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T
his article has two main objectives. The first objective is to demon-
strate that, unlike frequency-domain models, time-domain mod-
els exactly account for the effect of initial conditions without an 
explicit expression for the free response. Although this property is 
obvious in state-space models, it has been the subject of confusion 

and misconceptions within the context of input–output models. In contrast 
to time-domain models, frequency-domain models (not to be confused 
with Laplace-domain and Z-transfer-domain models, which separately in-
clude the free response) do not account for initial conditions.

The second objective is to demonstrate the ramifications of this defect 
for frequency-domain identification in the form of spectral leakage. Spectral 
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leakage is the error in the estimated frequency response 
function that arises from nonperiodic data, which may be 
due to the initial conditions, a nonperiodic input, or, if the 
response is periodic, the use of a noninteger number of 
periods. Although spectral leakage and leakage-remedia-
tion techniques are discussed in [1], the role of initial condi-
tions in contributing to this effect is not considered. This 
article illustrates various techniques for ameliorating spec-
tral leakage due to initial conditions. Spectral leakage does 
not arise in time-domain identification.

To demonstrate the effect of initial conditions, we use 
least-squares techniques for both time-domain and para-
metric frequency-domain identification as well as spectral 
analysis for nonparametric frequency-domain identifi-
cation. All models in this article are single-input, single-
output. Although one of the key challenges in system 
identification is the effect of noise, all data are assumed to 
be noise-free to focus on the effect of the initial conditions.

As discussed in “Summary,” this article is intended as a 
tutorial for students interested in system identification as 
well as those engaged in related research, and an overview 
of the types of models that play a role in discrete-time 
system identification in both the time and frequency domains 
is included.

Time-Domain, Laplace-Domain,  
and Frequency-Domain Models
The duality between time-domain and frequency-domain 
models is an immensely powerful aspect of systems theory. 
The connections between these types of models are both 
deep and subtle, and understanding these connections is 
challenging for students of systems and control theory. 
Time-domain models in the form of state-space models are 
relatively easy to comprehend, and their analysis entails 
eigenvalues, eigenvectors, invariant zeros, and related con-
cepts from matrix theory. At the other end of the “spec-
trum” lie frequency-domain (Fourier transform) models 
and their associated Bode plots, which illustrate the har-
monic steady-state gain and phase shift of a system with 
harmonic inputs. Between state-space models and fre-
quency-response plots lie transfer function models, which 
make poles and transmission zeros evident from their 
numerator and denominator polynomials. For a transfer 
function with a minimal state-space realization, the poles 
and eigenvalues coincide, as do the transmission zeros and 
invariant zeros.

Within the full range of system models are those that are 
time domain in character but are not state-space models. Here 
we are referring to input–output models, where higher-order 
derivatives of the input and output appear without an internal 
state. Although input–output models do not have a standard 
name in systems and control literature, they include the 
autoregressive-moving-average, autoregressive-moving-average 
with exogenous terms, Box–Jenkins, and related models 
used extensively in economics and statistics literature [2]–[4].

System identification methods have been extensively 
developed in both the time domain and frequency domain, 
and the time-domain methods developed in [5]–[9] natu-
rally account for initial conditions due to the model struc-
ture. For time-domain input–output models, however, the 
manner in which the initial condition is encoded in an 
input–output model may be puzzling at first glance. For 
example, the discussion of this encoding in [10]–[12] and 
[13, p. 522] erroneously states that an input–output model 
requires an additional input in the form of an impulse to 
compensate for nonzero initial conditions, which leads to 
n 1+  additional parameters in the model. However, that 
discussion tacitly assumes that input–output models are 
indistinguishable from trans-
fer functions, which in effect 
have zero initial conditions. 
The key to overcoming this 
confusion is to carefully 
distinguish between the 
Z  transform variable z  
and the forward shift 
operator .q  This dis-
tinction is discussed 
in “Why p  Is Not s and q  
Is Not z.” In this article, a clear 
distinction is made between transfer 
functions that depend on the Laplace variable s 
and input–output models that can be written as trans-
fer operators that depend on the forward shift operator .q  
Although these models are superficially similar, they are, in 
fact, distinct in terms of their treatment of initial conditions.

Summary
lthough initial conditions play a visible role in state-

space models, their presence is less obvious in input–

output models. In particular, a transfer function written in 

terms of the Laplace variable represents only the forced 

response and thus assumes zero initial conditions. By re-

placing the Laplace variable with the differential operator, 

a time-domain input–output model has the same appear-

ance as the Laplace transfer function but accounts for both 

the free and forced responses. In the case of the forward 

shift operator and the Z transform, the analogous observa-

tion clarifies misconceptions in the literature. For time-do-

main identification, nonzero initial conditions can enhance 

persistency due to the spectral content of the transient re-

sponse. However, for frequency-domain identification, the 

free response and resulting nonperiodic behavior due 

to nonzero initial conditions cause spectral leakage, which 

degrades the accuracy of frequency-domain estimates. 

To overcome this effect, this article proposes an averag-

ing technique for improving the accuracy of nonparametric 

frequency-domain identification.

A
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Discrete-Time State-Space and  
Input–output Models
This section considers discrete-time state-space and input–
output models. Whereas state-space models have an internal 
state as well as input and output signals, input–output 
models have no internal state but only input and output sig-
nals. It is thus necessary to relate the initial condition of the 
state-space model to the input and output signals by express-
ing the initial condition of the state-space model in terms of 
the initial values of the input and output signals, and vice 
versa. It should be stressed that this section is confined to 
time-domain models and does not consider Z -transforms 
or transfer functions.

Consider the nth-order discrete-time state-space model

	 ( ) ( ) ( ),x k Ax k Bu k1+ = + � (1)
	 ( ) ,x x0 0= � (2)
	 ( ) ( ) ( ),y k Cx k Du k= + � (3)

where ( )x k Rn!  is the state, ( )u k R!  is the input, ( )y t R!  
is the output, , , ,A B CR RRn n n n1! ! !# #  ,D R!  and .k 0$  
We assume that (A, B, C) is controllable and observable. 
Solving (1) and (2) for ( )x k  yields

	 ( ) ( ),x k A x A Bu k ik i

i

k

0
1

1
= + -

=

-/ � (4)

Why p Is Not s and q Is Not z

T he dynamics of a mass-spring-dashpot model are naturally 

cast in the form

	 ( ) ( ) ( ) ( ),mq t cq t kq t f t+ + =p o � (S1)

where the position q  of the mass is the output. Taking the La-

place transform of (S1) yields

	 ( )
( ) ( ) ( )

( ),q s
ms cs k

ms c q mq
ms cs k

f s
0 0 1

2 2=
+ +

+ +
+

+ +

o
t t � (S2)

which captures both the free response and the forced re-

sponse. In the special case where ( )q 0 0=  and ( )q 0 0=o ,  

(S2) becomes

	 ( ) ( ) .q s
ms cs k

f s1
2=
+ +

t t � (S3)

Since (S3) is the forced response, it is incorrect for nonzero 

initial conditions.

Although (S2) captures both the free response and the 

forced response of (S1), an alternative approach that accounts 

for initial conditions without a separate term involving the initial 

condition is to avoid the Laplace transform entirely. Instead, 

by letting p  denote the differential operator / ,td d  (S1) can be 

written as

	 ( ) ( ) ( ) ( ).m q t c q t kq t f tp p2 + + = � (S4)

Since (S4) is an exact rewriting of the ordinary differential 

equation (S1), it accounts for both the input f  and the nonzero 

initial conditions. The next step is to rewrite (S4) formally (that 

is, not rigorously) as

	 ( ) ( ).q t
m c k

f t1
p p2=
+ +

� (S5)

Since the operator ( ) / ( )G m c k1p p p2= + +  in (S5) has exactly 

the same form as the transfer function ( ) / ( )G s ms cs k1 2= + +  

in (S3), it is tempting to suggest that ( )G p  has the same 

meaning as ( ).G s  However, this is not the case since, as al-

ready noted, (S5) accounts for both the free response and 

the forced response, whereas (S3) accounts for only the 

forced response.

Resistance to the use of ( )G p  instead of ( )G s  tends to arise 

from the fact that ( )G s  is a rational function of a complex vari-

able, whereas ( )G p  may seem unnatural. In fact, it is possible 

to develop a rigorous mathematical framework for ( );G p  this is 

precisely the Mikusinski operational calculus [S1]. As noted in 

[S2, p. 135], “the effect of the Mikusinski differential operator is 

that the function f  is differentiated but that, in addition, the ini-

tial value of the function is taken into account. If the function f  

takes the value 0 at t 0=  then s  corresponds exactly to Heavi-

side’s differential operator .p ” This distinction is discussed in 

[S3] within the context of teaching classical control.

This distinction also arises in the theory of behaviors [S4], 

where polynomial models in p  are used but without distin-

guishing between input and output signals. As stated in [S4, 

p. 46] for [ ],U Rg g! p#  “For ( )U 1 p-  may have a proper meaning 

as a matrix of rational functions, but it need not be polynomial, 

and therefore ( / )U td d1-  has no meaning in general. (What is 

the meaning of ( ( / )) / ( ( / ))t t1 2d d d d 2+ + ?)” The answer to this 

rhetorical question appears to reside in the operational calcu-

lus [S1]–[S3].

The distinction between q and z  is analogous to the dis-

tinction between p  and .s  A discussion of the relationship be-

tween q and z is given in [S5, Ch. 2].
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and thus y  is given by

	 ( ) ( ) ( ),y k y k y kfree forced= + � (5)

where the free response yfree  due to the initial condition x0  
is given by

	 ( )y k CA xk 0free = � (6)

and the forced response yforced  due to the input u is given by

	 ( ) ( ) ( ),y k H u i H u k ik i
i

k

i
i

k

0 0
forced = = --

= =

/ / � (7)

where

	
,

,
,
.H

D
CA B

i
i

0
1i i 1 $

=
=9

-' � (8)

Using the forward-shift operator ,q  (1) can be expressed as

	 ( ) ( ) ( ),qx k Ax k Bu k= + � (9)

that is,

	 .( ) ( ) ( )qI A x k Bu k- = � (10)

Multiplying (3) by ( )qdet I A-  yields the difference equation

( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( )] ( ) .

q q q

q q

det det det
det

I A y k C I A I x k D I A u k

C I A B D I A u kadj
n- = - + -

= - + -

�

� (11)

The difference equation (11) is a discrete-time input–
output model whose input is u  and output is .y  Note 
that (11) is obtained without dividing by the forward-
shift operator .q  Moreover, note that the state x  does not 
appear in (11).

Define

	 ( ) ( ) ( ) [ ],q q q qdetP C I A B D I Aadj R!= - + -
9 � (12)

	 ( ) ( ) [ ],q q qdetQ I A R!= -
9 � (13)

where [ ]qR  denotes the set of polynomials in q  with real 
coefficients. Then, (11) can be written as

	 ( ) ( ) ( ) ( ) .q qQ y k P u k= � (14)

For convenience, define

	 ( ) ( )
( )

( ),q q
q

qG Q
P

R!=
9 � (15)

where ( )qR  denotes the set of rational functions in q  with 
real coefficients, and rewrite (14) as

	 .( ) ( ) ( )qy k G u k= � (16)

Since (A, B, C) is controllable and observable, it follows that 
P  and Q  are coprime.

Since division by ( )qQ  in (15) is not meaningful, (16) is 
only a convenient representation of the difference equation 
(14). Furthermore, although (15) has the form of a transfer 
function, (16) is a time-domain relationship. In fact, unlike 
a transfer function, which captures only the forced res
ponse, (16) includes both the free response due to x0  and 
the forced response due to .u  To illustrate this, let

	 ( ) ,q q q qP b b b bn n
n n0 1

1
1g= + + + +-
- � (17)

	 .( )q q q qQ a a an n
n n1

1
1g= + + + +-
- � (18)

Then, for all ,k 0$  (14) can be expressed as

	
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .
q q q

q q q

y k a y k a y k a y k

b u k b u k b u k b u k

n n
n n

n n
n n

1
1

1

0 1
1

1

g

g

+ + + +

= + + + +

-
-

-
-

�
�

(19)

That is,

.

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

y k n a y k n a y k a y k

b u k n b u k n

b u k b u k

1 1
1

1

n n

n n

1 1

0 1

1

g

g

+ =- + - - - + -

+ + + + - +

+ + +

-

-� (20)

From (6) it is shown that, for all ,k y0 free$  satisfies

	

( )
( )

( )

( , ) ,

y k
y k

y k n

A C A x
1

1

O k
0

free

free

free

h

+

+ -

=

R

T

S
S
S
S
S

V

X

W
W
W
W
W

� (21)

where ( , )A CO  is the observability matrix. Therefore, if A is 
nonsingular, then

	 ( , )

( )
( )

( )

.x A A C

y k
y k

y k n

1

1

Ok0
1

free

free

free

h
=

+

+ -

- -

R

T

S
S
S
S
S

V

X

W
W
W
W
W

� (22)

Whereas state-space models have an internal state as well as input  

and output signals, input–output models have no internal state  

but only input and output signals.
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Setting k 0=  in (22) yields

	 ( , )

( )
( )

( )

.x A C

y
y

y n

0
1

1

O0
1

free

free

free

h
=

-

-

R

T

S
S
S
S
S

V

X

W
W
W
W
W

� (23)

Both (22) and (23) relate the initial condition x0  of the state-
space model (1)–(3) to ( ), ( ), , ( ),y y y n0 1 1free free freef -  and 
vice versa.

Next, if ,u 0=  then ,y yfree=  and thus it follows from (20) 
that the free response yfree  satisfies

	
( ) ( ) ( )

( ) .
y k n a y k n a y k

a y k

1 1n

n

1 1free free free

free

g+ =- + - - - +

-

-
�

(24)

The data needed to solve the nth-order difference equation 
(24) is ( ), ( ), , ( ),y y y n0 1 1free free freef -  which, in the case 

,u 0=  also defines the initial condition x0  of (1) according 
to (23). Alternatively, if ,x 00 =  then ,y yforced=  and thus it 
follows from (20) that the forced response yforced  satisfies

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) .

y k n a y k n a y k

a y k b u k n b u k n

b u k b u k

1 1
1

1

n

n

n n

1 1

0 1

1

forced forced forced

forced

g

g

+ =- + - - - +

- + + + + - +

+ + +

-

-� (25)

For time-domain least-squares identification of dis-
crete-time input–output models, see “Ti me -Dom a i n 

Least-Squares Identification of Discrete-Time, Input–
Output Models.”

Z -Transform of Discrete-Time  
Input–Output Models
Consider the state-space models (1)–(3). Using the Z-trans-
form defined by

	 ( ) { } ( ) ,x z x x k zZ
k

k

0
= =

3
9

=

-t / � (26)

(1) can be written as

	 ( ) ( ) ( ) ( ),zx z zx Ax z Bu z0- = +t t t � (27)

where xt  and ut  are the Z-transforms of x  and ,u  respec-
tively, and z  is the complex Z-transform variable. Therefore,

	 ( ) ( ) ( ) ( ) ( ) .x z zI A Bu z z zI A x 01 1= - + -- -t t � (28)

Using the Z-transform, (3) can be expressed as

	 ( ) ( ) ( ),y z Cx z Du z= +t t t � (29)

where yt  is the Z-transform of .y  Using (28), (29) can be 
expressed as

	 ( ) ( ) ( ) ( ) ( ),y z G z u z zC zI A x 01= + - -t t � (30)

Time-Domain Least-Squares Identification of Discrete-Time, Input–Output Models

For the discrete-time, input–output model (20), define

	
( ) ( ) ( ) ( ) ( )

,

k y k n y k u k n u k1

R ( )n1 2 1

g g

!

z = - + - - +
#

9

+

6 @
�

(S6)

	 .a a b b Rn n
n

1 0
2 1Tg g !H =

9 +6 @ � (S7)

Then, (20) can be written as

	 ( ) ( ) .y k n kz H+ = � (S8)

Next, define

	 ( ) ( ) ,y n y N RN
N n 1Tg !W =

9 - +6 @ � (S9)

	 ( ) ( ) .N n0 R( ) ( )
N

N n n1 2 1T T T
g !z zU = - #9 - + +6 @ � (S10)

Then, (S8) implies that

	 ,N NW U H= � (S11)

which has at least one solution .H  A least-squares solution 

RN
n2 1!H +t  of (S11) satisfies

	 || || || ,||minN N N F N N F
R n2 1

#W U H W U H- -
!H +

t r
r

� (S12)

where || ||F$  denotes the Frobenius norm. A minimizer exists be-

cause (S11) has a solution. If, however, the data are corrupted 

by noise and (S11) does not have a solution, then a minimizer 

still exists because the function

	 ( ) || ||f N N0 0 FH W U H= -
9

� (S13)

is quadratic in 0H  and has a positive-semidefinite Hessian, 

along with the fact that there exists at least one solution to 

( ) .f 00H =l  If u  is persistently exciting of order n2 1+  [5, p. 

412], then NU  is left invertible. In this case, (S11), which has at 

least one solution, has the unique solution

	 ( ) .T T
N N N N N

1H U U U W= -t � (S14)

If u  is not persistently exciting of order ,n2 1+  then NU  is not 

left invertible, and thus (S12) has infinitely many minimizers. In 

this case, the minimum-norm minimizer is given by

	 ,N N NH U W= +t � (S15)

where NU
+  is the pseudoinverse of .NU  If NU  is left invertible, 

then (S15) is the unique minimizer and NU
+  is given by

	 ( ) .N N N N
1T TU U U U=+ - � (S16)
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where

	 ( ) ( ) .G z C zI A B D1= - +
9 - � (31)

If ( )x 0 0= , then (30) becomes ( ) ( ) ( )y z G z u z= .t t

Next, consider the input–output model (19). For all ,i 1$  
the Z-transform of the shifted sequence ( ( ))f k i k 0+ 3

=  is 
given by

.( ) (

( ( )) ( ( ))
( ) ( ) ( ) ( )
qf k i f k

z f z z f z f zf i

z f z z f j

0 1 1
ZZ k

i
k

i i i

i i j

j

i

0

1

0 0

1 g

= -

+ =

= - - - - -

3 3

-

=

-

= =

-

)t

t
" ", ,

/�
(32)

Therefore, for all i 1$ , (19) implies

( ) ( ) ( )

( ) ( ) ( ),

z a z a z a y z a z y j

b z b z b z b u z b z u j

n n
n n n i

j

i

i

n
i j

n n
n n n i

j

i

i

n
i j

1
1

1
0

1

1

0 1
1

1
0

1

1

g

g

+ + + + -

= + + + + -

-
- -

=

-

=

-

-
- -

=

-

=

-

t

t

//

//
� (33)

where .a 10 =
9  Solving (33) for ( )y zt  yields

( ) ( ) ( )
( ) ( )

,y z G z u z
z a z a z a

a z y j b z u j

n n
n n

n i
j

i

i

n
i j

n i
j

i

i

n
i j

1
1

1

0

1

1 0

1

1

g
= +

+ + + +

-

-
-

-

=

-

=

-
-

=

-

=

-

t t

// //

� (34)

where

	 ( ) .G z
z a z a z a
b z b z b z b

n n
n n

n n
n n

1
1

1

0 1
1

1

g
g

=
+ + + +
+ + + +

-
-

-
- � (35)

Note that (34) contains the initial conditions of u  and .y  
In particular, ( ) ( )G z u zt  represents the forced response of 
the system, while the additional term represents the 
free response. Setting ( ) ( ) ( )y y y n0 1 1 0g= = = - =  and 
( ) ( ) ( )u u u n0 1 1 0g= = = - =  in (33) yields the forc

ed response

	 .( ) ( ) ( )y z G z u z=t t � (36)

The second term of the right-hand side of (34) determines 
the free response.

Frequency-Domain Identification of 
Discrete-Time, Input–output Models
This section presents several parametric and nonpara-
metric frequency-domain identification methods. For 

parametric identification, least squares is considered, where, 
for nonparametric identification, the D-transforms of the 
input and output signals and spectral analysis are used.

The discrete Fourier transform arises from the harmonic 
steady-state response of a linear system driven by a peri-
odic input; see “Harmonic Steady-State Response for Dis-
crete-Time Systems.” Moreover, the distinction between the 
Z-transform and the D-transform is discussed in “Rela-
tionship Between the Z-Transform and D-Transform.”

Parametric Identification
In this section, N  samples of u  and y  are used to identify 

.G  Since u  and y  consist of N  samples, the discrete Fourier 
transform (a truncation of the D-transform) of u  and y  is 
equivalent to their D-transforms. Consider the parametric 
frequency-domain model

	 ( ) ( ) ( ) ( ),y e G e u e T ej j j
G

ji i i i= +i i i it t � (37)

where ( , ]ii N !i r r= -
9 r  and , , .i N N1 f=- +  Then, (37) 

can be expressed as

	 ( ) ( ) ( ) ( ) ( ),D e y e N e u e N ej j j j
T

ji i i i i= +i i i i ir t r t r � (38)

where

	 ( )
( )
( )

, ( )
( )
( )

.G e
D e
N e

T e
D e
N ej

j

j

G
j

j
T

j
i

i

i
i

i

i

= =
9 9i

i

i
i

i

i

r

r

r

r
� (39)

Note from (S29) and (37) that TG  captures the effect of non-
zero initial conditions. Let

	 ( ) ,N e b e b e b( )j j n j n
n0 1

1i i i g= + + +i i i -r � (40)

	 ( ) ,D e e a e a( )j j n j n
n1

1i i i g= + + +i i i -r � (41)

	 ( ) .N e c e c e c( )
T

j j n j n
n0 1

1i i i g= + + +i i i -r � (42)

Using (40)–(42), (38) can be expressed as

	
( ) ( ) ( )

( ) ( ) .
e y e a e a y e

b e b u e c e c

( )j n j j n
n

j

j n
n

j j n
n

1
1

0 0

i i i i

i i i

g

g g

=- + +

+ + + + + +

i i i i

i i i

-t t

t
�

(43)

Dividing (43) by e j nii  yields

	
( ) ( ) ( )

( ) ( ) ,
y e a e a e y e

b b e u e c c e

j j
n

j n j

n
j n j

n
j n

1

0 0

i i i i

i i i

g

g g

=- + +

+ + + + +

i i i i

i i i

- -

- -+

t t

t
�

(44)

which can be written as

	 ( ) ( ) ,y e ej ji iz H=i it � (45)

The discrete Fourier transform arises from the harmonic steady-state 

response of a linear system driven by a periodic input.
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where

	
( ) ( ) ( ) ( )

( ) ,
e y e e y e e u e

u e e e1 R ( )

j j j j j n j

j j n j n n1 3 2

i i i i i i

i i i

g g

g !

z = - -
#

9i i i i i i

i i i

- -

- - +

t t t

t

6
@

�
(46)

	 .a a b b c c Rn n n
n

1 0 0
3 2Tg g g !H =

9 +6 @ � (47)

Next, define

	 ( ) ( ) ,y e y e RN
j j NTN0 1g !W =

9 i i -t t6 @ � (48)

	 .( ) ( )e e R ( )
N

j j N n3 2T T TN0 1g !z zU = #9 i i +-6 @ � (49)

Then, (45) implies that

	 .N NW U H= � (50)

A least-squares solution RN
n3 2!H +t  of (50) satisfies

	 .minN N N F N N F
R n3 2

#W U H W U H- -
!H +

t r
r

� (51)

Nonparametric Identification
This section presents nonparametric frequency-domain 
identification using the D-transforms of the input and 
output signals.

Identification Using the Discrete Fourier Transforms  
of the Input and Output Signals
Let .N 1$  For all ( , ],!i r r-  consider the discrete Fourier 
transforms

Harmonic Steady-State Response for Discrete-Time Systems

The following result characterizes the response of a discrete- 

time, asymptotically stable, linear, time-invariant system to 

a harmonic input with an arbitrary initial condition.

Theorem S1

For ,k 0$  consider the discrete-time, linear, time-invari-

ant system (1)–(3), where A  is asymptotically stable. Let 

( ) ( ),Re sinu k u e A kj k
u0 0

0 i z= = +i  where ,u A je Cu
j

0 !=-
9 z  

Au  and z  are real numbers, and ( , ].0 !i r r-  Then, ( )x k  is 

given by

	
( ) ( )

( ) .

Re

Re

Ix k A x e A Bu

e I A Bu e

k j

j j k

0
1

0

1
0

0

0 0

= - -

+ -

i

i i

-

-

^ h

6
6

@
@

�
(S17)

Moreover,

	 ( ) ( ) ( ),y k y k y ktrans hss= + � (S18)

where

	 ( ) ( ) ( ) ,Rey k CA x e I A Bu0k j 1
0trans

0= - -
9 i -^ h6 @ � (S19)

	 ( ) ( ) ( ),Re siny k G e u e MA kj j k
u0 0hss

0 0 i z c= = + +
9 i i6 @ � (S20)

| ( )|,M G ej 0=
9 i  and ( ).G ej 0+c =

9 i

The signals ytrans  and yhss  are the transient and harmonic 

steady-state components of the output ,y  respectively. If 0i  is 

a rational number, then it follows from (S20) that yhss  is har-

monic with the same frequency as .u  Moreover, | ( )|G ej 0i  is the 

amplification of yhss  relative to ,u  and ( )G ej 0+ i  is the phase 

shift of yhss  relative to .u  The plots of | ( )|G ej 0i  and ( )G ej 0+ i  

versus 0i  are the magnitude and phase Bode plots, respec-

tively. If 0i  is irrational, then yhss  is an almost periodic se-

quence [S6], [S7].

Next, for all ,k 0$  it follows from (S19) that

	 ( ) ( ) ( ),y k y k y ktrans free trans,forced= + � (S21)

where yfree  is given by (6) and

	 ( ) ( ) .Rey k CA e I A Buk j 1
0trans,forced

0=- -
9 i -6 @ � (S22)

It follows from (5), (S18), and (S21) that, for all ,k 0$

( ) ( ) ( ) ( )

( ) ( ) ( ),

y k y k y k y k

y k y k y k
free forced trans hss

free trans,forced hss

+ = +

= + +

that is,

	 ( ) ( ) ( ) .y k y k y kforced trans,forced hss= + � (S23)

If the initial condition ( )x 0  has the special value

	 ( ) ( ) ,Rex e I A Bu0 j 1
0

0= -i -6 @ � (S24)

then, for all ,k 0$  ( )y k 0trans =  and thus ( ) ( ).y k y khss=

Finally, if A is asymptotically stable, then it follows from 

(S19) that

	 ( ) ( ) ( ) ,lim lim limy k y k y k 0
k k k

trans free trans,forced= = =
" " "3 3 3

� (S25)

and thus

	 ( ) ( ) .lim y k y k 0
k

hss- =
"3
6 @ � (S26)

The following result provides the Z-transform of .yhss

Proposition S1

For a l l  ,k 0$  le t  ( ) Reu k u e j k
0

0= i  ( ),sinA ku 0i z= +  where 

,u A jeu
j

0 =-
9 z  Au  and z  are real numbers, and ( , ],0 !i r r-  

and define | ( )|M G ej 0=
9 i  and ( ).G ej 0+c =

9 i  Then, for all ,z e j 0! ! i

( )
( )

( ) ( ) ( ) ( )
cos

y z j
A

z z
e z z e G e e z z e G e

2 2 1
u

j j j j j j

2
0

hss

0 0 0 0

i
=

- +

- - -z i i z i i- - -

t

� (S27)

	
( )

( ) ( )
.

cos
sin sin

A M
z z

z z
2 1

u 2
0

2
0

i

z c z c i
=

- +

+ + + -e o � (S28)
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	 ( ) { } ( ) ,u e u u k eDN
j

N
k

N
j k

0

1

= =
9i i

=

-
-t / � (52)

	 ( ) { } ( ) ,y e y y k eDN
j

N
k

N
j k

0

1

= =
9i i

=

-
-t / � (53)

where

	 ( ) ( ) ( ),y e y e y e, ,N
j

N
j

N
j

free forced= +i i it t t � (54)

	 ( ) ( ) ,y e y y k eD,N
j

N
k

N
j k

0

1

free free free= =
9i i

=

-
-t " , / � (55)

	 .( ) { } ( )y e y y k eD,N
j

N
k

N
j k

0

1

forced forced forced= =
9i i

=

-
-t / � (56)

Note that

	 ( ) ( ) ( ),lim limu e u k e u e
N

N
j

N k

N
j k j

0

1

= =
" "3 3

i i i

=

-
-t t/ � (57)

	 ( ) ( ) ( ),lim limy e y k e y e
N

N
j

N k

N
j k j

0

1

= =
" "3 3

i i i

=

-
-t t/ � (58)

	 ( ) ( ) ( ) .lim limy e y k e y e,
N

N
j

N k

N
j k j

0

1

forced forced forced= =
" "3 3

i i i

=

-
-t t/ � (59)

Define

	 ( )
( )
( )

.G e
u e
y e

N
j

N
j

N
j

=
9i

i

i

t
t

t
� (60)

Using (54) and (57)–(59), for all ( , ],!i r r-  (60) implies

	 ( )
( )

( )
( ) .lim

lim

lim
G e

u e

y e
G e

,

N
N

j

N
N

j
N

N
j

j
free

= +
"

"

"

3
3

3i
i

i

it
t

t
� (61)

Note from (61) that, if ( )y k 0free =  for all k 0$  and thus 
( )y e 0j

free =it  for all ( , ],!i r r-  then ( )lim y e 0,N N
j

free ="3
it  

and thus, ( )G eN
jit  is a consistent estimator of ( )G eji . That 

is, as the number N  of samples used to obtain ( )G eN
jit  

i ncreases, ( )G eN
jit  converges to ( ) .G eji  Moreover, i f 

yfree  i s  nonzero and G  is asymptotically stable, then 
( )lim y e,N N

j
free"3

it  exists. Therefore, if ( ) ,lim u eN N
j 3="3
it  

then ( )G eN
jit  is a consistent estimator of .( )G eji  The exam-

ples below show that if u  is an impulse or a sinusoidal 
signal with a frequency ,0 !i i  then ( )lim u eN N

j
"3

it  is 
finite, and thus ( )G eN

jit  is not a consistent estimator of 
.( )G eji  However, if u  is white noise or a sinusoidal signal 

with a frequency ,0i i=  then ( ) ,lim u eN N
j 3="3
it  and 

thus ( )G eN
jit  is a consistent estimator of ( ) .G eji

Relationship Between the Z-Transform and D-Transform

Setting z e j= i  in (30) yields

	 ( ) ( ) ( ) ( ) ( ),y e G e u e e C e I A x 0j j j j j 1= + -i i i i i -t t � (S29)

where

	 ( ) { } { } ( ) ,y e y y y k eD Zj
z e

k

j k

0

j= = =
3

9 9i i
=

=

-
it / � (S30)

	 ( ) { } { } ( ) ,u e u u u k eD Zj
z e

k

j k

0

j= = =
3

9 9i i
=

=

-
it / � (S31)

are the D-transforms of y  and ,u  respectively, and ( )G eji  is 

the discrete-time, frequency-response function. However, note 

from (S30) and (S31) that if y  and u  are sinusoidal signals, 

then neither of the summations in (S30) and (S31) converges. 

Therefore, to consider harmonic signals, a more general defini-

tion of the D-transform based on analytic continuation of the 

Z-transform is needed. If ( ) ,x 0 0=  then (S29) becomes

	 ( ) ( ) ( ),y e G e u ej j j=i i it t � (S32)

which is a specialization of (36) with .z e j= i  In this case, the 

frequency response function ( )G eji  can be written as

	 ( )
( )
( )

.G e
u e
y ej

j

j

=i i

i

t

t
� (S33)

Consider a transfer function G with the state-space realiza-

tion ( , , , ),A B C D  where A is asymptotically stable. For all ,k 0$  

let ( ) ( ).Re sinu k u e A kj t
u0 0

0 i z= = +i  The Z-transform of u  is 

given by

	 ( )
( ) ( )

( ) ( )
,u z j

A
z e z e

e z z e e z z e
2
u

j j

j j j j

0 0

0 0

=
- -

- - -
i i

z i z i

-

- -

t � (S34)

which is valid for all { } .z eC j 0=! ! i  Setting z e j= i  in (S34) 

yields the D-transform of u  given by

	 ( )
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( ) ( )
.u e j

A
e e e e

e e e e e e e e
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j j j j j j j j
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t � (S35)

It follows from (S27), which is valid for all { },z eC j 0=! ! i  that the 

D-transform of yhss  is given by

( )

( )( )
( ) ( ) ( ) ( )

.

y e
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e e e e
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i i i i
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-

- - -

t

e o

� (S36)

Note that (S34)–(S36) are defined for all ( , ] { } .0!=!i r r i-  

Moreover, note from (S35) and (S36) that the D-transforms 

( )u e jit  and ( )y e j
hss

it  of u  and yhss  have frequency content for all 

( , ].!i r r-  Dividing (S36) by (S35) yields

( )
( )

( ) ( )
( ) ( ) ( ) ( )
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e e e e e e e e
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� (S37)

Note from (S37) that
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and thus, by continuity, (S37) holds for all ( , ].!i r r-
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For nonparametric frequency-domain identification using 
spectral analysis, see “Nonparametric Frequency-Domain 
Identification Using Spectral Analysis.”

Using Averaging to Improve Nonparametric Frequency-
Domain Estimates of Transfer Functions
In practice, it is often the case that u  is a realization of a 
random process. In this case, numerical experiments show 
that the estimate of the transfer function obtained using 
(60) is not smooth [5]. The accuracy of the estimated trans-
fer function can be improved by averaging the estimates of 
the transfer function obtained from running multiple 
experiments with different excitation signals [5]. Suppose 
that ( )G e,N i

jit  is the estimate of the transfer function at fre-
quency ( , ],!i r r-  obtained from the ith experiment for 

, , .i M1 f=  For all ( , ],!i r r-  the averaged estimate of the 
transfer function is given by

	 ( ) ( ) .G e M G e1
, , ,M N

j
N i

i

M
j

1
avg =

9i i

=

t t/ � (62)

It thus follows from (62) that, for all ( , ],!i r r-
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N
N i
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free
= +

"3
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t
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t
� (63)

where ( )y e,i
j

free
it  and ( )u ei

jit  are the D-transforms of the free 
response and input from the ith experiment. It then follows 
from (63) that, for all ( , ],!i r r-

Nonparametric Frequency-Domain Identification Using Spectral Analysis
n alternative approach to nonparametric frequency-domain 

identification is to use (S33) with spectral analysis to 

estimate the discrete-time frequency response function at 

a set of frequencies. Consider the system (1)–(3). For all 

( , ],!i r r-  define
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where
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Next, let N 1$  and define
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Using (5) yields
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where
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Moreover,
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Finally, defining
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and using (S41)–(S43), (S47), (S53), and (S54), it follows from 

(S55) that
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which is identical to (61).

A
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where x ,i0  is the initial condition for the ith experiment. 
Suppose that ( )x ,i i0 0

3
=  is a realization of the random process 

.X0  Moreover, suppose that ( ( ))u e1 i
j

i 0
3i
=t  is a realization of 

a random process U  whose expected value is finite. Since 
X0  and U  are uncorrelated, for all ( , ],!i r r-  (64) becomes
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If X0  is a zero-mean random process, then (65) implies that, 
for all ( , ],!i r r-

	 ( ) ( ) .lim limM G e G e1
,

M Ni

M

N i
j j

1
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" "3 3

i i

=

t/ � (66)

That is, averaging the estimates of the transfer function 
obtained from multiple experiments can help to remove the 
effect of nonzero initial conditions on the estimate of the 
transfer function. This is illustrated by a numerical exam-
ple in the next section.

Effect of Initial Conditions on Estimating 
the Frequency Response Function
In this section, we investigate the effect of nonzero initial 
conditions on the estimate of the transfer function obtained 
using nonparametric frequency-domain methods. This 
effect is analogous to spectral leakage, which arises due to 
the use of a noninteger number of periods of a periodic 
response. For details, see “Spectral Leakage Effects in  
Frequency-Domain Identification.”

Spectral Leakage Effects in Frequency-Domain Identification

S pectral leakage is the error in the estimated frequency-

response function that results from using either a periodic 

input with a noninteger number of periods or a nonperiodic in-

put. As shown in [13, p. 185], leakage errors depend on the 

initial and final conditions of the system, that is, the state ( )x k  

at k 0=  and ,k N=  where N  is the number of samples used 

for identification. Example 2.7 in [13, p. 59] shows that leakage 

errors can be interpreted as a transient effect due to nonzero 

initial conditions. Theorem 2.6 in [13, p. 59] shows that, if the 

magnitude of the discrete Fourier transform of the input ap-

proaches infinity as the number of samples increases without 

bound, then the leakage error converges to zero, and thus the 

frequency response function estimate is asymptotically unbi-

ased. However, the leakage error may be nonzero for each fi-

nite data set.

Leakage error can be avoided by using periodic excita-

tion and measurements over an integer number of periods in 

nonparametric frequency-domain identification. However, in 

many applications, the excitation signal cannot be specified, 

and thus leakage errors are unavoidable. Various approach-

es have been introduced to mitigate the effect of spectral 

leakage in nonparametric frequency-domain identification. 

These include the local polynomial approach (that is, semi-

nonparametric identification) [13, Ch.7], [S8], [S9]; Welch’s 

method, which is a weighted average of the estimated fre-

quency response functions [S10]; and the Hanning window 

[13, p. 41].

On the other hand, parametric frequency-domain identifica-

tion helps to obtain a more accurate estimate of the frequency-

response function than nonparametric frequency-domain iden-

tification. Consider [13, p. 59]

	 ( ) ( ) ( ) ( ) ( ),y e G e u e T e ej j j
G

j jd= +i i i i it t t � (S57)

where G is the transfer function, ( , ]!i r r-  is the frequency in 

rad/sample, and ut  and yt  are the discrete Fourier transforms of 

the input u  and the output y  of ,G  respectively. Furthermore, 

,TG  which is the transfer function from a fictitious impulse input 

d  (where ( )e 1jd =it  for all ( , ])!i r r-  to the output ,y  captures 

the effect of nonzero initial conditions and spectral leakage in 

the case of nonzero initial conditions and either a periodic input 

with a noninteger number of periods or a nonperiodic input [13, 

p. 185]. Estimation of TG  is thus required [10]–[12]. Since TG  

has the same denominator as ,G  the additional parameters 

needed to estimate TG  are the coefficients of its numerator. 

Therefore, if G is of order ,n  then 3n parameters must be es-

timated to obtain exact estimates of the parameters of .G  Ex-

amples are shown in [10] and [11].
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The first example considers the case where the input u is 
an impulse or white noise, and the consistency of the esti-
mate of the transfer function is considered under zero and 
nonzero initial conditions. The second example shows that 
the accuracy of the estimated transfer function can be 
improved by averaging the estimates of the transfer func-
tion obtained from running multiple experiments with dif-
ferent excitation signals. The last example compares the 
estimate of the transfer function obtained using frequency-
domain and time-domain methods in this case where the 
excitation signal is white noise.

Example 1
Consider the discrete-time system G  with the state-space 
realization and initial condition given by

. .
, , [ ], , .A B C D x

1 3
1

0 4
0

1
0 1 1 0

1
10=

-
= = - = =; ; ;E E E

� (67)

Then,
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e e

e
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- +
-i i

i i
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and the free response is given by

.( )
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0

1
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The Z-transform of yfree  is given by
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. . . .
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Replacing z  by e ji  in (70) yields the D-transform

	 ( )
. .
. .y e

e e1 3 0 4
0 1j
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i i
t � (71)

Suppose that
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Then, ( )u e 1j =it  for all ( , ] .!i r r-  Therefore,
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Moreover,
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The numerators of (68) and (74) are different. Figure 1 shows 
the magnitude of ( ),G eji  ( ) ( ),y e u ej ji it t  and .( ) ( )y e u ej j

free
i it t  

Since the free response is not zero, it follows that ( )G eji  and 
( ) ( )y e u ej ji it t  are not equal.

Next, let u  be identical to (72), and let N 1$ . For all 
( , ],!i r r-  ( )u e 1j =it  and, for all ,N 1$  ( )u e 1N

j =it . It fol-
lows from (60) that ( ) ( )G e y eN

j
N

j=i it t . Figure 2 shows the dif-
ference ( ) ( )G e G e/ /j

N
j4 4-r rt  as N  increases for the initial 

conditions [ ] ,x 0 00
T=  [ . . ] ,x 0 001 0 0010

T=  [ ] ,x 1 10
T=  

and .[ ]x 100 1000
T=  Note from Figure 2 that ( )G e /

N
j 4rt  is 

a consistent estimator of ( )G e /j 4r  only in the case where 
[ ] ,x 0 00

T=  that is, the case where ( )y k 0free =  for all .k 0$
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Figure 1  Example 1. The magnitude of ( ),G eji  ( ) / ( ),y e u ej ji it t  and 
.( ) / ( )y e u ej j

free
i it t  Since the free response is not zero, ( )G eji  and 

( ) / ( )y e u ej ji it t  are not equal.
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Figure 2  Example 1. A plot of ( ) ( )G e G e/ /j
N

j4 4-r rt  as N  increases, 
where u  is given by (72), and for the initial conditions [ ] ,x 0 00

T=  
[ . . ] ,x 0 001 0 0010

T=  [ ] ,x 1 10
T=  and .[ ]x 100 1000

T=  Note that 
( )G e /

N
j 4rt  is a consistent estimator of ( ),G e /j 4r  only in the case 

where [ ] ,x 0 00
T=  that is, the case where ( )y k 0free =  for all .k 0$
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Next, let u  be a realization of a stationary white random 
process with distribution .( , )0 1N  Using (60), it follows that, 
for all ,N 1$  .( ) ( )/ ( )G e y e u e/ / /

N
j

N
j

N
j4 4 4=r r rt t t  Moreover, for 

all N 1$ , (60) implies that ( ) ( )/ ( )G e y e u e/ / /
N

j
N

j
N

j6 6 6=r r rt t t . 
Figure 3 shows the difference ( ) ( )G e G e/ /j

N
j4 4-r rt  aver-

aged over 1000 experiments as N  increases with the ini-
tial conditions [ ] ,x 0 00

T=  [ ] ,x 1 10
T=  [ ] ,x 10 100

T=  and 
[ ] .x 100 1000

T=  As shown in Figure 3, a white noise input 
yields consistent estimates of ( )G eji  for all frequencies 

( , ]!i r r-  and all initial conditions .x0 � Y

Example 2
Consider the discrete-time system G  with the state-space 
realization (67). Let u  be a realization of a stationary white 
random process with distribution ( , ) .0 1N  First consider 
zero initial conditions and use (60) with 100 different real-
izations, each of which contains N 107=  samples of u  and 
y  to obtain the estimator ( )G e /

N
j 4rt  of ( ) .G e /j 4r  Figure 4 

shows the error ( ) ( )G e G e/ /j
N

j4 4-r rt  as a horizontal line. 
Since the free response is zero, the difference between 
( )G e /j 4r  and ( )G e /

N
j 4rt  is due to truncating the D-transforms 

( )u e /j 4rt  and ( )y e /j 4rt  of u  and ,y  respectively, to obtain the 
estimator ( )G e /

N
j 4rt  of ( )G e /j 4r .

Next, consider the initial condition [ ]x 100 1000
T=  and 

use (60) with 100 different realizations, each of which contains 
N 107=  samples of u and y  to obtain the estimator ( )G e /

N
j 4rt  

of ( ) .G e /j 4r  Figure 4 shows the error ( ) ( )G e G e/ /j
N

j4 4-r rt  as a 
horizontal line. The difference between ( )G e /j 4r  and ( )G e /

N
j 4rt  

is due to the free response of G as well as truncating the D
-transforms ( )u e /j 4rt  and ( )y e /j 4rt  of u and ,y  respectively, to 
obtain the estimate ( )G e /

N
j 4rt .

Consider the initial condition [ ]x 100 1000
T=  and 100 

different realizations, each of which contains N 107=  sam-
ples of u  and .y  For each realization, partition the N 107=  
samples into M 1000=  parts, each of which contains 
N 10p

4=  samples. Then, use (60) with the input and output 
samples from the kth partition for all , ,Mk 1 f=  to obtain 
the estimator ( )G e,

/
N

j
k

4
p

rt  of .( )G e /j 4r  The estimates obtained 
from the first i  partitions are then averaged using

	 ( ) ( ),G e i G e1
, , ,i N

j
N

i
j

k
k

4

1

4avg p p=
9r r

=

t t/ � (75)

where , , .i M1 f=  Figure 4 shows the error ( )G e /j 4 -r  
( )G e, ,

/
i N

j 4
avg p

rt  for all , , .i M1 f=  The error in this case 
decreases as the number of partitions used for averag-
ing increases.� Y

Example 3
Consider the discrete-time asymptotically stable system 
(1)–(3) with the state-space realization

	
. .

. , , [ . ], .A B C D
0 5
0

0 2
0 7

4
1 1 25 3 0=

-
= = - =; ;E E � (76)

Let ( )x k R2!  be the state vector with the initial state .( )x 0  
Let u R N

0
1! #  be a realization of a stationary white random 

process with the Gaussian distribution .( , )0 1N  Define the 
input [ ] ,u u u R N

0 0
1 2!= #9  that is, u  is formed by repeat-

ing .u0  Consider zero initial conditions, that is, ( ) ,x 0 0=  
and define ( ) ( ) .y k Cx k=

9  We partition y R N1 2! #  into two 
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Figure 3  Example 1. A plot of ( ) ( )G e G e/ /j
N

j4 4-r rt  averaged over 
1000 experiments as N  increases, where u  is a realization of a 
stationary white random process with distribution ( , )0 1N  and the 
init ial condit ions [ ] ,x 0 00

T=  [ ] ,x 1 10
T=  [ ] ,x 10 100

T=  and 
[ ] .x 100 1000

T=  Note that ( )G e /
N

j 4rt  is a consistent estimator of 
( )G e /j 4r  for both zero and nonzero initial conditions.
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Figure 4  A plot of the estimation error ( ) ( )G e G e/ /j
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j4 4-r r ,t  where 
the estimate ( )G e /
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j 4rt  is obtained using 107  samples of the input 

and output data with zero initial conditions (dashed blue line), 107  
samples of the input and output data with the initial condition 

[ ]x 100 1000
T=  (dashed red line), and averaging the estimates 

obtained from the first i partitions each with 104  samples and 
, , .i 1 1000f=
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halves, where the first half of y  is the response of (1)–(3) 
due to the input u0  and the zero initial condition ( ),x 0  
while the second half of y  is the response of (1)–(3) due to 
the input u0  and the possibly nonzero initial condition 
( ) .x N  Figure 5 shows the difference ( ) ( ),y k y k N- +  where 

, ,k N0 1f= -  and N 500=  time steps for a given realiza-
tion .u0  Although ( )x 0 0= , the difference ( ) ( )y k y k N- +  is 
not zero, due to the fact that ( )x k  is not zero when data col-
lection begins at time .k N=

Next, define [ ( ) ( )] ,Y y y N 1 R,N
N1, g , != + - #

,
9  U ,N =,

9  
[ ( ) ( )] ,u u N 1 R N1, g , !+ - # and ,F 2N

p=
9  where p  is the 

smallest integer such that .N2p $  For all , , ,Fk 1 Nf=  let 
( )G ej ki  be the frequency response of (1)–(3) at .ki  Moreover, 

for all , , ,Fk 1 Nf=  let

	 ( ) ( ),G e M G e1
, , , , ,M N

j
N i

i

M
j

1
avg

k k=, ,
9i i

=

t t/ � (77)

where M  is the number of experiments and ( )G e, ,N i
j k

,
it  is the 

estimated value of ( )G ej ki  obtained from the ith experiment 
using either frequency-domain or time-domain identifica-
tion. For nonparametric frequency-domain identification, 

( )G e, ,N i
j k

,
it  is obtained by finding the ratio of the cross-power 

spectral density of Y ,N ,  and U ,N ,  to the power spectral den-
sity of U ,N ,  for the ith experiment. For parametric fre-
quency-domain identification, ( )G e, ,N i

j k
,

it  is obtained from 
the frequency response of the model constructed using 
least-squares identification with the frequency-domain data 

( )U e,N
j

,
it  and ( ),Y e,N

j
,

it  where ( , ],!i r r-  with TG  in (37) 
either estimated or set to zero. For ,n 2=  the parametric 
frequency-domain model (37) has n3 2 8+ =  parameters. 
However, setting T 0G =  implies that (37) has n2 1 5+ =  
parameters. For time-domain identification, ( )G e, ,N i

j k
,

it  is 
obtained from the frequency response of the estimated 
model constructed using least-squares identification with 
the time-domain data U ,N ,  and .Y ,N ,  The time-domain 
model (20) has n2 1 5+ =  parameters. Moreover, in the time-
domain and parametric frequency-domain models, ,b 00 =  
which is justified by the one-step delay in the output data.

Next, define the error
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M N
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M N
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N
k k= -, ,

9 i i
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and let np  be the number of parameters in the model 
used for identification. Let the unknown initial condition be 
( ) [ ] .x 0 200 200 T=  Figure 6 shows e , ,M N ,  using time-domain 

identification and parametric frequency-domain identifica-
tion with TG  is either estimated or set to zero, N 20=  sam-
ples, and ,  varies from one to 1000. Moreover, Figure 6 shows 
e , ,M N ,  obtained using nonparametric frequency-domain 
identification with ,N 10 000=  and ,N 100 000=  samples as 
,  varies from one to 1000. Note from Figure 6 that the fre-
quency-response function estimates obtained using time-
domain identification with n 5p =  parameters and parametric 
frequency-domain identification with n 8p =  parameters are 
much better than those obtained using nonparametric fre-
quency-domain identification and parametric frequency-
domain identification with n 5p =  parameters. Moreover, 
although noise-free data is used, Figure 6 shows that waiting 
for the free response to decay can improve the accuracy of the 
frequency response function estimates obtained using non-
parametric frequency-domain identification, but it does not 
yield exact estimates. This is due to spectral leakage effects 
and the effect of nonzero initial condition ( ),x ,  which occurs 
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Figure 6  A plot of e , ,M N ,  obtained using time-domain identification 
and parametric frequency-domain identification with N 20=  samples, 
and nonparametric frequency-domain identification with ,N 01 000=  
and ,N 100 000=  samples, ,  varies from 1 to 1000, and M 100=  
experiments. The unknown initial condition is .( ) [ ]x 0 200 200 T=
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Figure 5  A plot of the difference ( ) ( )y k y k N- +  for the system 
(1)–(3) with the realization (76), where , , ,k 0 50f=  ,N 500=  

[ ]u u u0 0=  is the input, and ( )x 0 0=  is the initial state. This plot 
shows that the difference ( ) ( )y k y k N- +  is not zero because ( )x k  
is not zero when data collection begins at time .k N=
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at the instant that data collection begins and thus corrupts 
the estimates obtained using finite data sets. On the other 
hand, Figure 6 shows that the frequency response function 
estimates obtained using time-domain identification and 
parametric frequency-domain identification with TG  esti-
mated are not affected by the nonzero initial conditions. 
Finally, to obtain an exact estimate of G  using parametric 
frequency-domain identification, it is necessary to estimate 

,TG  which results in n 1+  more parameters than the number 
of parameters required by time-domain identification to 
obtain an exact estimate of .G � Y

For the definition of spectral leakage and approaches to 
avoid it, see “Spectral Leakage Effects in Frequency-
Domain Identification.”

Conclusions
The first objective of this article was to emphasize a key 
distinction between time-domain and frequency-domain 
models, namely, time-domain models (including both state-
space and input–output models) fully account for the initial 
conditions. Next, the effect of initial conditions on the accu-
racy of time-domain and frequency-domain models obtained 
by system identification were investigated. Specifically, it was 
discussed if, within the context of frequency-domain identi-
fication, the effect of nonzero initial conditions can be 
removed or mitigated by either 1) discarding data collected 
near the beginning of the experiment  or 2) using a suffi-
ciently large data set. Finally, it was shown that, by partition-
ing the data set and averaging the frequency response 
estimates, the bias can be removed. Alternatively, semi-non-
parametric frequency-domain identification methods [13, 
Ch. 7] can address leakage errors and the effect of nonzero 
initial conditions. These methods assume that the frequency 
response of the system can be locally approximated by a low-
order polynomial [13, p. 226].
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Leakage error can be avoided by using periodic excitation and  

measurements over an integer number of periods in nonparametric  

frequency-domain identification.


