lzz) q(k+(j).

(75)

o} VTpm!

Proposition 2 shows that (54) is satisfied with
M, = U (ULL + UhLy) and M, =-UIULL,+
U22L22) We take L = Izq(erg) and M = Ig,2q+1 in the
numerical examples that follow. Assumption (58) is
satisfied for L = I y(,40). Different choices for L and M
select different bases for the state sequence.

Another method for computing an approximation
of the intersection of the row spaces of A,(k) and
Ay(k+q) is to compute the first n canonical vectors
(Van Overschee and De Moor 1996) as follows.

Proposition 3: Assume (1)—(vi) of Theorem 1 are
satisfied. Then

xtk+q:k+¢—q)

1
=5 alk+ g k+£—q)+xalk+q:k+E—q),
(76)

where

~ ~ =172 .
—ur (Aq(k)AqT(k)) A
Xk +q:k+€—q)

xalk+q:k+L—q) q(k), (77)

— V(A + AT + ) Akt (78)
[0 2], (79)
[V 7] (80)

Ue
v

and U, S, and V are defined through the singular value
decomposition

USyT = (Aq(k)A}(k))_l/z(Aq(k)A}(k + q))

~ AT —1/2
(Ak+ ATk +9) 81)

where UC € an+nxq(r+l7, SC € Rqa+n><q(7+n’ VC €

[Rq<7+n><q(r+n Ul c Rqa+n><i1 U c Rq(ﬂ-nxqa V c Rqa+n><l1

V2 = Ranrnxqa and q(k) e thﬂrnxé 2g+1 and
Ayk+q) e Rqﬁnxe 21 gre given by

Ayl = U 41 Ag(K), (82)
Ak +q) = UL e g0 Dyl + ), (83)
where UA J001 (S [RqUJran(aer) and UAq(/s+q)1 (S

R4 gre  defined through the singular value
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decompositions
T
Sa,001 07| Y a,mn
[ Un,m01 UA(,(/C)z][ A(’)( ) 0”: T/( )
Va2
= Un, w1 Sa,001 VA (84)
= Ay(k)

T
Sa k)l 0} |: VA Gt }

[Un,tan Unythrgr | [ 0 0

T
VAq(k+q)2
= Un,(e+an Sa,tran V A g = Dalk + ). (85)

In Proposition 3 we had to find smaller, full rank,
approximations Aq(k) and Aq(k—i—q) of the data
matrices A,(k) and A (k + ¢) in (84) and (85) and then
compute the canonical vectors in (81). In the examples
that follow, the method of Proposition 2 is used to
estimate the state sequence.

4. Noise effects

Since w(k) and v(k) are present in real systems, we apply
Theorem 1 and Proposition 2 without Assumption (ii).

The problem of rank determination is central to
estimating the order of the unknown system. The
presence of w(k) and w(k) will generally increase the
rank of

Ay(k)
L|: Aq(;é + 01):|M.

For computational purposes, we use the following
heuristic technique to estimate the rank of a matrix in
the presence of noise. For P € R2P+o*t=24+1 " consider
the singular value decomposition given by

PAUsSYT. (86)

Let s e RMnCe0+0).t=2¢+0)=200  where for i=1,...,
min(2q(p + o), ¢ —2q + 1) — 2qo,

if 2go < i < min(2q(p + o),

S(i, 1)
_— {—2 1
sAlSGFLiv 1) ¢+
and S(i+1,i+1)#0,
0, else.
(87)
Then we define

numrank P2 argmaxs;. (88)

In the zero noise case

Aq(k)

rank L|:
Ayk +q)

]M > 2qo,

so we have defined s, to be zero for i < 2¢o.
Referring to (33) and (59), we approximate n and
x(k+q:k+4¢—q) by

Ak
ﬁénumrank(L[ (k) }M>—2qa,

Ay(k+q)
(89)
Rhk+q k+t—q)2 Txk+q:k+e—q)
+x/(k+q:k+t—q)), (90)

where

Sk +q:k+€—q)AUNULLY + UlLLay)Ayk), (91)
Rk +q:k+€—q)2 —UT(ULLp + UL L) Ak +q),
92)

and we have arbitrarily set 7" = 7 in (59) to obtain (90).
T # I can be used to select a different basis for the state
sequence. We have also suppressed the dependence on
the time step k in 72 and s.

The presence of noise causes the row space of
X:(k+q:k+€—q) to be different from the row space
of x)(k+q:k+¢—¢g). We use the mismatch between
the row spaces of these two matrices to quantify the
effect of noise, unmodelled non-linearities, and other
model fit errors. To quantify this error, we use the
principal angles between the two subspaces (see page
25 of Van Overschee and De Moor (1996). Define the
singular value decomposition

&&0) PR AT (AN P2 sy 93)

Then the principal cosines are the diagonal entries of S/,
and the vector of principal angles « € R" is defined as

a A arccos(diag(Sy)). (94)

If the row spaces of X.(k+¢g:k+€—¢q) and
Xi(k +q: k+ € — q) are equal, then the angles between
them are zero. If the principal angles are small, then
the two spaces are close to each other, whereas if the
principal angles are large, then the two spaces are not.
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6. Coefficient estimation

Now that we have the estimate X(k+¢: k+£ —¢q) €
R™2+1 given in (90) of the state sequence
x(k+q: k+¢—¢q) we proceed to estimate 4, B, B>,
C, Dy, and D, as well as the covariance matrices
0 A Ew)w(k) '], RA Ev(k)v(k)"], and the correlation
matrix E. Consider the cost function

J(A, B, By,C, Dy, D)
|:fc(k+q+1:k+ﬂ—q):|
vk+qg: k+0—qg—1)

|4 B 0 B [fc(k—i—q:k—i—ﬁ—q—l)}
C 0 Dy D|lzk+q:k+t—q—1)

which can be written as

A

F’
95)

JX(A,B\,B,,C,D\,D,) = J%(z‘ivél,l‘}z) + Jzz(é’DAl,DAz),

where

Ji(4, By, By)
ARk +g+1:k+€—q)
—[4 B B JRik+q:k+t—q—1)]

F’
J,(C, Dy, Dy)
Alytk+q:k+e—qg—1)
—[¢ D D)|Rak+q:k+t—q—1),,

Il is the Frobenius matrix norm, and

x(k) (k)
RiK) | f(K) |, Ra(k)2 | g(k)
hk) hk)

Proposition 4:  The matrices

[4 B, B |2%GKk+q+Lk+et—q)

X Ri(k+q:k+t—g—1% (96)
[C Dy Dy]2yk+q:k+e—q—1)

X Rok+q:k+€—g—1" (97

minimize J, and J>.

In practice, the generalized inverses in (96) and (97) can
often be replaced by right inverses.

Proposition 5: Let /i, 31, 13’2, é, ﬁl, and 152 be given by
(96) and (97). Then the covariance of the residuals of (95)

is given by
s A X X2 .
Sho o

The corresponding estimates of E, Q, and R are

08%, (98)
EAS, =, (99)
p A _ ~15T

RA Sy, — ool (100)

where

X éfc(k +g+lk+e— q)l'[ﬁl(kﬂk%_q_l)ch
x (k+q+1:k+¢—q), (101)
X1 éy(k + gk +€—q—1)(I = T (tghre—g1)

=Ry (e ghert—g—1) + TR (krqhere—g—1)
X T pypghrt—g—n) % (k +q+ 1k +€—g),
(102)

Snlyk+qik+t—q- DR, et ghre—g-n V'

x(k+q:k+€—g—1). (103)

6. The algorithm

Here we summarize the steps in the non-linear subspace
identification algorithm.

(1) Collect input—output data, and choose the window
length . The length of data to be used, £, must
be chosen less than or equal to the number of
input—output data pairs available.

(2) Select the memory depth » and basis functions
filk,u(k — b: k), y(k — b: k)), gi(k, u(k — b: k),
vk —=>b:k—1)), and hik,u(k — b:k),

k — 1)) to model the system.

(3) Construct Ay(k) and A, (k + ¢) as in (30).

(4) Select weighting matrices L and M, where M is
non-singular, and L is block-invertible, i.e., L,
Ly, Ly —L12L2_2]L21, and L22—L21L1_11L12 are
non-singular.

y(k — b:
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(5) Calculate the primary singular value decomposi-
tion of

Ay(k)
L[A4k+qjﬂl

in (55) and obtain 7 in (89) as well as U;y, Uy, Uy,
Uzz, and Sll-

(6) Calculate the singular value decompositions in (56)
and (57) and obtain U; and U,.

(7) Estimate the state matrix X(k +¢: k + € — q) in (90).

(8) Estimate the system matrices A, B, B, C, Dy,
and D, in (96) and (97). Estimate E and the noise
covariance matrices Q and R in (98), (99), and (100).

7. Examples
In this section the non-linear subspace identification

algorithm is applied to several non-linear systems. The
validation error is defined by

Lo 0 =50 Ol
= ol

(104)

where y is the output predicted by the identified model.
For each example L = Lyp+0) and M = Iy_o441.

The coefficients of the identified model are not
reported in the examples that follow since they can be
difficult to compare to the coefficients in the original
system. In the case where the original system does not
fall in the model class, see §7.2-7.4, direct comparison
of coefficients is not suitable. In the case where the
system is a member of the model class, see §7.1, some
manipulation may be required to set the basis for the
state sequence, as well as manipulating the input coeffi-
cient values relative to the non-linear basis function
coefficients. We present the validation error (104) as a
useful tool for comparing the identified model and the
system under study that has utility beyond the compar-
ison of identified models to simulated systems to the
comparison of identified models and measured data.

In the plots that follow, the variable ¢ is related to the
discrete variable k as tk = ¢. Where data from a continu-
ous time system and a discrete time system are displayed
on the same plot, the continuous time signal has been
sampled at the same points as the discrete time data.

7.1. Noise statistics example

Here we examine in simulation the effects of varying the
noise level. We simulate the single-input, single-output,

four-state Hammerstein system

0 0 0495 0.495
099 0 0 0

x(k+1) = x(k)
0 099 0 0

1 0
0 1| uk)
+ (105)
00 [u(k)z}
0 0
yk)y=[0 0 0 1]x(k)+ v(k). (106)

We take h=[u u? u3]T, g=2*=16, and
£ =2'"=1024. We take our input sequence u to be
a realization of a zero mean unit variance normally dis-
tributed random variable. We add zero mean normally
distributed measurement noise to the output, and
adjust the signal to noise ratio for each run by changing
the variance of the measurement noise, where we define
the signal to noise ratio as

S A lly =l
ZA . 107
N~ vl (107)

We simulate twenty signal to noise ratios, logarithmi-
cally spaced from 0.01 to 1000. We plot the singular
values in figure 5 and the principal angles in figure 6.
We plot the true and estimate output noise variance in
figure 7. As we increase the variance of the noise,
we see that the ratios of singular values become
less indicative of the order of the system and the
principal angles increase toward 90 degrees. The
output noise covariance estimates improve as the
variance of the noise sequence increases. This is
because the output noise is dominating the response
of the system and the covariance of the output.
Also, since the data sequences are finite, the algorithm
may attribute effects actually due to noise to the
system.

7.2. Planar articulated spacecraft

We model the planar motion of two flexible bodies
linked by a hinge. For simplicity, we model only the
first flexure mode of each link. The equations of
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Figure 5. The singular values used to estimate 7 for each signal to noise ratio. The thickness of the line is proportional to S/N.
As the noise level is decreased, the singular values become a good indicator of the system order.
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Figure 6. The principal angles are used to quantify the effect of noise for each signal to noise ratio. As the noise level increases, the
subspaces become increasingly orthogonal. The thickness of the line is proportional to S/N.

motion are
. sin6(67 cos — 1,63)
LT A +cos?6
sin (63 cos 6 — 116?)
—A1Ay +cos?
0=2+ 2018 —i—a)%é‘] + /28,61,
0= & + 200008 + @38 + 28,65,

+\/§51§1 + u,

h =

+ \/55252 —u,

(108)

(109)

(110)
(111)

where Ay = J1/n, Ay = Ja/n, n=didom, J, = 1) —|—md12,
Jy =5+ md?, m=mmy/(m +my) is the reduced
mass, d; and d> are the distances from the hinge point
to the center of mass of each body, m; and m, are the
masses of the two bodies, 6 =6, — 6, is the angle
between the two bodies, 6, and 0, are the angular posi-
tions of the two bodies with respect to an inertial frame,
¢ and ¢, are the fundamental flexible modes of each
body, w; and w, are the modal frequencies, §; and 3§,
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Figure 7. True (thin line) and estimated (thick line) noise covariance. The noise covariance estimate improves as the S/N degrades.

are the coupling coefficients, and u is the control torque
applied between the two bodies. We can rewrite (7.5),
(7.6), (7.7), and (7.8) as

£=2000 data points with sampling rate 1/7 =20Hz.
We take measurements of 6, 0, 6;, and 6,, and set

u(k —1)
G| sin 0(6? cos 6 — 1,63) 63 (k — 1) sin(0; (k — 1) — 62(k — 1))
Tt 282 —XAihy +cos? 6 2(k) = h(k) = | 63(k — 1)sin(@;(k — 1) — 62(k — 1)) |,
, . G (k — 1)sin 2(0(k — 1) — 65(k — 1))
— V2016 = 2V2hewidi +u). (112) 63(k — 1) sin 2(6y (k — 1) — 6(k — 1)
. . 116
J 1 ( sin (03 cos 0 — A,67) (116)
2= 72 2
I +25 A1hz + cos® 0 a function of delayed data, with the nonlinearities
5 ) periodic in 6. We obtain a fourth order model and
— V28,038 — 2V28: 00080 —u |, (113) plot the validation data in figure 8. The validation
) ' error is e = 0.0025. The frequency of the oscillations in
. -1 V28, sin (63 cos & — 1,63) 6, and 6, is closely matched.
f=1 + 283 —AiAa +cos? 6
5 . 7.3. Forced Van der Pol oscillator
+ @ty + 2c10181 + V281u ), (114)
Here we consider the system
L -1 V26, 5in 0(63 cos 6 — 1163) .
=119 —MAs + cos? 6 X1 =Xx2, (117)
X = —w’x| + ea)(l — uzxf)xg +u (118)

+ w381 + 20008 + fzazu) (115)

Since A1, > 1 these equations do not have a singularity.
For the experiment, the control signal u is a realization
of a zero mean, unit variance random variable for
the first 25 seconds, and zero after 25 seconds, when
we observe the system free response. We measure

with w=e=pu=1. We excite this continuous-
time system with a zero-order-held sequence of
£ = 1000 input samples with time interval 7 =0.05s,
and measure ¢ samples of both x; and x, with sampling
rate 1/t = 20 Hz. Since the nonlinearities are functions
of x; and x,, we measure both signals and identify
a discrete-time model. Inspired by the continuous-time
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t

The time trace of measured and estimated variables. The vertical line indicates the end of the identification data set

and the beginning of the validation data set. The solid line indicates the signal from the true continuous-time system. The dotted
line indicates the signal from the identified discrete-time model.

system, we first choose

x1(k)
x2(k)

2k) = hiky = |
x1(k)xa (k)

(119)
u(k)

and identify a discrete-time model. We then continue
the input sequence as shown in figure 9 and measure
outputs of both the true continuous-time system and
the identified discrete-time model and compare the
results. The validation error is e = 0.0207. See figure 9
and figure 10.

Without exploiting knowledge of the structure of
the continuous-time system, we alternatively choose

all polynomials up to third order as our basis functions,
so that

2(k)=h(k)
1 x1(k)
xik? k) uk)? x1(k)x2(k)
= | xa(kyuk) u(k)xi(k) xi(k)’ xa(k)’
uky  xi (kY xa(k) xy(k)xa(k)” xa(k) uk)
xa(lyuky’ ulky’xi(k)  ulk)xi (k) xi(k)xa(ku(k)
(120)

xa(k) u(k)

Using the same data as before, we identify a discrete-
time model and compare the output of both the
true continuous-time system and the identified
discrete-time model. The validation error is
e =0.0672. See figure 11 and figure 12. Note that
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Figure 9. The time trace of measured and estimated variables of the forced Van der Pol oscillator with 4 basis functions.
The vertical line indicates the end of the identification data set and the beginning of the validation data set. The solid line indicates
the signal from the true continuous-time system. The dotted line indicates the signal from the identified discrete-time model.

Figure 10. x; vs. x, validation signals for the forced Van der Pol oscillator with 4 basis functions. The solid line indicates the signal
from the true continuous-time system. The dotted line indicates the signal from the identified discrete-time model.

even though we have increased the number of basis
functions, the validation error has not decreased; in
fact it increased by a factor of 3.5. While we increased
the number of basis functions, and thus increased
the ability of the identified system to match the
identification data set, we have over-modelled the

data. The estimated system output matches the true
output well for the identification data set, but does
not perform as well when applied to the validation
data set. This effect can be reduced by using a
larger data set, or a better set of basis functions, see
Palanth et al. (2004).
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The time trace of measured and estimated variables of the forced Van der Pol oscillator with 20 basis functions. The

vertical line indicates the end of the identification data set and the beginning of the validation data set. The solid line indicates
the signal from the true continuous-time system. The dotted line indicates the signal from the identified discrete-time model.
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X1 vs. x; validation signals for the forced Van der Pol oscillator with 20 basis functions. The solid line indicates the

signal from the true continuous-time system. The dotted line indicates the signal from the identified discrete-time model.

7.4. Elliptical limit cycle

Here we consider the unforced system

-\ 2
ij+k<q2 + (%) —az)cj—i-wzq =0,

(121)

with A =2, a=1, w =2. This system converges to a
sinusoidal output with amplitude a and frequency w.
We rewrite this system with x; = ¢ and x, = g as

X1 = X2, (122)

(123)

A
—x% — kx%xz — wle.

Xy = ra’xy — 5
w
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The time trace of measured and estimated variables of the Elliptical Limit Cycle with 4 basis functions. The vertical line

indicates the end of the identification data set and the beginning of the validation data set. The solid line indicates the signal from the
true continuous-time system. The dotted line indicates the signal from the estimated discrete-time system.
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Figure 14.
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X1 Vs. X, validation signals for the Elliptical Limit Cycle with 4 basis functions. The solid line indicates the signal from

the true continuous-time system. The dotted line indicates the signal from the estimated discrete-time system.

In this example there is no input to the system.

We measure a zero-order held sequence of
£=10000 outputs with time interval 7=0.01s.
As with the previous example of the Van

der Pol Oscillator, we assume access to both x;
and x,. Inspired by the continuous-time system

we choose

(k) = h(k) =

x1(k)

X2 (k)
x1(k)xa(k)

x3(k)

(124)
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The time trace of measured and estimated variables of the Elliptical Limit Cycle with 10 basis functions. The vertical

line indicates the end of the identification data set and the beginning of the validation data set. The solid line indicates the signal
from the true continuous-time system. The dotted line indicates the signal from the estimated discrete-time system.
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X1 vs. x validation signals for the Elliptical Limit Cycle with 10 basis functions. The solid line indicates the signal from

the true continuous-time system. The dotted line indicates the signal from the estimated discrete-time system.

and obtain a validation error of e = 0.0678. See figure 13
and figure 14. Alternatively, we choose

z(k) = h(k)
1 x1(k) Xk x¥k)7"
= | ¥ X1(xk) Xk k) |
X (k)xa(k)  xi(k)x3(k)
(125)

the set of all polynomials up to third order in the
outputs and obtained a validation error of ¢ = 0.0015.
See figure 15 and figure 16. Unlike the previous example,
the validation error decreases as we increase the number
of basis functions.

Next, we identify the system with only one measure-
ment and increase the memory depth of the non-linear
basis functions. Assuming access to only the position
variable x; we include delayed outputs in our basis
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Figure 17. The time trace of measured and estimated variables of the Elliptical Limit Cycle with 10 basis functions and measure-
ment of x,(k) only. The vertical line indicates the end of the identification data set and the beginning of the validation data set. The
solid line indicates the signal from the true continuous-time system. The dotted line indicates the signal from the estimated discrete-

time system.

functions by letting

S (k)

1 xik=1)  xk) 2k—1) 2(k)]"
= | xiGk=Dxi(k) (k=1

(k) Blk-Dx®)  xak—1) B0

(126)

See figure 17. While the error has increased substantially
to e = 0.0087, it is still less than one percent. This exam-
ple demonstrates how including functions of delayed
data can allow identification of a system that would
otherwise be difficult to identify.

8. Conclusion

We presented a subspace-based identification method
for identifying non-linear time-varying systems that are
nonlinear in measured data and linear in unmeasured
states. Our approach is to rewrite the nonlinear iden-
tification problem as a linear identification problem by
writing the system nonlinearities as a sum of known
basis functions with unknown coefficients. We then
applied the algorithm to several numerical examples.
Future work will focus on experimental applications
(Lacy and Bernstein 2002), extending the class of

identifiable systems, and methods for basis function
selection (Palanth er al. 2004).
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