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c ontrol textbooks sometimes give the impression that 
amplification and phase shift are properties confined 
to asymptotically stable systems. For example, [1, 

p. 400] states that “Any system with a pole in the RHP is 
unstable; hence it would be impossible to determine its fre-
quency response experimentally because the system would 
never reach a steady-state sinusoidal response for a sinu-
soidal input.” This statement is correct in reference to an 
unstable plant operating in open loop but does not consider 
the case of an unstable plant operating inside a stabilized 
closed loop.

The goal of this article is to investigate whether or not 
an unstable plant in a stabilized closed loop has amplifica-
tion and phase shift in the sense of the harmonic steady-
state response of an asymptotically stable system. If this 
is indeed the case, then the “frequency response” of the 
unstable plant, which contributes to the Nyquist plot of the 
loop transfer function, can be viewed as having the same 
physical meaning as the frequency response of an asymp-
totically stable system. This is, perhaps, surprising since 
the same harmonic inputs to the plant without the benefit 
of the stabilizing loop would inevitably lead to an un-
bounded, and thus nonharmonic, response, regardless of 
how precisely the initial condition could be specified. The 
fact that an unstable plant operating inside a stabilized 
loop can exhibit the same kind of harmonic steady-state 
response as an asymptotically stable plant serves to em-
phasize the ”miracle” of feedback stabilization (see “The 
Miracle of Feedback Stabilization”). Moreover, this result 
may be useful for closed-loop identication of the frequency 
response of unstable systems.

AMpLIfICATION ANd phASE ShIfT Of 
ASYMpTOTICALLY STAbLE SYSTEMS
The following result characterizes the response of an 
asymptotically stable linear, time-invariant system to a 
harmonic input.

Theorem 1 [2]
For ,t 0$  consider the linear, time-invariant system

 
 

 ( ) ( ) ( ),x t Ax t Bu t= +o  (1)

 ( ) ( ),y t Cx t=  (2)

where A Rn n! #  is asymptotically stable, ,B Rn 1! #  
,C R n1! #  and ( )x 0  represents the initial state. Let ( )u t =

( ),Re sinu e A tt
u0 ~ z= +.~  where u0 _  ,A e Cu. !- .z  and 

,Au  ,z  and ~  are real numbers. Then,

 ( ) ( ) ( ),y t y t y ttrans hss= +  (3)

where

 
( ) ( ( )

( ) ),Re
y t Ce x

I A Bu

0trans
tA

1
0.

_

~- - -6 @  
(4)

 ( ) ( ),siny t MA thss u_ ~ z i+ +

 | ( )|, ( ),M G G. .+_ _~ i ~

and 
 ( ) ( ) .G s C sI A B1_ - -  (5)

The signals ytrans  and yhss  are the transient and har-
monic steady-state components of the output, respectively. 
It follows from (5) that yhss  is a harmonic signal with the 
same frequency as .u  Moreover, | ( )|G .~  is the amplification 
of yhss  relative to ,u  and ( )G .+ ~  is the phase shift of yhss

relative to .u  The plot of | ( )|G .~  and ( )G .+ ~  versus ~  is 
the Bode plot.

It follows from (4) that

 ( )lim y t 0trans
t

=
"3

 (6)

and
 ( ) ( ) .lim y t y t 0hss

t
- =

"3
6 @  (7)

If, in addition,

 ( ) ( ) ,Rex I A Bu0 1
0.~= - -6 @  (8)

then ( )y t 0trans =  for all ,t 0$  and thus ( ) ( )y t y thss=  for all 
.t 0$  If A is not asymptotically stable, then ytrans  may not 

converge to zero.
Figure 1 illustrates the relationship between the phase 

shift ( )G .+ ~  and the input–output map formed by plot-
ting the normalized amplitudes /MA y1 hssu^ h  and / .A u1 u^ h  
As shown in Figure 1, the input–output map may be a line 
segment, a circle, or an ellipse. The phase angle ( )G .+ ~  
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the Miracle of Feedback stabilization

s tabilization is explained in various ways, for example, in 

terms of pole movement or Lyapunov functions. However, 

these mathematical explanations tend to overlook the fact 

that stabilization requires very special inputs to drive the state 

of a system to zero. 

To explain this point of view, first consider an unstable plant 

operating inside a stabilizing closed loop. We then record the 

state at a given time, which serves as the initial condition, along 

with the subsequent sequence of inputs. This sequence of in-

puts is then applied to the plant with the recorded initial condi-

tion to determine whether the open-loop plant response matches 

the response of the plant inside the closed loop. A discrete-time 

feedback system is used to avoid discretization errors that may 

arise due to sampling continuous-time signals.

Example S1

Consider the closed-loop system consisting of the discrete-

time unstable plant

 ( ) ( . ) ( . ) ,G z z z1 1 0 5
1=

- -
 (S1)

the discrete-time controller

 ( ) .
. . ,C z z

z
0 3

0 6 0 4=
-
-  (S2)

and unity feedback. The closed-loop system is asymptotically 

stable with closed-loop poles . , . . .0 7269 0 5866 0 6582! .  For 

( ) ( . ),sinr k k0 01=  simulate the closed-loop system and record 

the input of G for k0 1000# #  steps. Figure S1 shows the in-

put and the output of G for this case, defined as u1  and ,y1  

respectively. Then rerun the exact same simulation, where the 

plant is in closed loop, using the recorded sequence of inputs 

for k0 400# # steps. At k 400=  steps. The simulation is fro-

zen, and the internal state of G is recorded. The recorded se-

quence of inputs is then applied to the plant in open loop for 

k400 1000# #  given the recorded initial condition. Figure S1 

shows the input and output of G for this case defined as u2  and 

,y2  respectively, where y2  diverges quickly after k 400=  steps.

Despite this attempt to reapply the same sequence of in-

puts from the same initial condition, the open-loop response 

of the plant is unbounded. This example shows that feedback 

stabilization is indeed quite remarkable—if not miraculous. Y
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Figure S1 Plots of the input u1  and output y1  of the closed-loop 
system consisting of (S1) and (S2), where ( ) ( . ),sinr k k0 01=  

k0 1000# #  steps. The ( )u k1  is recorded for k0 1000# #  
steps and the exact same simulation rerun using the record-
ed sequence of inputs for k0 400# #  steps. At time k 400=  
steps, the simulation is frozen and the internal state of G re-
corded. Then, the recorded sequence of inputs is applied to 
the plant in open loop for k400 1000# #  steps given the re-
corded initial condition. The input u2  and output y2  for this 
latter case are shown. Note that despite the attempt to reapply 
the same sequence of inputs from the same initial condition, 
y2  diverges quickly after k 400=  steps.

can be determined from the input–output maps shown in 
Figure 1 by using the slope of the semimajor axis of the 
ellipse or the line segment, which can be either 1 or –1, the 
orientation of the plot, and the eccentricity of the ellipse. 
For details, see “Harmonic Steady-State Phase Shift and 
the Eccentricity of Ellipsoidal Input–Output Maps.”

In the special case where the input–output map is a line 
segment, ( )G .+ ~  is zero if the slope of the line segment 
is 1 and 180˚ if the slope of the line segment is –1. If the 
input–output map is a circle, then ( )G .+ ~  is 90˚ if the ori-
entation is clockwise and –90˚ if the orientation is coun-
terclockwise. If the input–output map is an ellipse, then 
the slope of the semimajor axis of the ellipse, the orien-
tation of the plot, and the eccentricity of the ellipse are 
needed to determine ( ) .G .+ ~  Note that, if the slope of 
the semimajor axis of the ellipse is one, then ( )G .+ !~

, ,90 90 c-^ h  whereas, if the slope of the semimajor axis of 

the ellipse is –1, then, either ( ) ,G 180 90. c+ !~ - -^ h  or 
( ) ,G 90 180. c+ !~ ^ h . Moreover, if the orientation of the 

input–output map is clockwise, then ( ) ,G 0 180. c+ !~ ^ h
where, if the orientation of the input–output map is coun-
terclockwise, then ( ) ,G 180 0. c+ !~ -^ h . The input–output 
map in each subplot in Figure 1 is a Lissajous figure [3].

The following example illustrates Theorem 1.

Example 1
Consider the asymptotically stable plant

 ( )G s s 1
1=
+

 (9)

with ( ) ( ) .sinu t t3=  It follows from (5) that

 
( ) | ( ) | ( ( ))

,

sin

sin

y t G t G

t

3 1 1

2
3

4

hss . .+
r

= +

= -` j  
(10)
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where | ( )| /G 1 1 2. =  and ( )G 1.+ = / .4r-  Consider the 
state space realization of (9) given by

 , , .A B C1 1 1=- = =  (11)

Figure 2 shows that y yhss-  converges to zero for the 
nonzero initial condition ( ) .x 0 5=  Figure 3 shows that 
the amplification of yhss  relative to u  is | ( )| / ,G 1 1 2. =  
while the phase shift of yhss  relative to u  is ( ) .G 1 45. c+ =-  
Figure 4 shows that the phase shift of yhss  relative to u  

determines the slope of the semimajor axis of the ellipse, 
the eccentricity of the ellipse, and the orientation of the 
input–output map. Y

Example 2
Consider the semistable plant [4]

 ( ) ( ) ,G s s s 1
1=
+

 (12)

Harmonic steady-state Phase shift and the eccentricity of ellipsoidal Input–output Maps

t he input–output map formed by plotting the normalized sinu-

soidal input versus the normalized harmonic steady-state 

output of a linear time-invariant system may be a line segment, 

a circle, or an ellipse (see Figure 1). The phase shift associated 

with a line segment is zero if the slope of the line segment one and 

180˚ if the slope of the line segment is one. The phase shift asso-

ciated with a circle is 90˚ if the orientation of the plot is clockwise 

and –90˚ if the orientation of the plot is counterclockwise. If the 

input–output map is an ellipse, the slope of the semimajor axis of 

the ellipse and the orientation of the plot determine the quadrant 

in which the relative phase shift lies, but the value of the relative 

phase shift is determined by the eccentricity of the ellipse.

Let ( )sin t~  be the normalized input and ( )sin t~ i+  be the 

normalized harmonic steady-state output of a linear time-in-

variant system, where ( , ]180 180!i -  is the phase shift. Note 

that

 

( ) ( ( ) ( ))
( ) ( )

( ) ( )
( ) ( ( ))

( ) ( )
( ) ( )

( ) ( )

sin cos sin sin cos
cos sin sin cos

cos sin sin cos
cos sin sin sin

cos sin sin cos
cos sin sin sin

cos sin sin cos

t t t
t t

t t
t t

t t
t

t t

2
1

2

2

2 2

2 2 2 2

2 2 2 2

2 2 2 2

~ i i ~ i ~

i ~ i ~

i i ~ ~

i ~ i ~

i i ~ ~

i i ~ i

i i ~ ~

+ = +

= +

+

= + -

+

= - +

+

 

(S3)

and

 

( ) ( ) ( ) ( ( )

( ))

( )

( ) ( ) .

cos sin sin cos sin cos sin

sin cos

cos sin

cos sin sin cos

t t t t

t

t

t t

2 2

i ~ ~ i i ~ i ~

i ~

i ~

i i ~ ~

+ =

+

=

+

 

(S4)

Rewriting (S4) as

 
( ) ( ) ( ) ( )

( ),

cos sin sin cos cos sin sin

cos sin

t t t t

t2 2

i i ~ ~ i ~ ~ i

i ~

= +

-
 

(S5)

and substituting (S5) in (S3) yields

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( ) .

sin cos sin sin

sin cos sin sin

cos sin

sin cos sin sin sin

t t

t t

t

t t t

2

2

2

2 2 2 2

2

2 2

2 2

~ i i i ~

i i ~ ~ i

i ~

~ i ~ ~ i i

+ = -

+ + +

-

=- + + +
 (S6)

The input–output map of ( )sin t~  and ( )sin t~ i+  is thus rep-

resented by

 
( ) ( ) ( )

( ) ,

sin cos sin sin

sin sin

t t t

t

2

0

2

2 2

~ i ~ ~ i

~ i i

- +

+ + - =
 

(S7)

which is an ellipse equation of the form

 ,ax bxy cy dx fy g 02 2+ + + + + =  (S8)

where ( ),sinx t_ ~  ( ),siny t_ ~ i+  ,a c 1= =  ,cosb 2 i=-

,d f 0= =  and .sing 2i=-  The eccentricity of (S8) is given 

by [S1]

 
( ) ( )

( )
,e

a c a c b

a c b2
2 2

2 2

h
=

+ + - +

- +  (S9)

where

 

/
/

/

/

/
/

( )
( )

.

sign

sign

sign

det

det cos
cos

sin
sin

a
b
d

b
c
f

d
f
g

2
2

2

2

2
2

1

0
1
0

0
0

1

2

4

h

i

i

i

i

=-

=- -

-

-

=- -

=

>

>

H

H 

(S10)

Hence, (S9) implies that

 | |
| | .cos
cose 1

2
i
i=

+
 (S11)

Therefore,

 | | .cos
e

e
2 2

2

i =
-

 (S12)

If the input–output map is a circle, then e 0=  and (S12) implies 

that 90i = ˚  or 90i =- ˚ . If the input–output map is a line seg-

ment, then e 1=  and (S12) implies that 0i = ˚ or 180 .̊

REfERENCE
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org/wiki/Eccentricity_(mathematics)
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with ( ) ( )sinu t t3=  and ( ) .x 0 0=  Figure 5 shows that ytrans  
does not converge to zero with ( )x 0 0=  due to the transient 
component of ,y  which does not converge to zero. However, 
consider the state-space realization of (12) given by

 , , .A B C
1

1
0
0

1
0 0 1=

-
= =; ; 6E E @  (13)

Figure 2 Output y  and harmonic steady-state output yhss  for Ex-
ample 1, where the plant (9) is asymptotically stable with the non-
zero initial condition .x 0 5=^ h  Note that y  tends to .yhss
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Figure 3 Input ( ) ( )sinu t t3=  and harmonic steady-state output 
yhss  for Example 1, where the plant (9) is asymptotically stable. The 
amplification of yhss  relative to u  is | ( ) | / ,G 1 1 2. =  while the phase 
shift of yhss  relative to u  is ( ) .G 1 45. c+ =-

Figure 4 The normalized harmonic steady-state output ( / )MA y1 hssu  
versus normalized input ( / )A u1 u  for Example 1, where M 2=  and 

.A 3u =  This input–output map is an ellipse due to the fact that 
( / )A u1 u  and ( / )MA y1 hssu  are sinusoids with the same frequency. 
Note that the slope of the semimajor axis of the ellipse is one, and 
the orientation of the plot is counterclockwise, which indicates that 
the phase shift of yhss  relative to u  is in (–90, 0) .̊ The eccentricity 
of the ellipse is / .e 2 1 2= +^ h  Therefore, (S12) implies that the 
phase shift of yhss  relative to u  is –45 .̊
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Figure 5 Output y  and harmonic steady-state output yhss  for Ex-
ample 2, where the plant (12) is semistable with zero initial conditions 
(solid blue). For this example, y  does not tend to yhss  because (12) 
has a pole at the origin, which is responsible for the constant offset. 
Moreover, note that the output corresponding to the nonzero initial 
condition ( ) . .x 0 1 5 1 5 T= - -6 @  (dashed green) is identical to .yhss
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Figure 1 The relationship between the phase shift angle 
( )G .+i ~=  in degrees and the input–output map for asymptoti-

cally stable linear systems, where the amplitude of the input and the 
output are normalized. The arrows indicate the orientation of the 
input–output maps.
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Then, in accordance with (8), if ( ) [ . . ] ,x 0 1 5 1 5 T= - -  
then ( )y t 0trans =  for all .t 0$  Figure 6 shows that the ampli-
fication of yhss  relative to u  is | ( ) | / ,G 1 1 2. =  while the 
phase shift of yhss  relative to u  is ( ) .G 1 135. c+ =-  Figure 7 
shows the input–output map of (12). Y

Example 3
Consider the Lyapunov-stable undamped oscillator

 ( ) ,G s
s 4

1
2=
+

 (14)

with ( ) ( )sinu t t3=  and ( ) .x 0 0=  Figure 8 shows that y yhss-  
does not converge to zero due to the transient component of 

,y  which does not converge to zero. Figure 9 shows that the 
amplification of yhss  relative to u is | ( )| / ,G 1 1 3. =  while the 
phase shift of yhss  relative to u is ( ) .G 1 0.+ =  Figure 10 shows 
the input–output map of (14). Y

Example 4
Consider the linearly unstable rigid-body plant

 ( ) ,G s
s
1

2=  (15)

Figure 6 Input ( ) ( )sinu t t3=  and harmonic steady-state output yhss  
for Example 2, where the plant (12) is semistable. The amplification 
of yhss  relative to u  is | ( ) | / ,G 1 1 2. =  while the phase shift of yhss  
relative to u  is ( )G 1 135.+ =- .̊
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Figure 7 The normalized harmonic steady-state output /MA y1 hssu^ h
versus normalized input /A u1 u^ h  for Example 2, where /M 1 2=

and .A 3u =  Note that the slope of the semimajor axis of the ellipse 
is –1 and the orientation of the plot is counterclockwise, which in-
dicates that the phase shift of yhss  relative to u  is in (–180, –90) .̊ 
The eccentricity of the ellipse is / .e 2 1 2= +^ h  Therefore, (S12) 
implies that the phase shift of yhss  relative to u  is –135 .̊
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Figure 8 Output y  and harmonic steady-state output yhss  for Ex-
ample 3, where the plant (14) is Lyapunov stable with zero initial 
conditions. The plant has two poles at the imaginary axis and thus 
y  does not tend to .yhss
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Figure 9 Input ( ) ( )sinu t t3=  and harmonic steady-state output 
yhss  for Example 3, where the plant (14) is Lyapunov stable. The 
amplification of yhss  relative to u  is | ( ) | / ,G 1 1 3. =  while the phase 
shift of yhss  relative to u  is ( ) .G 1 0. c+ =  
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with ( ) ( )sinu t t3=  and ( ) .x 0 0=  Figure 11 shows that y yhss-  
does not converge to zero due to the unbounded transient 
component of ,y  which does not converge to zero. Figure 12 
shows that the amplification of yhss  relative to u is | ( )| ,G 1 1. =  
while the phase shift of yhss  relative to u is ( ) .G 1 180. c+ =  
Figure 13 shows the input–output map of (15).  Y

Example 5
Consider the exponentially unstable plant

 ( ) ( . ) ( ) ,G s s s
s

0 5 1
2 1=
+ -
+  (16)

with ( ) ( )sinu t t2=  and ( ) .x 0 0=  Figure 14 shows that 
y yhss-  does not converge to zero due to the unbounded 
transient component of .y  Y

AMpLIfICATION ANd phASE  
ShIfT Of UNSTAbLE SYSTEMS
Consider the block diagram in Figure 15, where C  is 
the controller and the plant G  is unstable. We assume 
that unstable pole-zero cancellation between C  and G  
does not occur, and the closed-loop system is asymp-
totically stable. The command r  is sinusoidal, er  is the 
error, u  is the control signal, and y  is the output of the 
closed-loop system. Moreover, let ( ),r st  ( ),e srt  ( ),u st  and 

( )y st  represent the Laplace transforms of ,r  ,er  ,u  and 
,y  respectively.

Next, define the asymptotically stable transfer functions

 ( ) ( ) ( )
( ) ( )

( )
( )

L s C s G s
C s G s

r s
y s

1,y r _
+

= t
t

 (17)

and

 ( ) ( ) ( )
( )

( )
( )

.L s C s G s
C s

r s
u s

1,u r _
+

= t
t

 (18)

Letting ( ) ( ),sinr t A tr ~=  Theorem 1 with (17) and (18) 
implies

 
( ) | ( )|

( ( ))sin
y t A L

t L
,

,

hss r y r

y r

.

.+

~

~ ~

=

+
 

(19)

and

 
( ) | ( )|

( ( )) .sin
u t A L

t L
,

,

hss r u r

u r

.

.+

~

~ ~

=

+
 

(20)
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Figure 10 Normalized harmonic steady-state output / MA y1 hssu^ h  
versus normalized input / A u1 u^ h  for Example 3, where /M 1 3=  
and .A 3u =  This input–output map is a line segment due to the 
fact that u  and yhss  are sinusoids with the same frequency and with 
zero relative phase shift.
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Figure 12 Input ( ) ( )sinu t t3=  and harmonic steady-state output 
yhss  for Example 4, where the plant (14) is linearly unstable. The 
amplification of yhss  relative to u  is | ( ) | ,G 1 1. =  while the phase 
shift of yhss  relative to u  is ( ) .G 1 180. c+ =
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Figure 11 Output y  and harmonic steady-state output yhss  for Ex-
ample 4, where the plant (15) is linearly unstable with zero initial 
conditions. For this example, y  does not tend to yhss  because the 
plant has two poles at the origin.
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Letting ( )yA hss  and ( )uA hss  denote the amplitudes of yhss  
and ,uhss  respectively, it follows from (19) and (20) that

 ( ) | ( )| ,y A LA ,hss r y r .~=  (21)

 ( ) | ( )|.u A LA ,hss r u r .~=  (22)

Dividing (21) by (22) and using (17) and (18) yields, for all 
,R!~

 ( )
( )

| ( )|
| ( )|

| ( ) ( )|
| ( )|

| ( ) ( )|
| ( ) ( )|

| ( )| ,

u
y
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C G
C G

G
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1

A
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,

,
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r u r

r y r

.

.

. .

.

. .

. .

.

~

~

~ ~

~

~ ~

~ ~

~

=

=

+

+

=

 

(23)

which shows that | ( )|G .~  is the amplification of yhss  rela-
tive to .uhss  Moreover, it follows from (19) and (20) that the 
phase shift of yhss  relative to uhss  is
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The amplification and phase shift of the plant are proper-
ties of the plant and are independent of the controller and 
the rate of convergence to harmonic steady state.

Example 6
Consider the exponentially unstable transfer function

 ( ) ( . ) ( )G s s s
s

0 5 1
2 1=
+ -
+  (25)

with the lead controller

 ( )C s s
s

10
8=

+
+  (26)

and the command ( ) ( ) .sinr t t2=  It follows that

 ( )L s
s s

s
11 6

2 16
,y r 2=

+ +
+  (27)

and

 ( )L s
s s
s s

11 6
7 8

,u r 2

2
=

+ +
+ -  (28)

are asymptotically stable. Consider the state-space realiza-
tion of (27) given by
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Figure 16 shows that y yhss-  converges to zero for the 
asymptotically stable plant (27) with the nonzero initial 
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Figure 14 Output y  and harmonic steady-state output yhss  for Ex-
ample 5, where the plant (16) is exponentially unstable with zero 
initial conditions. For this example, y  does not tend to yhss  because 
(16) has an unstable pole.
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Figure 15 A closed-loop control system with controller C  and plant 
.G  The G is unstable, and the closed-loop system is assumed to be 

asymptotically stable.
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Figure 13 The normalized harmonic steady-state output /MA y1 hssu^ h
versus normalized input /A u1 u^ h  for Example 4, where M 1=  and 

.A 3u =  This input–output map is a line segment due to the fact that 
u  and yhss  are sinusoids with the same frequency and with 180˚ 
phase shift.
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condition ( ) [ . . ] .x 0 0 5 0 1 T=  Consider the state-space real-
ization of (28) given by
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(30)

Figure 17 shows that u uhss-  converges to zero for the 
asymptotically stable plant (28) with the nonzero initial 
condition ( ) [ . . ] .x 0 0 5 0 1 T=  Figure 18 shows that the am-
plification of yhss  relative to uhss  is | ( )| ,G 1 2. =  while 
the phase shift of yhss  relative to uhss  is ( ) .G 1 135. c+ =-  
The input–output map of (25) is shown in Figure 19, and 
the Bode plots of (25) and (26) are in Figure 20. Note from 
Figure 20 that | ( )|G 1 2. =  and ( ) .G 1 135. c+ =-  Fig-
ure 21 shows the Bode plot of the closed-loop transfer 
function (27). Both the frequency response of the un-

stable plant and the frequency response of the  
controller shown in Figure 20 contribute to the frequency 
response of the closed-loop transfer function (27). In par-
ticular, (17) indicates that | ( )|L ,y r .~ = | ( )|| ( )| /C G. .~ ~^ h

C1+^ ( ) ( )G. .~ ~ h a n d ( ) ( )L C,y r . .+ +~ ~= ( )G .+ ~+

( ( ) ( )) .C G1 . .+ ~ ~- +  Y
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Figure 17 Input u  and harmonic steady-state input uhss  given 
by the asymptotically stable closed-loop transfer function (28) in 
Example 6 with the realization (30) and nonzero initial condition

( ) [ . . ] .x 0 0 5 0 1 T=  Note that, since (28) is asymptotically stable, u  
tends to uhss .
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Figure 18 Harmonic steady-state input uhss  and harmonic steady-
state output yhss  for Example 6. The amplification of yhss  relative to 
uhss  is | ( ) | ,G 1 2. =  while the phase shift of yhss  relative to uhss  is 

( ) .G 1 135. c+ =-  
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Figure 19 The normalized harmonic steady-state output 
/ ( ( ))y y1 A hss hss  versus the normalized harmonic steady-state in-

put / ( ( ))u u1 A hss hss  for Example 6, where ( ) .y 1 8872A hss .  and 
( ) . .y 2 6689A hss .  This input–output map is an ellipse due to the 

fact that uhss  and yhss  are sinusoids with the same frequency. 
Note that the slope of the semimajor axis of the ellipse is  –1, and 
the orientation of the plot is counterclockwise, which indicates 
that the phase shift of yhss  relative to u  is in (–180, –90) .̊ The 
eccentricity of the ellipse is / ( ) .e 2 1 2= +  Therefore, (S12) 
implies that the phase shift of yhss  relative to u  is  –135 .̊ 
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Figure 16 Output y  and harmonic steady-state output yhss  for 
the asymptotically stable closed-loop transfer function (27) in Ex-
ample 6 with the realization (29) and nonzero initial condition 

( ) [ . . ] .x 0 0 5 0 1 T=  Note that, since (27) is asymptotically stable, y  
tends to yhss .
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Example 7
Consider the linearly unstable rigid-body plant (15) with 
proportion-integral-derivative controller

 ( )C s s s2 1= + +  (31)

and the command ( ) ( ) .sinr t t=  It follows that

 ( )L s
s s s

s s
2 1

2 1
,y r 3 2

2
=

+ + +
+ +  (32)

and

 ( )
( )

L s
s s s
s s s

2 1
2 1

,u r 3 2

2 2

=
+ + +

+ +
 (33)

are asymptotically stable. Figure 22 shows that y yhss-  con-
verges to zero for the asymptotically stable transfer function 
(32) where the initial conditions of the plant and the control-
ler are zero. Figure 23 shows that u uhss-  converges to zero 
for the asymptotically stable transfer function (33) where 
the initial conditions of the plant and the controller are zero. 
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Figure 23 Input u  and harmonic steady-state input uhss  given by 
the asymptotically stable transfer function (33) in Example 7, where 
the initial conditions of the plant and the controller are zero. Note 
that, since (33) is asymptotically stable, u  tends to .uhss
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Figure 21 A Bode plot for the closed-loop transfer function (27) 
in Example 6. The frequency response of the unstable plant 
and the frequency response of the controller, both of which are 
shown in Figure 20, contribute to the frequency response of the 
closed-loop transfer function (27). In particular, (17) indicates 
that | ( ) | (| ( ) | | ( ) |) / (| ( ) ( ) |)L C G C G1,y r . . . . .~ ~ ~ ~ ~= +  and 

( ) ( ) ( ) ( ( ) ( )) .L C G C G1,y r . . . . .+ + + +~ ~ ~ ~ ~= + - +
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Figure 22 Output y  and harmonic steady-state output yhss  for the 
asymptotically stable transfer function (32) in Example 7, where the 
initial conditions of the plant and the controller are zero. Note that, 
since (32) is asymptotically stable, y  tends to .yhss
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Figure 20 Bode plots for (25) and (26) in Example 6. The ampli-
fication of yhss  relative to uhss  at 1~ =  rad/s, both of which are 
shown in Figure 18, is | ( ) | ,G 1 2. =  which is approximately 3.01 
dB as shown by the magnitude Bode plot. Moreover, the phase 
shift of yhss  relative to uhss  at 1~ =  rad/s, both of which are shown 
in Figure 18, is ( )G 1 135. c+ =-  as shown by the phase Bode plot.
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Figure 24 shows that the amplification of yhss  relative to uhss  
is | ( )| ,G 1 1. =  while the phase shift of yhss  relative to uhss  
is ( ) .G 1 180. c+ =  The input–output map of (15) is shown 
in Figure 25 and the Bode plots of (15) and (31) in Figure 26. 
Note from Figure 26 that | ( )|G 1 1. =  and ( ) .G 1 180. c+ =  Fig-
ure 27 shows the Bode plot of the closed-loop transfer func-
tion (32). Both the frequency response of the unstable plant 
and the frequency response of the controller shown in Fig-
ure 26 contribute to the frequency response of the closed-
loop transfer function (32). In particular, (17) indicates 
that | ( )| | ( )|| ( )| /L C G,y r . . .~ ~ ~=^ h | ( ) ( )|C G1 . .~ ~+^ h and 

( )L ,y r .+ ~ = ( ) ( ) ( ( ) ( )) .C G C G1. . . .+ + +~ ~ ~ ~+ - +   Y
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Figure 26 Bode plots for (15) and (31) in Example 7. The amplifica-
tion of yhss  relative to uhss  at 1~ =  rad/s, both of which are shown 
in Figure 24, is | ( ) | ,G 1 1. =  which is equivalent to 0 dB as shown 
by the magnitude Bode plot. Moreover, the phase shift of yhss  rela-
tive to uhss  at 1~ =  rad/s, both of which are shown in Figure 18, is 

( )G 1 180. c+ =  as shown by the phase Bode plot.

-0.6

-0.8

-1
-1 -0.5 0.5 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y h
ss

 (
t)

1

A
(y

hs
s)

uhss(t)
1

A(uhss)

Figure 25 The normalized harmonic steady-state output / (1 A  
( ))y yhss hss  versus the normalized harmonic steady-state input / (1 A
( ))u uhss hss  for Example 7, where ( )y 2A hss =  and ( ) .u 2A hss =  This 
input–output map is a line segment due to the fact that uhss  and yhss  
are sinusoids with the same frequency and 180˚ phase shift.
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Figure 27 The Bode plot for the closed-loop transfer function 
(32) in Example 7. The frequency response of the unstable plant 
and the frequency response of the controller, both of which are 
shown in Figure 26, contribute to the frequency response of the 
closed-loop transfer function (32). In particular, (17) indicates 
that | ( ) | (| ( ) | | ( ) | / (| ( ) ( ) |))L C G C G1,y r . . . . .~ ~ ~ ~ ~= +  and 

( ) ( ) ( ) ( ( ) ( )) .L C G C G1,y r . . . . .+ + + +~ ~ ~ ~ ~= + - +

(continued on page 141)
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Figure 24 The harmonic steady-state input uhss  and the harmonic 
steady-state output yhss  for Example 7. The amplification of yhss  
relative to uhss  is | ( ) | ,G 1 1. =  while the phase shift of yhss  relative 
to uhss  is ( ) .G 1 180. c+ =
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the goal of this article is to investigate whether 

or not an unstable plant in a stabilized closed 

loop has amplification and phase shift in the 

sense of the harmonic steady-state response of 

an asymptotically stable system.


