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Abstract

It is shown that a full-state feedback gain that was originally derived to satisfy a
discrete-time, closed-loop K,,-norm bound, also minimizes three distinct LQG cost bounds.

1 Introduction

Combined 712 /Ioo feedback controllers can provide both robust stability (via a closed-loop
1-,o-norm bound) and nominal performance (via a closed-loop LQG cost bound or 7-2-norm
bound). Consequently they are of considerable interest, and-at least for the continuous-
time case-there has recently been much work on the subject. See, for example, Mustafa and
Glover (1988, 1990), Bernstein and Haddad (1989), Grimble (1989), Rotea and Khargonekar
(1990), Zhou et al., (1990), and MacMartin et al., (1990).

It was shown by Mustafa (1989a) that if the continuous-time -I(o-norm and LQG cost
bound are applied to the same closed-loop system-the 'equalized LQG/14o0 weights' case-
then the LQG cost bound ('auxiliary cost') considered by Bernstein and Haddad (1989) is
equal to the entropy considered by Mustafa and Glover (1990). The present paper was
motivated by the fact that this equality does not hold in the discrete-time case. Indeed.
as pointed out by Iglesias et al.. (1990). the discrete-time minimum entropy 'HT& control
problem is not simply related to the continuous-time case via the usual bilinear transform.
This motivates the need for derivations wholly in discrete-time.
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Although the discrete-time auxiliary cost (defined by Haddad et al., (1991)) and the
discrete-time entropy (see e.g., Mustafa (1989a), Iglesias et al., (1990)) are generally different,
we will see in Section 2 that they are nevertheless closely related and indeed both can be
evaluated in terms of the same discrete-time algebraic Riccati equation. Furthermore, the
LQG cost bound in the independent work of Bambang et al., (1990) can also be defined in
terms of the same algebraic Riccati equation. Thus one apparently has three distinct auxiliary
costs and so three different mixed 'H2/1oo control problems. By restricting the discussion
to static full-state feedback, we will show in Section 3 that the same gain solves all of these
problems. This gain turns out to be the gain derived by Ba§ar (1989) to satisfy an 7'/o-
noni bound (see also Yaesh and Shaked (1990)). Thus the present paper gives a combined
LQG/1-I,o interpretation of that control law which was not apparent in the work of Ba§ar
(1989).

2 Problem Statement

2.1 The plant and control law

Consider a discrete-time plant

x(k + 1) = Aox(k) + Blw(k) + B2 u(k)

z(k) = Clx(k) +Dv2U(k)

where k = 0, 1, 2,... and the disturbances w E nRm ', the input u E IRm2, the state z E IRn

and the outputs z E IRP1. With static full-state feedback

u(k) = KIX(k)

where K E JRm2 Xn is to be determined, the closed-loop system from disturbances w to outputs
z is

A B

x(k + 1) = (Ao + B 2K)r(k)+ B1 w(k)

z(k) = (Cl + Dl 2K) x(k)

C

with z-transfer function H(z) := C(zI - A)-1B, which we will occasionally denote by H =
(A, B, C).

2.2 Assumptions

A necessary and sufficient assumption for the existence of a gain K that makes the closed-loop
system asymptotically stable (i.e., makes {A(Ao + B2 K)j < 1) is that

* (Ao, B 2) is stabilizable.

In common with Ba§ar (1989) we assume that

* (Ao, B 1) is stabilizable and (C 1, A0) is detectable.

It is also assumed that

DT [ C1 D12 ]=[OI]-

This is a now fairly standard assumption which clarifies the exposition substantially by nor-
malizing the control weighting and eliminating cross-weightings between control signal and
state.
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2.3 Basic problem statement

Before delving into the details of defining LQG cost bounds, it is pertinent to give a statement
of the basic problem of interest, to have a goal in sight.

The aim is to find a gain K that satisfies certain criteria. The first is of course that K
makes the closed-loop stable:

(i) A = Ao + B 2K is asymptotically stable.

Now the Small Gain Theorem tells us that if also

(ii) IIH(z)llo < ',

for some given 7 > 0, then the system is robustly stable in that any stable transfer matrix
A(z) satisfying IlA(z)lloo < 7-1 may be connected from z back to w without destabilizing the

closed-loop so formed. Here IIH(z)IoIo = sup8 A m2(HT(e-ji)H(eji)) is the usual discrete-
time 7',oo-norm. For background on '7'- control, the reader is referred to Francis (1987)
for the continuous-time case and Iglesias and Glover (1990) and Stoorvogel (1991) for the
discrete-time case.

One gain that satisfies (i) and (ii) is given in the following result, taken from Lemmla 5.2
of Ba§ar (1989).

Proposition 2.1 (Ba§ar, 1989) Consider the system of Section 2.1 under the assumptions
of Section 2.2. Suppose there ezists a matriz P E IRnX n satisfying

P > 0,

72I - BTPB1 > 0,

P = ATP(I + B 2 B TP - 7-2 BBTP)-lAo + CTC1 .

Then the full-state feedback gain

K = -BTP(I + B 2 BTP - 7 - 2 BiBTP)-m Ao

satisfies

(i) A = Ao + B 2K is asymptotically stable,

(ii) |1HIIoo < -.

As may be seen in Iglesias and Glover (1990), usually a class of controllers achieve closed-loop
stability and satisfy the 7-,,-norm bound. So we may impose an additional criterion. One
possibility would be to mnininlize nominal performance as defined by the Linear Quadratic
Gaussian cost

C(H) := lim EfzT(k)z(k)] = 2 trace[HT(ezj)H(ej )ld]

in which case w is interpreted as zero-mean Gaussian white noise with unit mntensity. How-
ever, this interesting problem is. as far as the present authors are aware, still unsolved.
Instead, subject to (i) and (ii), we seek to

(iii) Minimize J(H, 7), a suitably defined upper bound on the LQG cost.

The precise definition of three different LQG cost bounds of interest to us will be deferred
until Section 2.5: firstly we address the X,o-norm bound (ii).
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2.4 The X{,-norm bound

Satisfaction of the 7kO-norm bound is known to be intimately connected to the existence of
solutions to a certain discrete-time algebraic Riccati equation. Consider the set of strictly-
proper discrete-time systems of McMillan degree n,

DP~,, " := {(A,B,C) E WnXn X WRnXml X RPI Xn}

and the set of asymptotically stable, strictly-proper, discrete-time systems of McMillan degree
n,

';~bDP' e = {(A, B, C) E Dp. m' ' : A(A) < 1}

Given (A, B, C) E DP'n'm and 7 > 0, consider the following conditions on a matrix P E 1RnXn:

P > 0, (1)

72I - BTPB > 0, (2)

P ATPA + ATPB( 7
2I - BTPB)-lBTPA + CTC. (3)

Then we have the following definitions.

* If P satisfies (1), (2) and (3) then we will say that P is a solution of the algebraic Riccati
equation (3).

* If P is a solution of (3) and also IA(A + B(721 - BTPB)-lBTPA)l < 1 then P is said
to be a strong solution of the algebraic Riccati equation (3).

* If P is a solution of (3) and also IA(A + B(y21 - BTPB)-lBTPA)l < 1 then P is said
to be a stabilizing solution of the algebraic Riccati equation (3).

* If P is a solution of (3) and also P < P for all other solutions P of (3), then P is said
to be a minimal solution of the algebraic Riccati equation (3).

The following lemmas state some useful results and connections to 7Ho-norm bounds,
which are analogous to well known continuous-time results.

Lemma 2.2 Let (A, B, C) E VPl' ml and 7 > 0 be given. Suppose there ezists a solution P
to (3). Then we have the following.

(a) There ezists a minimal solution to (3), which is:

(i) Unique.

(ii) Strong if (A, B) is stabilizable.

(b) The following are equivalent:

(i) (C, A) is detectable.

(ii) A is asymptotically stable.

(c) If A is asymptotically stable then:

(i) I C(zI- A)-XB[]. < 7.
(ii) P > S where S = ATSA + CTC.
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Proof Part (a) is from Theorem 3.1 of Ran and Vreugdenhil (1987), whereas parts (b)
and (c) are from Lenunmma 2.1 of Haddad et al., (1991). o

Lemma 2.3 Let (A, B, C) E DPI`tLi and 7 > 0 be given.

(a) The following are equivalent:

(i) IIC(zI - A)-'Bll, < 7.

(ii) There ezists a stabilizing solution P to (3).

(iii) There ezists exactly one stabilizing solution P to (3).

(b) If a(i)-a(iii) hold, the following are equivalent:

(i) P is the strong solution of (3).

(ii) P is the stabilizing solution of (3).

(iii) P is the minimal solution of (3).

Proof These follow from Theorem 2 of Molinari (1975), Lemma 4 of Gu et al., (1989),
and Lenlma 2.2a. (The continuous-tilne version of Part (a) may be found in Theorem 2.2 of
Petersen al., (1990).) O

The next step is to construct upper bounds on the LQG cost using P solving (3).

2.5 LQG cost bounds

It is well known that the LQG cost of H = (A, B, C) E 'DP' t L is given by

C(H) = trace[BT SB] (4)

where

S = AT SA + CTC. (5)

Suppose that there exists a solution P to (3). Then Lemma 2.2 gives that 11H/1oo < r, so the
desired 7,oo-norm bound is satisfied, and P > S. Thus trace[BT PB] > trace[BT SB] which
gives an LQG cost overbound. Other cost bounds are possible, as we now see.

Proposition 2.4 Let H = (A, B, C) E DPt' "l ' and 7 > 0 be given. Suppose there ezists a

solution P to (3). Then det(I - y- 2 BTPB) > 0 so we can define the following LQG cost
bounds:

Jl(H,7 ) := trace[BT PB], (6)
J 2(H, y) := -2In det(I - 7 - 2BTPB), (7)
J3(H, ) := trace[BT P(I - -2BBTP)-1 B]. (8)

For i = 1, 2, 3 we have

(i) Ji(H,y) > C0(H).

(ii) Ji(H, y) = C'(H) + (7-2).

(iii) Ji(H, oo) = C(H).

Moreover, J3 (H, 7 ) > J2 (H, 7) > J1 (H, ).
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Proof See Appendix A. El

Remark 2.5 The cost J1 (H, 7 ) was defined by Haddad et al., (1990). []

Remark 2.6 The cost J 2(H, y) for a system H = (A,B,C) E DP ble which satisfies

IIHIlo < 7 is in fact the entropy of H. The entropy of such an H is defined by

FI(,) := -7 ion det(I - -2 HT(e-je)H(ej9)ldO.
27r I-,

For background details, see Mustafa and Glover (1990) for continuous-time entropy, and
Iglesias et al., (1990) for discrete-time entropy. Using Lemma 6.2.6 of Mustafa (1989a) to
evaluate the entropy in terms of tile stabilizing solution P to (3), one obtains

I(H,7 ) = _72 In det(I - -2ZBTPB) = J2 (H, A)

as claimed. o

Remark 2.7 The cost J 3(H, y) is equal to the LQG cost bound defined in the independent
work of Bambang et al., (1990) as we now show. Let P be a solution of (3), then we can
define

X := P(I - f-2BBTp)-1 . (9)

It is easy to show that

X > 0, (10)

72I + BTXB > 0, (11)

X = ATXA + XB(72I + BTXB)-iBTX + CTC. (12)

Such an X is said to be a solution of (12). Conversely, if X is a solution of (12) then

P := X(I + 7 -2BBTX )- 1

defines a solution of (3). For X solving (12), Bambang et al., (1990) defined an LQG cost
bound

J4(H, 7 ):= trace[BT XB]. (13)

In view of (9) and (13), we see that

J4 (H, ) = trace[BT P(I - 7 -2BBTP)-1 B] = J 3 (H, y)

as claimed. 0

Remark 2.8 Part (iii) of Proposition 2.4 shows that the true LQG cost is recovered from
each of the Ji(H, 7) when the '7, 0-norm bound 7 is completely relaxed (y -* oo), as might
be hoped. El

The following lemma shows that, over the class of solutions of (3), the smallest Ji(H, ') is
obtained using the minimal solution of (3) in (6)-(8). Since the eventual aim is to minimize
the Ji(H, y), it is therefore implicit that the minimal solution of (3) is used in (6)-(8).

Lemma 2.9 Let Ji(H, 7) be as defined in (6)-(8), but with the requirement that the minimal
solution of (3) is used. If any other solution of (3) is used in (6)-(8), denote the Ji(H, 7) so
obtained by Ji(H, 7). Then, for i = 1, 2, 3,

Ji(H, 3) < Ji(H, 3y).

Proof See Appendix B. E
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3 Minimization of the LQG cost bounds

We will establish the following strengthening of Proposition 2.1.

Proposition 3.1 Consider the system of Section 2.1 under the assumptions of Section 2.2.
Suppose there exists a matriz P E IRnX n satisfying

P > 0, (14)
721 - BTPB 1 > 0, (15)

P = ATP(I + B 2BTp - 7-2 B 1BTp)-'Ao + CTC1, (16)

such that

A := (I + B 2 B2P - 7- 2B 1BTP)-'Ao is asymptotically stable, (17)

and suppose that (A, B1 ) is controllable. Then the full-state feedback gain

K = -BTP(I + B 2B2TP 7- 2BB TP)- 'Ao (18)

minimizes the LQG cost bounds Ji(H, 7 ), i = 1, 2, 3 subject to

(i) A = Ao + B 2K is asymptotically stable,

(ii) 11HIfo < 7,

and in fact IIHIkoo < 7.

To evaluate the minimized costs, simply use P from the above proposition in the definitions
of the Ji(H, 7) given in (6)-(8).

3.1 Minimization of J1 (H, y)

To minimize J1 (H, 7) subject to the constraint equation (3), form the Lagrangian

Ci(K,P,Q) := aJ1 (H,,7 )

+trace[{-P + ATPA + ATPB(7 2 I - BTPB)-1BTPA + CTC}Q]

where the Lagrange multipliers a > 0 and Q E JRnxn are not both zero, and A = Ao + B 2K,
B = B1 and C = C1 + D12K. Note carefully that

d92z = 0, = B=1BT, and = 0.
OK = P 9Q

(Here and in the sequel we use the method of Geering (1976) to do the differentiation.) Now
the necessary conditions for optimnality are

= 0, =0, and = 0.
OK 8P 9Q

These are, respectively,

0 = {(I + BTP(I - `7-2 By BTP)- B 2)K + B2TP(I- 7-2 B 1Bl)-'Ao}Q (19)

Q = AQAT + aBiBT, (20)
P = ATPA + ATPB(y2I - BTPB)-'BTPA + CTC, (21)
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where A := A + B(72 I - BTPB)-lBTPA. It is easy to show that (19) is satisfied by (18),
and then (21) becomes (16). By Proposition 2.1 we therefore have that A = Ao + B 2K is
asymptotically stable and IIC(zI - A)-'BI, < 7.

We need the minimal solution of (16), otherwise J1 (H, 7) is not minimized. Lemma 2.3a
tells us that this is also the stabilizing solution (i.e., 1A(A)j < 1), and furthermore IIC(zI -
A)-'BIIoo < 7. Since IA(A)I < 1 there exists a unique Q > 0 satisfying (20), using the
discrete-time version of Lemma 12.1 of Wonham (1979). Furthermore, if a = 0 then Q = 0,
hence without loss of generality we may set a = 1.

To show that K is the minimizing solution, follow the method used in Section 3 of Yaesh
and Shaked (1989). Define

M := I + BTP(I- 7-
2 B 1 BTP)-1 B 2 .

Then

= Mt jj.

Assume that (A, B 1) is in fact controllable. Then the discrete-time version of Lemma 12.2
of Wonham (1979) applied to (20) gives that Q > 0. Also, M is clearly positive-definite. It
follows that Mflii > 0 and Qjj > 0 (see page 398 of Horn and Johnson (1985), for example).
Therefore

2£C1
(OK)\2 > 0,

as needed.

3.2 Minimization of J2 (H, 7 )

The steps taken are identical to those taken in Section 3.1 to minimize Jl(H, 7). The La-
grangian becomes

£2(K,P,Q) := aJ2 (H, 7 )
+trace[{-P + ATPA + ATPB(7 2I - BTPB)-BTPA + CTC}QI

where the Lagrange multipliers a > 0 and Q E IRn x n are not both zero. Note carefully that

OJ2: OJ 0J2aJ 0, aJ: = B(I- y-2 B 1PBT)-'Bl, and 0.
OK -0 P aQ.

Thus the necessary conditions for optimality are identical to (19), (20) and (21), except the
second stationarity condition gives

Q = AQAT + aB(I - 7-2 BlPBT)-1 BT

in place of (20). The remaining details are the same as Section 3.1; one only needs to note
that (A, B 1(I - y - 2 B TPB 1 )-1/2) is controllable whenever (A, B1) is controllable.
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3.3 Minimization of J 3(H, y)

Again, the steps taken are identical to those taken in Section 3.1 to minimize J1 (H, 7). The
Lagrangian becomes

£3(K, P,Q) := aJ3 (H, 7)
+trace[(-P + ATPA + ATPB(7 2I - BTPB)-IBTPA + CTC}Q]

where the Lagrange multipliers a > 0 and Q E IRr X n are not both zero. Note carefully that

AK = , J 3 = (I - -2 B1BTp)-lB1BT(I- y- 2 BBTP)- T , and J3 0.
OK 9-- = 0, o9

The necessary conditions for optimality are identical to (19), (20) and (21), except the second
stationarity condition gives

Q = AQAiT + (I - - 2 B 1 BT)-'B1 BT(I- 7- 2 B 1 BP)-T

in place of (20). The remaining details are the same as Section 3.1; one only needs to
note that (A, (I- 7-2 BBTP)- ' B) is controllable whenever (A, B 1) is controllable, because
(I - -2B 1 BTP)-lB1 = B 1 (I - y-2BTPB1 )- 1 .

4 Concluding Remark

We have shown that a certain discrete-time full-state feedback gain, initially designed to
satisfy a closed-loop 741, norm bound, also ninindizes three distinct LQG cost bounds. An
obvious open problem is

* What other LQG cost bounds, if any, are also minimized?

Furthermore, it would be interesting to see if the results of this paper generalize to include
the case of

* Dynamic output feedback, and/or

* LQG cost bounds and H,.o-norm bounds applied to different closed-loops.

Finally, in the spirit of Zhou et al., (1990), one wonders:

* What is the induced-norm interpretation of the LQG cost bounds?
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A Appendix: Proof of Proposition 2.4

If P is a solution of (3) then I - y-2BTPB > 0 so det(I - y- 2BTPB) > 0 and also det(I -

7-2 BBTP) > 0. Therefore the Ji(H, 7) are certainly well-defined.

Part (i) Subtracting (5) from (3) gives
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P - S = AT(P - S)A + ATPB(72 I - BTPB)-lBTPA

which gives

00

P - S = (Ak+)TPB(7
21 - BTPB)-1BTPAk+1. (22)

k=1

Hence P - S > 0 so J 1(H,7 ) > C(H). Using the matrix inversion lemma to write

P(I - y-2BBTP)-1 = P + PB(7
2 I - B T P B ) - 1BTP

leads to

J 3(H, ) - J1(H, ) = trace[BT PB(?2I - BTPB)-'BTPBI, (23)

which is non-negative. Hence J 3(H, 'y) > J1(H, Y) > C(H). An application of Lemma A.2.1(ii)
of Mustafa and Glover (1990) gives J 2(H,'y) > J 1(H, 7) immediately, and recalling that
Ji(H, 7) > C(H) completes the proof of part (i).
Part (ii) We know that

(721 _ BTP B ) - l = 7-2 I + Z( 7-2BTPB) k . (24)

Putting this in (22) implies that trace[P - S = 0(7- 2) and therefore that J1(H, ) - C(H) =
O(7-2). Similarly, using (24) in (23) gives J3 (H, 7 )- Ji(H, ) = O(7-2), hence J 3(H,) =
C(H) + 0(7-2). An application of Lemma A.2.1(i) of Mustafa and Glover (1990) to J2(H, A)
gives J 2 (H, /) = J1(H,,) + O(7-2) so also J 2 (H,,) = C(H) + O(7-2).

Part (iii) This follows from part (ii) on taking the limit as 7 -- oo.
It remains to prove that J3(H,7y) > J2 (H, 7r) > J1 (H, 7 ). That J2 (H, 7 ) > J1 (H,Y7 ) was
shown in the proof of part (i). Now let ci := Ail{- 2BTPB}. It is straightforward to show
that

J 3 (H, 7 )- J2 (H,7 ) = 7 ((1 - Ki)' + ln(l - ))
i=l

Since I > I-7-2BTPB > 0 we have that 0 < _ci < 1. Hence, as shown on page 11 of Mustafa
and Glover (1990),

(1- r)- K + hl(1 - i) > 0.

It follows that J 3(H, ) > J 2(HI, ). o

B Appendix: Proof of Lemma 2.9

Let P be a solution of (3) which is not the mninimal solution P. By definition we have that

P < P, (25)
P < 0 and I - - 2 BTPB > 0, (26)
P < 0 and I- -2BTPB > 0, (27)

which we will need in the following proof. There are three cases, corresponding to Ji(H, 7),
J2 (H, 7) and J3 (H, 7), respectively.
Case 1 Simply note that
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J(H,') - J1 (H, 7 ) = trace[BTPB] - trace(BT PBI = trace[BT (P - P)B] > 0,

using (25).

Case 2 Using (25)-(27) and Corollary 7.7.4a,c of Horn and Johnson (1985) it is easily shown
that

(I - -y 2BTPB)- l > (I - r-2 BTPB)- 1 > I (28)

and

Ai{(I - 7- 2BTPB)-'} > Ai{(I - 7- 2BTPB)- 1} > 1. (29)

Therefore

J 2(H, 7) = - 7 2 In det(I -1 - 2 B T PB)
n

= 72 ln i{(I - 7-
2BTPB)-l}

i=l

> 72 E Ai{(I - 7-2 BTPB)-'} using (29)
i=l

-72 ln det(I - - 2BTPB)

= J2(H,-t).

Case 3 Using standard properties of trace[ · ] and Corollary 7.7.4b of Horn and John-
son (1985), we have

j 3 (H,y) = trace[BT P(I -_- 2 BBTr) - lB]

= trace[BT PB(I - y- 2BTPB)-1 ]

= trace[(BTPB)1/2(I- ,- 2BTPB)- (BTPB)l/2 ]

> trace[(BTPB)1/2(I - - 2 BTPB)-'(BTpB)l/2 ] using (28)

= trace[(I - 7 -2BTPB)-1I 2BTpB(I - 7-2BTp B ) - 1/ 2]

> trace[(I - 7-2BTpB)-l/2BTPB(I -_-2BTPB)- 1/ 2] using (25)

= trace(BT P(I -?- 2BBTP)-lB]

= J3(H,7)),

as claimed. o
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