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a b s t r a c t

Transmissibilities are widely used in engineering to express the relationship between sets of signals
that are not necessarily inputs and outputs in the usual causal sense. Despite their usefulness, a
rigorous intellectual framework for transmissibilities has been lacking. In this paper we demonstrate
that behavioral equations provide a suitable framework for time-domain transmissibilities by choosing
the latent variables in the behavioral equations to be the external signals that drive the system. This
connection provides a theoretical foundation for time-domain transmissibilities and demonstrates the
relevance of behavioral modeling to an important class of applications.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Unlike traditional input–output modeling techniques, behav-
iors can be used to interconnect models without assigning the at-
tributes of ‘‘input’’ or ‘‘output’’ (Markovsky, Willems, van Huffel,
& de Moor, 2008; Polderman & Willems, 1998; Willems, 2007).
Just as behaviors do not distinguish between inputs and outputs,
the same can be said for transmissibilities. Transmissibilities are
widely used in engineering to express the relationship between
sets of signals that are not necessarily inputs and outputs in the
usual causal sense (Chesné & Deraemaeker, 2013; Devriendt &
Guillaume, 2008; Gajdatsy, Janssens, Desmet, & Van Der Auweraer,
2010; Hrovat, 1997; Johnson & Adams, 2002;Maia, Silva, & Ribeiro,
2001; Urgueira, Almeida, & Maia, 2011; Weijtjens, De Sitter, De-
vriendt, & Guillaume, 2014; Zhang, Pintelon, & Schoukens, 2013).
A transmissibility operator is thus not a transfer function, and it
does not have a state space realization with physically meaningful
states. Despite their usefulness, a rigorous intellectual framework
for transmissibilities has been lacking. In practice, transmissibili-
ties are usually constructed in the frequency domain. The focus of
the present paper is on time-domain transmissibilities.

Behavioral equations involve manifest and latent variables,
where the latent variables can be eliminated to obtain a behavioral
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equation that involves only the manifest variables. On the other
hand, the derivation of a transmissibility is predicated on the
elimination of an external driving signal so that the resulting
model involves only response variables (Aljanaideh & Bernstein,
2015). These observations suggest that there may be a connection
between behavioral equations and transmissibilities.

The goal of this note is to demonstrate that behavioral equations
provide a suitable framework for transmissibilities by choosing
the latent variables in the behavioral equations to be the external
signals that drive the system. This is done by applying Theorem
6.2.6 of Polderman and Willems (1998), and obtaining an explicit
expression for the polynomial matrix that eliminates the latent
variables. The main result shows that the cancellation of an
external input within the context of transmissibility operators
corresponds to the elimination of a latent variable in the
behavioral setting. We illustrate this relationship by deriving
transmissibilities for a spring–mass system that was previously
analyzed in terms of behaviors.

2. Transmissibility Operators

Consider the multi-input, multi-output system

ẋ(t) = Ax(t) + Bu(t), (1)
x(0) = x0, (2)
y(t) = Cx(t) + Du(t) ∈ Rp, (3)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. Multiplying
(3) by det(pIn − A), where p △

= d/dt , yields the differential
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equation

det(pIn − A)y(t)
= C det(pIn − A)Inx(t) + D det(pIn − A)u(t)
= Cadj(pIn − A)(pIn − A)x(t) + D det(pIn − A)u(t)
= Cadj(pIn − A)(ẋ(t) − Ax(t)) + D det(pIn − A)u(t)
= [Cadj(pIn − A)B + D det(pIn − A)]u(t). (4)

Defining

δ(p)
△
= det(pI − A) ∈ R[p], (5)

Γ (p)
△
= Cadj(pI − A)B + Dδ(p) ∈ Rp×m

[p], (6)

(4) can be written as

δ(p)y(t) = Γ (p)u(t). (7)

Next, define

yi(t)
△
= Cix(t) + Diu(t) ∈ Rm, (8)

yo(t)
△
= Cox(t) + Dou(t) ∈ Rp−m, (9)

where Ci ∈ Rm×n, Co ∈ R(p−m)×n, Di ∈ Rm×m, Do ∈ R(p−m)×m,
and

y =


yi
yo


, C =


Ci
Co


, D =


Di
Do


. (10)

Hence,

Γ =


Γi
Γo


, (11)

where

Γi(p)
△
= Ciadj(pI − A)B + Diδ(p) ∈ Rm×m

[p], (12)

Γo(p)
△
= Coadj(pI − A)B + Doδ(p) ∈ R(p−m)×m

[p]. (13)

Using (10) and (11), we can write (7) as

δ(p)yi = Γi(p)u, (14)
δ(p)yo = Γo(p)u. (15)

Multiplying (14) by adjΓi(p) yields

δ(p) adjΓi(p)yi = [adjΓi(p)]Γi(p)u = detΓi(p)u. (16)

Next, multiplying (15) by detΓi(p) yields

[detΓi(p)] δ(p)yo = [detΓi(p)]Γo(p)u. (17)

Substituting the left hand side of (16) into (17) yields

δ(p) detΓi(p)yo = δ(p)Γo(p) adjΓi(p)yi. (18)

As shown in Aljanaideh and Bernstein (2015), the common factor
δ(p) in (18) can be canceled without excluding any solutions of
(18). Therefore, (18) can be written as

detΓi(p)yo = Γo(p)adjΓi(p)yi. (19)

Definition 1. Assume that Γi(p) is nonsingular. Then, the trans-
missibility operator from yi to yo is defined by

T (p)
△
= Γo(p)Γi

−1(p). (20)

Using (20), (19) can be written as

yo = T (p)yi. (21)
If yi and yo are scalar, then (19) becomes

Γi(p)yo = Γo(p)yi, (22)

and the transmissibility operator (20) is written as

T (p) =
Γo(p)

Γi(p)
. (23)

3. Behaviors

Definition 2 (Polderman & Willems, 1998, pp. 8,15). A linear
dynamical system S is the triple S = (T, W, B), where T ⊂ R is
the time set, the vector spaceW is the signal space, and the behavior
B is a subspace of WT.

Behavioral equations may contain both manifest variables w
and latent variables ℓ.

Definition 3 (Polderman & Willems, 1998, p. 7). A mathematical
model with latent variables of a dynamical system S = (T, W, B)
is defined as a triple (Wm, Wℓ, Bf) with Wm the vector space of
manifest variables, Wℓ the vector space of latent variables, W =

Wm × Wℓ, and Bf ⊆ WT is the full behavior. The manifest math-
ematical model (Wm, B) is defined by B

△
= {u : T → Wm|∃ℓ :

T → Wℓ such that (u, ℓ) ∈ Brmf }; B is the behavior and
(Wm, Wℓ, Bf) is a latent variable representation of (Wm, B).

The following theorem concerns the elimination of latent
variables from behavioral equations (Polderman & Willems,
1998, pp. 206–207).

Let R+ denote the nonnegative real numbers.

Theorem 1. Consider the dynamical system S = (R+, Rq
× Rd, B)

with B = {w : R+
→ Rq

|∃ ℓ : R+
→ Rd such that R(p)w(t) =

M(p)ℓ(t)}, R(p) ∈ Rg×q
[p], and M(p) ∈ Rg×d

[p]. Then, there exists
a unimodular matrix U(p) ∈ Rg×g

[p] such that

U(p)M(p) =


0(g−nP )×d
P(p)


, (24)

U(p)R(p) =


Q (p)
S(p)


, (25)

where P(p) ∈ RnP×d has full row rank, Q (p) ∈ RnQ ×q, and S(p) ∈

R(g−nQ )×q. Furthermore,

Q (p)w(t) = 0. (26)

Note that the behavioral equation (26) involves only the
manifest variables.

4. Relationship between behavioral equations and transmissi-
bility operators

The following corollary of Theorem 1 shows the equivalence
between behavioral equations and transmissibility operators.

Corollary 4.1. Consider the linear dynamical system (R+, Rp
×

Rm, B) with B = {y : R+
→ Rp

| u : R+
→ Rm such that (7)

is satisfied}, where Γ is given by (11)–(13) and Γi is nonsingular.
Then,

Q (p)y(t) = 0, (27)

where

Q (p)
△
=


−δ(p)Γo(p)adjΓi(p) δ(p) detΓi(p)Ip−m


. (28)
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Proof. In Theorem 1, let w = y, ℓ = u, R(p) = δ(p)Ip,M(p) =

Γ (p), and

U(p) =


−Γo(p)adjΓi(p) detΓi(p)Ip−m

Im 0m×(p−m)


.

Then,

U(p)M(p) = U(p)Γ (p)

=


−Γo(p)adjΓi(p) detΓi(p)Ip−m

Im 0m×(p−m)

 
Γi(p)
Γo(p)


=


0(p−m)×m

Γi(p)


,

and thus, P(p) = Γi(p) is nonsingular. Moreover,

U(p)R(p) = δ(p)U(p)

=


−δ(p)Γo(p)adjΓi(p) δ(p) detΓi(p)Ip−m

δ(p)Im 0m×(p−m)


,

and thus (27) implies that Q is given by (28). �

Remark. Note that U constructed in the proof of Corollary 4.1 is
not unimodular. Assume that m = 1 and p = 2 so that Γi and Γo
are polynomials. Then, let E1, E2 ∈ R[p] be such that U defined by

U(p) =


−Γo(p) Γi(p)
E1(p) E2(p)


(29)

is nonsingular. Then,

U(p)M(p) = U(p)Γ (p)

=


−Γo(p) Γi(p)
E1(p) E2(p)

 
Γi(p)
Γo(p)


=


0

E1(p)Γi(p) + E2(p)Γo(p)


,

and thus, P(p) = E1(p)Γi(p) + E2(p)Γo(p) = − detU is not zero.
Moreover,

U(p)R(p) = δ(p)U(p)

=


−δ(p)Γo(p) δ(p)Γi(p)
δ(p)E1(p) δ(p)E2(p)


, (30)

and thus (25) implies that Q is given by

Q (p) =

−δ(p)Γo(p) δ(p)Γi(p)


. (31)

Therefore, U satisfies (24)–(26). Note that

detU(p) = −Γo(p)E2(p) − Γi(p)E1(p). (32)

It follows from the Bezout identity that if Γi and Γo are coprime,
then there exist E1, E2 ∈ R[p] such that U defined by (29) is
unimodular.

Define

T (p)
△
=


−Γo(p)adjΓi(p) detΓi(p)Ip−m


. (33)

Then

Q (p) = δ(p)T (p), (34)

and thus (27) implies that

Q (p)y(t) = δ(p)T (p)y(t) = 0. (35)

As shown in Aljanaideh and Bernstein (2015), δ(p) can be canceled
in (35), which yields

T (p)y(t) = 0, (36)

which is identical to (19). This shows that the factor δ in (28) can
be removed.
Corollary 4.1 implies that a transmissibility equation is
equivalent to a behavioral equation with the manifest variable set
to w = [yi yo]T and the latent variable set to ℓ = u. Letting
Q = [Q1 Q2], where Q1(p)

△
= −Γo(p)adjΓi(p), and Q2(p)

△
=

detΓi(p)Ip−m, it follows that

T (p) = −Q1(p)Q−1
2 (p). (37)

5. Example

We consider the spring–mass system in Fig. 1, whose dynamics
are

Mq̈ + Kq = F , (38)

where q
△
= [q1 q2 q3]T, F

△
= [f1 f2 f3]T, and

M =

m1 0 0
0 m2 0
0 0 m3


,

K =

k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3 + k4


.

(39)

5.1. Transmissibility operators

Consider the mass–spring system in Fig. 1 with f2 = f3 =

0, yi = q1, yo = q3, and u = f1. Then (1) holds with

x
△
=


q1 q2 q3 q̇1 q̇2 q̇3

T
, A

△
=


03×3 I3
Ω 03×3


, (40)

Ω
△
= −M−1K =


−

k1 + k2
m1

k2
m1

0

k2
m2

−
k2 + k3

m2

k3
m2

0
k3
m3

−
k3 + k4

m3

 , (41)

b
△
=


0 0 0 1

m1
0 0

T
, u

△
= f1. (42)

Moreover,

q1 = yi = ciadj(pI − A)b, (43)
q3 = yo = coadj(pI − A)b, (44)

where

ci
△
=


1 0 0 0 0 0


, co

△
=


0 0 1 0 0 0


.

(45)

Therefore,

Γi(p) = ciadj(pI − A)b =
m2m3p4

+ a1p2
+ a0

m1m2m3
, (46)

Γo(p) = coadj(pI − A)b =
k2k3

m1m2m3
, (47)

where

a0
△
= k2k3 + k2k4 + k3k4, (48)

a1
△
= (k3 + k4)m2 + (k2 + k3)m3. (49)

The corresponding transmissibility operator is

T (p) =
Γo(p)

Γi(p)
=

k2k3
m2m3p4 + a1p2 + a0

. (50)
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Fig. 1. Mass–spring system, where q1q2 , and q3 are the displacements of m1,m2 ,
andm3 , respectively, and f1, f2 , and f3 are external forces.

Using (22), (46), and (47), q1 and q3 satisfy

(m2m3p4
+ ((k3 + k4)m2 + (k2 + k3)m3)p2

+ k2k3
+ k2k4 + k3k4)q3 = k2k3q1. (51)

Next, consider the mass–spring system in Fig. 1 with f1 = f3 =

0, yi = q1, yo = q3, and u = f2. Then (1) holds with (40), (41),
b = [0 0 0 0 1

m2
0]T, and u = f2. Therefore,

Γi(p) = ciadj(pI − A)b =
k2m3p2

+ k2k3 + k2k4
m1m2m3

, (52)

Γo(p) = coadj(pI − A)b =
k3m1p2

+ k1k3 + k2k3
m1m2m3

. (53)

The corresponding transmissibility operator is

T (p) =
Γo(p)

Γi(p)
=

k3m1p2
+ k1k3 + k2k3

k2m3p2 + k2k3 + k2k4
. (54)

Using (22), (52), and (53), q1 and q3 satisfy

k2(m3p2
+ k3 + k4)q3 = k3(m1p2

+ k1 + k2)q1. (55)

Next, consider the mass–spring system in Fig. 1 with f1 = f2 =

0, yi = q1, yo = q3, and u = f3. Then (1) holds with (40), (41),
b = [0 0 0 0 0 1

m3
]
T, and u = f3. Therefore,

Γi(p) = ciadj(pI − A)b =
k2k3

m1m2m3
, (56)

Γo(p) = coadj(pI − A)b =
m1m2p4

+ b1p2
+ b0

m1m2m3
, (57)

where

b0
△
= k1k2 + k1k3 + k2k3, (58)

b1
△
= (k2 + k3)m1 + (k1 + k2)m2. (59)

The corresponding transmissibility operator is

T (p) =
Γo(p)

Γi(p)
=

m1m2p4
+ b1p2

+ b0
k2k3

. (60)

Using (22), (56) and (57), q1 and q3 satisfy

k2k3q3 = (m1m2p4
+ ((k2 + k3)m1 + (k1 + k2)m2)p2

+ k1k2 + k1k3 + k2k3)q1. (61)

5.2. Behaviors

Suppose that f1 ≠ 0, f2 = f3 = 0, w = [q1 q3]T and ℓ =

[f2 q2]T, and thus, q1 and q3 are the manifest variables and f2 and
q2 are the latent variables. Moreover, define U by

U(p) =

−Γo(p) Γi(p)

−Γo(p) Γi(p) −
1

Γo(p)

 , (62)
where Γi and Γo are as in (46) and (47), respectively. Then, it
follows from Corollary 4.1 that the behavioral equation is given by
(36), where T is given by (33), that is,

T (p) =

−Γo(p) Γi(p)


=


−

k2k3
m1m2m3

m2m3p4
+ a1p2

+ a0
m1m2m3


, (63)

δ(p) = det(pI − A), and A is given by (40). Therefore, using (36)
with y = w, the behavioral equation of the behavior (q1, q3) is
given by

(m2m3p4
+ ((k3 + k4)m2 + (k2 + k3)m3)p2

+ k2k3
+ k2k4 + k3k4)q3 = k2k3q1. (64)

Note from (34) that Q (p) = δ(p)T (p). The latent variables f1 and
q2 were thus eliminated to obtain the behavioral equation that cor-
responds to the behavior (q1, q3). Note that (64) is precisely (51).

Alternatively, suppose that f2 ≠ 0 and f1 = f3 = 0. Let
w = [q1 q3]T and ℓ = [f2 q2]T, and thus, q1 and q3 are themanifest
variables and f2 and q2 are the latent variables. Then following the
sameprocedure abovewithU as in (62) andΓi andΓo as in (52) and
(53), respectively, the behavioral equation of the behavior (q1, q3)
is given by

k2(m3p2
+ k3 + k4)q3 = k3(m1p2

+ k1 + k2)q1. (65)

Note from (34) that Q (p) = δ(p)T (p). The latent variables f2 and
q2 were thus eliminated to obtain the behavioral equation that cor-
responds to the behavior (q1, q3). Note that (65) is precisely (55).

Finally, suppose that f3 ≠ 0 and f1 = f2 = 0. Let w = [q1 q3]T
and ℓ = [f3 q2]T, and thus, q1 and q3 are the manifest variables
and f3 and q2 are the latent variables. Then following the same
procedure above with U as in (62) and Γi and Γo as in (56) and
(57), respectively, the behavioral equation of the behavior (q1, q3)
is given by

k2k3q3 = (m1m2p4
+ ((k2 + k3)m1 + (k1 + k2)m2)p2

+ k1k2 + k1k3 + k2k3)q1. (66)

Note from (34) that Q (p) = δ(p)T (p). The latent variables f3 and
q2 were thus eliminated to obtain the behavioral equation that cor-
responds to the behavior (q1, q3). Note that (66) is precisely (61).

6. Discussion

This paper showed that transmissibility operators arise from
behaviors with the manifest variables chosen to be the output sig-
nals and the latent variables chosen to be the input signals. This
observation has the following ramifications. First, it shows that
time-domain transmissibility equations can be viewed as behav-
ioral equations corresponding to specific behaviors,which deepens
the theoretical foundation for time-domain transmissibilities and
allows them to benefit from the rich literature on behaviors. For
instance, this connection opens the door for the meaning of trans-
missibilities in linearized nonlinear systems, which is discussed in
Polderman and Willems (1998) for behaviors. Moreover, this con-
nection will help in understanding the roles of controllability and
observability in constructing transmissibility operators, which is
also discussed in Polderman and Willems (1998) for behaviors. At
the same time, this paper shows that behavioral equations rep-
resent transmissibility operators that are valid in the presence of
external inputs. These external inputs do not appear in the behav-
ioral equation,whichmeans that one response variable can be used
to predict another response variable despite the presence of the
unknown external excitation. The equivalence between behaviors
and transmissibilities was illustrated on a mass–spring system.



24 K.F. Aljanaideh, D.S. Bernstein / Automatica 78 (2017) 20–24
References

Aljanaideh, K. F., & Bernstein, D. S. (2015). Time-domain analysis of sensor-to-
sensor transmissibility operators. Automatica, 53, 312–319.

Chesné, S., & Deraemaeker, A. (2013). Damage localization using transmissibility
functions: A critical review. Mechanical Systems and Signal Processing , 38,
569–584.

Devriendt, C., & Guillaume, P. (2008). Identification of modal parameters
from transmissibility measurements. Journal of Sound and Vibration, 314,
343–356.

Gajdatsy, P., Janssens, K., Desmet,W., & Van Der Auweraer, H. (2010). Application of
the transmissibility concept in transfer path analysis. Mechanical Systems and
Signal Processing , 24, 1963–1976.

Hrovat, D. (1997). Survey of advanced suspension developments and related
optimal control applications. Automatica, 33, 1781–1817.

Johnson, T. J., & Adams, D. E. (2002). Transmissibility as a differential indicator of
structural damage. Journal of Vibration and Acoustics, 124, 634–641.
Maia, N., Silva, J., & Ribeiro, A. (2001). The transmissibility concept inmulti-degree-
of-freedom systems. Mechanical Systems and Signal Processing , 15, 129–137.

Markovsky, I., Willems, J. C., van Huffel, S., & de Moor, B. (2008). Exact and
approximate modeling of linear systems: a behavioral approach. SIAM.

Polderman, J. W., & Willems, J. C. (1998). Introduction to mathematical systems
theory: a behavioral approach. Springer.

Urgueira, A. P., Almeida, R. A., &Maia, N.M. (2011). On the use of the transmissibility
concept for the evaluation of frequency response functions.Mechanical Systems
and Signal Processing , 25, 940–951.

Weijtjens, W., De Sitter, G., Devriendt, C., & Guillaume, P. (2014). Operational
modal parameter estimation ofMIMO systems using transmissibility functions.
Automatica, 50, 559–564.

Willems, J. C. (2007). The behavioral approach to open and interconnected systems.
IEEE Control Systems Magazine, 27, 46–99.

Zhang, E., Pintelon, R., & Schoukens, J. (2013). Errors-in-variables identification
of dynamic systems excited by arbitrary non-white input. Automatica, 49,
3032–3041.

http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref1
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref2
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref3
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref4
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref5
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref6
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref7
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref8
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref9
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref10
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref11
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref12
http://refhub.elsevier.com/S0005-1098(16)30498-8/sbref13

	A behavioral equation framework for time-domain transmissibilities
	Introduction
	Transmissibility Operators
	Behaviors
	Relationship between behavioral equations and transmissibility operators
	Example
	Transmissibility operators
	Behaviors

	Discussion
	References


