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L z controller synthesis with Loo·bounded closed-loop impulse
response

Y. WILLIAM WANGt and DENNIS S. BERNSTEINt

In this paper we consider an L 2 control problem with an L~ norm on the
closed-loop impulse response. To do this we first construct an upper bound for
the L~ norm of the impulse response of the closed-loop system. To perform
controller synthesis, we then modify the standard LQG cost functional by
including an additional penalty term that weights the L~ norm of the impulse
response of the closed-loop system. A numerical example is given to illustrate
the improved L~ response of the closed-loop system.

Notation
<!ft, C(6 real numbers, complex numbers

spec (A) the set of eigenvalues of A
P(A) spectral radius of A, max {IAI : AE spec (A)}

amax(A), amin(A) maximum, minimum singular value of A
az(A) second largest singular value of A
a(A) spectral abscissa of A, max {ReA: AE spec(A)}

IIAIIF,llx(t)llz Frobenius norm of A, (x T(t)x(t»l/2

1. Introduction and problem formulation
Although standard LQG design optimizes the closed-loop system response

from disturbance to performance by minimizing the L z norm of the impulse
response, it does not necessarily minimize the L~ norm of the closed-loop
impulse response. Rather, LQG design optimizes the time integral of the square
of the Frobenius norm of the closed-loop impulse response. In many practical
situations, however, it is desirable to enforce a pointwise-in-time constraint on
the impulse response of the closed-loop system (Gilbert and Tan 1991). To
address this problem, we consider the linear feedback system depicted in Fig. 1,

u

Figure t. System schematicdiagram.
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8 1296 Y. W. Wang and D. S. Bernstein

with plant G and controller Ge , where the signal w(t) denotes white noise and
woo(t) denotes an impulse signal. The performance variables are z(t) and zoo(t),
respectively, for the disturbance inputs w(r) and Woo (r). With the closed-loop
transfer functions Gand Goo given by

i(t) = Ax(t) + Dw(t) + ii; woo(t)

z(t) = Ex(t)

zoo(t) = Eoox(t)

IIGlb and II Goo IlL. are defined by

r
oo - ]1/2

IIGllz ~ fa liE e
A I DII~dt

- 6 - AI-IIGooliL. =sup omax(Eoo e Doo )
t"O

(1)

(2)

(3)

(4)

(5)

Mixed-norm optimization problem: Given G, obtain G; such that IIGlb is
minimized with constrained IIGooIIL•. 0

A closely related problem involves Lz disturbances woo(t) with an Loo norm
on z(t). In this case the induced norm is given by (Wilson 1989)

- I/Z (fOO - -T )IIGlloo.z = dmax _., G(t)G (t)dt (6)

where dmaxdenotes the largest diagonal entry. Controllers that minimize (6) are
considered in (Rotea 1993). The norm (6), however, is more closely related to
the L 2 norm (4) than the L oo norm (5). In fact, (6) and (4) are identical in the
single-input and single-output cases, whereas (5) represents a pointwise-in-time
constraint on the system response.

In this paper, we develop a method that constrains IIGoo IlL. and thus the
excursion of zoo(t) when w(t) = 0 and woo(t) is an impulse. Since the size of

Eooe Atti: depends on the maximum singular yalue of eAt, we first obtain upper
bounds for the maximum singular value of eA

', One such bound is based upon
the maxi~U1~ ei~~value of A + AT while the other involves the Frobenius
norm of AT A - AAT. In general, there is no ordering between these bounds.
Using synthesis techniques, we utilize the second bound to limit the L oo norm
of t: eAt Doo . To do this, we modify the standard LQG performance measure
by adding a penalty term to the standard LQG performance measure. We then
perform controller design by optimizing this modified LQG performance
measure.

We begin in § 2 by investigating properties of the Frobenius norm and
maximum singular value of eAt for an arbitrary matrix A. The results given in
this section illustrate the difficulty of characterizing the L oo norm (5). Then, in
§ 3, we construct two upper bounds for the L oo norm of the impulse response. In
§ 4, we consider controller synthesis where we address both static output
feedback control and dynamic compensation. We then propose a numerical
algorithm for obtaining controller gains in § 5. An example involving an F8
fighter is shown in § 5. Concluding remarks are given in § 6.
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8 Lz controller synthesis 1297

2. Properties of the Frobenius norm and maximum singular value of e'"
To bound the impulse response of a linear system, it is useful to investigate

properties of the maximum singular value of e:". To begin, consider the system

whose solution is given by

x(t) = Ax(t), x(O) = Xo (7)

x(t) = eAtxo (8)

If A is asymptotically stable then eAl -> 0 as t -> 00 and thus x(t) -> 0 as t -> 00.

Furthermore, IIx(t)lb is bounded by

IIx(t)lb = IleAtxoliz ,,;: amax(eAt)lIxolb (9)

Since amax(e-") is the norm induced by the euclidean norm II· Ib, it follows that
for every value of t '" 0 there exists an initial condition Xo such that equality
holds in (9), that is

(10)

Thus, the maximum excursion of x(t) from the origin depends upon the
maximum size of amax(eAt) for t '" O. Unfortunately, although amax(eAl) -> 0 as
t -> 00, amax(eAt) may not be decreasing for all t. To illustrate this, we consider
the following example.

Example 1: Let

[
- 0.1

A = 2 -3 ]
-0·2

As can be seen in Fig. 2, amax(eAt) initially increases and is oscillatory.
Therefore, there exists x(O) such that Ilx(O)lb = 1 and Ilx(t)lb"" 1·2 for t "" 0·8.
We also observe that due to the switching in magnitude between the eigenvalues
of eAt eA\ amax(eAl) is not smooth at its local minima. However, since
amax(eAl) = A~x(eAteATt). involves switching between complex exponential func­
tions, it can be seen that the one-sided derivative of amaxCeAt) always exists. 0

Figure 2. umax(eAt) (solid curve), u2(e A,) (dash-dot curve) and IleA'IIF (dashed curve).
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8 1298 Y. W. Wang and D. S. Bernstein

Proposition 2.1: Let A E <lJtnxn. Then the one-sided derivative of amax(eAt) at
t = 0+ is given by

(11)

Proof: Note that

d At I . amax(eAt) - 1
-ama.(e ) t=O+ = hm ------
dt t_O+ t

;Y2 (e ATIeAI) - 1= lim _m_ax _
1_0+ t

. {Amax[(l + ATt)(l + At)]}I/2 - 1= hm ...:...=:.:..:..._-_:....:....__...:..:..:....:...._-
1-0+ t

= lim [1 + tAmax(A T + A W/z - 1
1_0+ t

o
Proposition 2.1 shows that if A + AT is indefinite then amax(eAt) initially

increases for i » O. In this case, amax(eAt) has a maximum value greater than
unity. Since amax(eAI) may not be differentiable at all t > 0, it is not easy to
characterize the maximum value of amax(eAt). Instead, we recall an upper bound
for amox(eAI).

Lemma 2.1: Let A E <lJtnxn. Then, for all t E <lJt

a max(eAI) ~ ei.,...(A +AT)t/2

Proof: The result is given by Lemma lc of Strom (1975).

(12)

o
In the more restrictive case in which A is dissipative, that is, A + AT < 0,

we have the following result.

Proposition 2.2: Let A E <lJtnxn. Then A is dissipative if and only if amax(eAt) is
strictly decreasing for all t E <lJt.

Proof: If A is dissipative, Lemma 2.1 implies that am.x(eAI) ~ ei.,.ax(A+A
T)I/2 < 1,

for t > O. Thus, it follows that eATIeAI < I for all t > O. Letting t = t z - tl>

where t2> tl, we obtain eATt2eAI2 < eAT11eAtl. Hence, amax(eAI2) < am.x(eAII).
Conversely, if amox(eAI) is strictly decreasing for i » 0 then Proposition 2.1
implies that Am.x(A + AT) < O. Thus, A + AT < O. 0

Corollary 2.1: Let i(t) = Ax(t) and A E <lJtnxn be dissipative. Then Ilx(t)11z is
strictly decreasing for all t E <lJt.

Proof: Using Proposition 2.2, it can be seen that if tl < t z then

Ilx(tz)11z = Ile A('2-
'I)x(t))11z ~ amax(eA(12-tl»)llx(tl)11z < Ilx(tl)11z 0

We now consider the most restrictive case in which A is normal and
asymptotically stable.
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8 L2 controller synthesis 1299

Proposition 2.3: Let A E '!Itnxn be normal and asymptotically stable. Then, for
all t > 0,

(13)

Proof: Since A is normal and asymptotically stable, there exist unitary
V E «6nxn and diagonal A E «6nxn such that A = V AV* and A + A* < O. Thus,
for t > 0

omax(eAI) = [Amax(eATIeAI)JI/2 = ell.".,(A+AT)t < 1 0

We also consider lIeAlIIF which is a smooth function of t . As can be seen
from Fig. 2, IleAlllF and omax(eAI) may have very different characteristics. Let us
consider the case in which A is dissipative.

Proposition 2.4: Let A E '!Itnxn be dissipative. Then IleAtilF is strictly decreasing
for t ;;. O.

Proof: Note that, for t ;;. 0

~lleAIII} = treATI(A + AT) eAt < 0 0
dt

Although Proposition 2.4 provides a sufficient condition for IleAtilF to be
strictly decreasing, it can be seen from Fig. 2 that this condition is not necessary.

Finally, we consider the case in which A is normal.

Proposition 2.5: Let A E '!Itnxn be normal. Then

(14)

(15)

where AI, ... , An are the eigenvalues of A.

3. An alternative upper bound for umax(eAl)

Lemma 2.1 provides an upper bound for omax(eAI). Here, we state an
alternative bound for omax(e At) based upon the Schur decomposition. Let the
Schur decomposition of A be A = Q(D + N)Q*, where D is diagonal, N is
strictly upper triangular, and Q is unitary.

Proposition 3.1: Let A E '!Itnxn. Then, for all t E '!It

n-l k

o (eAt) "" eO'(A)I" !-ok (N)max -.:;; L.J max
k=O k!

Proof: The result appears as (2.11) in Van Loan (1977).

Although bounds (12) and (15) hold for all A, Fig. 3 shows with

A = [-0.5 2 ]
o -0·7

o

that there does not generally exist an ordering between these two bounds. Note
that bound (12) approaches zero monotonically as t -+ 00 if and only if
A + AT < 0, while bound (15) approaches zero as t -+ 00 if and only if A is
asymptotically stable. The following result shows that the exponential factor
eO'(A)1 in (15) is always better than the exponential factor eA",ax(A+A

T)t/2 in (12).
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8 1300 Y. W. Wang and D. S. Bernstein

3.'

2.'

Figure 3. 0m.,(eA, ) (dash-dot curve), Bound (12) (dashed curve) and Bound (15) (solid
curve).

Proposition 3.2: Let A e 'lJtnxn. Then

a(A) '" Amax( A + A T)/2

Furthermore, equality holds if and only if A is normal.

Proof: See Theorem F.l on p. 237 of Marshall and Olkin (1979).

(16)

o
Now let us focus on the polynomial part of (15). Since N is upper triangular

and nilpotent, we have the following bounds for IINIIF'

Lemma 3.1: LetA e'lJtnxn. Then

(i) IINIIF = IliA II~ - L7=IIA;12]112 < IIA IIF

(ii) IINIIF = [~IIA + ATII~ - 2L~1(ReA;)2]112 '" ~ IIA + ATIIF

(iii) IINIIF = r~IIA - ATII~ - 2L7=I(Im A;)2j112 '" ,~ IIA - ATIIF. y2

(iv) IINIIF '" ( n
3
1; n ) 1/411ATA - AAT IIV2

where AI, ... , An are the eigenvalues of A.

Proof: To prove (i), note that IIA II~ = IIQ*AQII} = liD + Nil}. By direct expan­
sion, we have

n

liD + NII~ = tr(D*D + N*N) = IINII~ + LIA;12
i=l

Thus, IINIIF = lilAII} - L7=1IA;1 2j112 < IIAIIF. Statements (ii) and (iii) can be
proved in a similar manner. The proof of (iv) is given in Henrici (1962). 0

Using (iv) in Lemma 3.1, umax(eAt) can be bounded as below.
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8 L2 controller synthesis 1301

(17)

Theorem 3.1: Let A E CJl.nx n. Then, for all t E CJl.

n-I k(3 )k/4
Omax(eA1) ~ ea(A)1eo~! n 1; n IIAT A - AATII~/2

Proof: Combining Lemma 3.1 and Proposition 3.1 with the fact that
omax(N) ~ IINIIF yields (17). 0

The following bound for the impulse response matrix will be useful for
synthesis.

Corollary 3.1: Let E E '!Jl.px n, A E CJl.nxn and D E CJl.nxq. Then, for all t E CJl.

omax(EeA1D) ~ ea(A)tIIEliF[~1 t~(n3 - n)k/41IATA _ AATII~/2]IIDIIF (18)
k-O k. 12

4. Controller synthesis for bounded closed-loop impulse response
Consider the system

x(t) = Ax(t) + Bu(t) + D I wet) + D I ", w",(t) (19)

yet) = Cx(t) + D2w(t) + D2",w",(t) (20)

z(t) = Elx(t) + E2u(t) (21)

z",(t) = EI",x(t) + E2",u(t) (22)

where A, B, DI> D I "" C, D 2 , D 2"" E I , E 2 , E I ", and E 2", are n x n, n x m ,
n x II, n x 12, P x n, P x II> P X 12, q x n, q x m, r x nand r x m real
matrices. We seek a static output feedback controller u(t) = Ky(t) such that

(i) the closed-loop system

x(t) = Ax(t) + Dw(t) (23)

z(t) = Ex(t) (24)

where A ~ A + BKC is asymptotically stable, D ~ D I + BKD2 and
-I:.E = E I + E2KC;

(ii) the H 2 performance
J(K) ~ lim ~[zT(t)Z(t)] (25)

I~'"

is minimized; and

(iii) the closed-loop impulse response defined by (5) is bounded, where
- I:. - I:.D", = D l oo + BKD200 and E oo = E l oo + E 200KC.

Thus, an auxiliary minimization problem can be formulated as follows. Given
o > 0, minimize

;J(K) ~ J(K) + crf(K) (26)

In (26), f( K) is a non-negative function of the closed-loop gain K and is
included to penalize the maximum value of IIzoo(t)lb. Using Corollary 3.1 and
setting

(27)
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8 1302 Y. W. Wang and O. S. Bernstein

where 13k> k = 0, ... , n - 1, are positive numbers, we consider the following
modified linear quadratic optimization problem: minimize

:J(K) = trQR + crIIE.,II{~>kIIAAT - ATAII~]II15.,IIF (28)

subject to the closed-loop Lyapunov equation

0= AQ + QAT + V (29)

where V ~ 1515T and R ~ ETE. The number 13k will be chosen within the
optimization problem to represent the maximum value of l/k!(n3 - n/12)k/4 for
t ~ O. Also note that for convenience k/2 is replaced by k in the exponent of

II - -T -T-IIAA - A A F'

Theorem 4.1: Let K E'1Jtm x p be such that A is asymptotically stable and :J(K)
is minimized. Then there exist P, Q~ 0 satisfying

0= AQ + QAT + V
O=ATp+PA+R

such that K satisfies

0= EIEQCT + crIIE.,IIF["i:.
2

(k + 1)13k+IB\2AATA - A TA2
- A 2AT)CT

k=O

II - -T -T-Ilk 1]11- T - T- 1x AA - A A F- o.,IIF + crE 2.,E.,C IIE.,lli

x [~>kIIAAT - ATAII~]II15.,IIF

+ crIlE.,IIF[~>kIIAAT - ATAII~]BT15.,OI.,II15.,IIFI + BTpQCT

+ BTp150I (30)

Proof: The results follow from straightforward algebraic manipulation. 0

Now we consider dynamic compensation. With the controller

ie(t) = Aexe(t) + Bey(t) (31)

u(t) = Cexe(t) (32)

the closed-loop system (19)-(22), (31), (32) can be written as

[
i ( t ) ] = [ A BCe] [X(t)] + [ 0 1 ] w(t) + [ 0 1., ] W.,(t) (33)
ie(t) BeC A e xe(t) Be02 BeO 2.,

Thus, the auxiliary minimization problem for dynamic compensation can be
stated as follows: minimize

:J(Ae, Be, Ce) = trQR + crIIE""F[~:13kIIAAT - ATAII~]II15.,IIF (34)

subject to

0= AQ + QAT + V (35)
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A ~ [B~C ~eJ, 15 ~ [B~bJ, E ~ [E I EzCzl

R1 ~ ETE I, Rz ~ EIEz

R ~ [~l CJ~2CJ, Vz ~ D2DI, V ~ [~I BeSzBJJ

Q ~ [gtz ~~zJ

1500 ~ [B~b~J, E; ~ [E l oo EzooCel, Vzoo ~ DzooDIoo, Rzoo ~ EIooEzoo

Theorem 4.2: Let A e E 'Jtnxn, Be E 'Jtmxn and Ce E 'Jt nx p be such that A is
asymptotically stable and ,HAc, Be, Ce) is minimized. Then there exist

P ~ [ P~ P12J ~ 0 and Q ~ [ Q~ Q12J ~ 0
P 12 Pz Q12 Qz

such that A" B" C" P, Q satisfy

0= AQ + QAT + V
0= ATp + PA + R

0= pTzQ12 + PZQ2 + lYIIEooIIF[~:(k + 1){3k+I(epAe - Aeep + ABC - BeCAT)

xllAAT
- ATAII~-I]II15ooIIF

0= PZBeV2 + pT2QIC
T + pzQTzcT + lY11EooIIF[t:(k + 1){3k+l

x(epBeCCT + AACT - AeACT - BecncT)IIAAT - AT,4II~-I]II15ooIIF

+ lYIIEooIIF[~>kIIAAT - AT,4I1~]BeV2ooll15ooIIFl

0= R2CeQz + BTPIQ12 + BTP1ZQz + lYIIEooIIF[~:(k + l){3k+1

x(BTnBCe+ BTATA e - BTAAT - BTBceep)IIAA
T - AT,4II~-I]II15;"IIF

+ o'RzooCellE oo IIFI[~>kIIAAT - ATAII~] 111500 II~

where
/':, T T T CT T C Tep=BeCCBe+AcA c- cBBe-AeAc

A ~ BeCA T + AcCJBT - CJBTA - AJBeC
tt ~ AAT - ATA - CTBJBeC + BCeCJBT
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8 1304 Y. W. Wang and D. S. Bernstein

5. Numerical algorithm and illustrative examples
To compute the controller gains (A e, Be' Ce), we first rewrite the dynamic

compensation gains (A e, Be, Ce) as decentralized gains so that each gain in the
decentralized format is regarded as a static output feedback gain for an
equivalent problem (Wang and Bernstein 1993, Bernstein et al. 1989, Seinfeld et
al. 1991). We then use a standard quasi-Newton algorithm to perform the
optimization and thus obtain controller gains (A e, Be' Ce) . In the numerical
calculation, the LQG controller gains are used as the initial condition for the
numerical algorithm.

In the following we consider an example as a numerical illustration of
Theorem 4.2. Consider the F8 aircraft plant model in Gilbert and Tan (1991)
with disturbance and measurement noise

[-08 -0'0006 -12

-3~2] [ -19 -3 ]A = 0 -0·014 -16·64 -0·66 -0·5
-0·0001 -1·5 o ' B=

-0·51 -0'16
1 0 0 0 0 0

[-21
-0·6 0 n-0·3 -0·25 0 o, = [~ 0 0·1

~'2JD I = -0'1 -0·2 0 0 0
0 0 0

E, ~[l
0 0 nE,{l j]C = [~ 0 0

~J.
0 -1

0 -1 0 0
0 0

The state vector is x = [XI Xz x3 X4]T, where XI(t) =pitch rate in rad S-I,

xz(t) = forward velocity in ft S-I, X3(t) = angle of attack in radians, and
X4( t) = pitch angle in radians. The input vector is such that u = [ee eelT, where
ee is the elevator angle in radians and ef is the f1aperon angle in radians. The
measurements are YI(t) = Zl(t) = X4(t), pitch angle in radians, and
yz(t) = zz(t), flight path angle in radians. The performance variables Z3(t) and
Z4(t) are the weighted control signals.

In this model, our goal is to constrain the maximum response of the pitch
angle due to the _worst initial condition x(O), that is, to constrain
liz loo(t)lb = amax(i~oo eA1)llx(0)lb· Thus, we set

£100 = [0 0 0 1], £zoo = 0IXZ, D 100 = /4' D zoo = 02x4

Using the resulting LQG gains A p Be' Ce as the initializing gains, we applied
the BFGS quasi-Newton method to compute controller gains with (l' = 1 and
13k = (t~axlk!)(n3 - n/12)k/4, where n = 4 is the plant dimension, k = 0, ... ,3,
and t = tmax = 0·98 s is the time at which amax(i~ eAt) achieves its maximum
value over [0, '!') using the LQG gains. Figure 4 shows the maximum singular
value of e; eAt which corresponds to the worst case pitch angle Ilzloo(t)lb =
Ilx4(t)lb for all Ilx(O)lb satisfying Ilx(o)lb = 1. Note that the maximum excursion
of Ilx4(t)lb has been reduced by 42·55%. The closed-loop poles of the LQG
design are at {-2·772±j4·29, -1·1868±j3·464, -1·26, -0·2784, -0·0122,
-0·013}, whereas the modified design places the closed-loop poles at {-2'851 ±
j3·538, -1·1092 ± j4·2757, -1·3954, -0·0799 ± jO'1496, -0·012}. Finally, in Fig.
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Figure 4. Excursion of pitch angle Ilx4(t)lb due to the worst case initial condition x(O)
satisfying 1\x(O)lb = 1; modified design (solid curve) versus LQG design (dashed curve).

5 we compare the normalized Hz cost with the normalized L", cost of three
modified controllers,

6, Conclusions
We present a synthesis method to constrain the closed-loop impulse re­

sponse. A penalty cost is added to the standard LQG cost to obtain an auxiliary
optimization problem that constrains the closed-loop impulse response. This
auxiliary cost is an upper bound for the maximum singular value of the
closed-loop impulse response. We then applied the method to improve the
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Figure 5. Cost comparison between Hz cost and L~ cost for the LQG controller and three
modified controllers.
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closed-loop impulse response of the F8 fighter plane as measured by the L w

norm (5).
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