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Abstract 

In this paper we develop an upper bound for the real structured singular value that has the form of an implicit small 
gain theorem. The implicit small gain condition involves a shifted plant whose dynamics depend upon the uncertainty 
set bound and, unlike prior bounds, does not require frequency-dependent scales or multipliers. Numerical results show 
that the implicit small gain bound compares favorably with real-~t bounds that involve frequency-dependent scales and 
multipliers. 
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I.  Introduction 

The classical small gain theorem [17], along with its multivariable extension and quadratic stability inter- 
pretation [7, 10], provides the essential foundation for modem robust control theory. The extension of the 
small gain theorem in terms of the structured singular value [11] provides reduced conservatism in the case 
of  complex block-structured uncertainty, while providing a bound on worst-case H ~  performance. Further 
extension to the case of real and mixed uncertainty is considered in [5, 12]. 

The problem of worst-case 112 performance with constant real uncertainty has been addressed by 
guaranteed cost bounds. A variety of  such bounds have been developed; see [1] for a unified discussion. 
An alternative approach to worst-case H2 performance is given in [6] which characterizes the exact worst- 
case performance. As in [1] we seek guaranteed cost bounds that can be used for fixed-structure controller 
synthesis [8]. 

The goal of  the present paper is to develop a guaranteed cost bound that is particularly effective 
for skew-symmetric uncertainty. For motivation, consider the case of  a dissipative nominal dynamics 
matrix A (that is, A + A r is negative definite) with perturbation AA, where  A A = ~ i r l  •iAi, 6i is 
a real uncertain parameter and A i is skew symmetric, i = 1 . . . . .  r. The perturbed system 2 (0  = 
(A + AA)x(t) is quadratically stable for 6i E ( - o c ,  oe), i = 1 . . . . .  r, with common Lyapunov function 
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V(X)=xTx. Hence this uncertain system is asymptotically stable for arbitrary time-varying functions 
6i(t), t • [0, c~). 

Although quadratic stability analysis of this case is transparent, this problem is not easily addressed by the 
quadratic stability bound of [10, 13]. Specifically, in [10, 13] the perturbation AA has the form AA -- DFE, 
where F is a dense uncertain matrix assumed to satisfy FTF<~-2I  or, in the complex case, F*F~<7-2I. 
However, for assessing robust stability and bounding worst-case /-/2 performance, this structure does not 
account for the internal structure of skew-symmetric matrices. The resulting conservatism is shown by Example 
4.2 of the present paper. Skew-symmetric uncertainty is more appropriately treated by real structured singular 
value bounds that allow repeated parameters. 

The guaranteed cost bound developed herein involves a shifted dynamics matrix and thus is most closely 
related to the bounds obtained in [2, 15, 16]. In fact, this new bound is shown to be less conservative than the 
bounds of [2, 15, 16]. An interesting aspect of this new bound is its interpretation in terms of an implicit small 
9ain theorem, where the system matrices are functions of the uncertainty set bound. Furthermore, the implicit 
small gain condition provides a novel upper bound for the real structured singular value that does not require 
frequency-dependent scales or multipliers. Several numerical examples are provided to demonstrate the utility 
of the proposed bound. 

Notation 
[~, ~nXm, cn×m 

5~, p~n 

E, ~I(A), In 

real numbers, n x m real matrices, n x m complex matrices 
n x n symmetric matrices, n x n nonnegative-definite matrices 
expectation, range space of matrix A, n x n identity 

2. Robust stability and performance analysis 

Let o//C R nx" denote a set of perturbations AA of a given nominal dynamics matrix A E ~nx,, where A is 
asymptotically stable and 0 E q/. 

Robust Stability Problem. Determine whether the linear system 

~(t) = (A + AA)x(t), t>~O, (1) 

is asymptotically stable for all AA E ql. 

Robust Performance Problem. For the uncertain linear system 

it(t) = (A + AA)x(t) ÷ D w ( t ) ,  t>~O, (2) 

z(t) = Ex(t) ,  (3) 

where w(.) is zero-mean d-dimensional white-noise with intensity Id and E E R qx~, determine a performance 
bound J satisfying 

J(q/ )  ~ sup limsupE{llz(t)[l~ }<. J .  (4) 
A A E ~  t---, o~ 

If A + AA is asymptotically stable for all AA E d#, then 

J(q/ )  = sup trPaAV, (5) 
AAcql 

where PaA C ~nxn is the unique, normegative-definite solution to 

0 = (A + AA)TPaA + PAA(A + AA) + R, (6) 

and R ~- ETE and V ~= DD x. We now state a sufficient condition for robust stability and performance. 
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Lemma 2.1 (Bemstein and Haddad [1]). Let  f2 : ~"  ~ N ~ be such that 

AATp + PAA<~£),(P), A A E q l ,  P E N  n , (7) 

and suppose there exists P E ~ satisfyin9 

0 = ATp + PA + ~2(P) + R. (8) 

Then (A + AA ,E)  is detectable f o r  all AA E all i f  and only i f  A + AA is asymptotically stable f o r  all AA E ql. 
In this case, 

PAA <~ P, AA ~_ ql, (9) 

where PAA satisfies (6), and 

J (q l )  <~ tr PV. (10) 

Remark 2.1. Lemma 2.1 provides sufficient conditions for robust stability and performance for real parameter 
uncertainty AA E q/C ~"×". For complex uncertainty AA E q/c C C "×n Lemma 2.1 can be extended to provide 
robust stability by replacing (7) with 

A A * P + P A A < £ 2 ( P ) ,  AAEqlc ,  P E N  n , (11) 

where P is nonnegative definite Hermitian and f2(P) is Hermitian. 

Next we specialize to the case in which q/ is given by 

ql ~= AA E Nn;<n: AA = 6iAi, I'~'1 ~<~-l, i = 1 , . . . , r  , (12) 
i=1 

where 7 is a positive: number and, for i = 1 . . . . .  r, A i E R nxn is a fixed matrix denoting the structure of the 
parametric uncertainty and 6i is an uncertain real parameter. 

Remark 2.2. The set a-//defined by (12) includes repeated parameters without loss of generality. For example, 
if 61 = 62 then discard 62 and replace A1 by A1 + A2. In addition, q/ includes real block uncertainty. For 
example, if 

[ 1 AA = 61 32 

(~3 (~4. ' 

then AA = ~4=1 6iA,, where [; 0] 
A I =  0 

and likewise for A2, A3, and A4. 

We now introduce a specific choice of f2(P). For i = 1 . . . . .  r, let Si E R n×n and define 

zg ~ [(s~ + s~):;] 1/~ 

Note that -Zi<<.c¢(Si + sT)<<. Zi for all c¢ E [ -1 ,  1]. If  Si is skew symmetric then Zi = 0. Furthermore, for 
i = 1 . . . . .  r, define 

where ( )~ denotes ti~e Moore-Penrose generalized inverse. Note that ~- is symmetric and idempotent, that is, 
= i~ = ~f~. Furthermore, since ~[S; A~] = [Si A~ v], it follows that ~Si = S~ and Ate- = A;, xf s ,  = Ai and A; 
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is an EP matrix [3], that is, ~(Ai)  -= JI(AT), then ~ = A~Ai. Recall that normal matrices (and thus symmetric 
and skew-symmetric matrices) are EP. 

Lemma 2.2. For i = 1 . . . . .  r, let ai E ~, fli > 0, and Si E ~n×n. Then (7) is satisfied with Y2(P) given by 

F 
-2~ f2(e) = Z [7-2(aiS~ + fl~ATiP)V(a~S~ + fl iATP) + 7-1fli-1]~il Zi + fli i]. (13) 

i=l 

Proof.  Let AA E d// and P E N n. Then 

0 <~ ~ [ccg6,Si + fl,6,A~P - ~Fl~]T[~iOiSi ~- f l i 6 i A y e  -- f l]- l /~]  

i=1 

= ~ [6~(aiSi + fliAxip)T(a~S~ + fl~ATp) -- f171a~6i(Si + S T) + flf2~ _ 6i(A~P + PA~)] 
i=l  

<~ [7-2(aiSi+ fl~Axip)T(aiSi+ fliATe)+ 7-1fli-llc~ilZi+ fli i - 6 i ( A T p  + PA~)] 
i=l  

= f2(P) - (AATp + PAA). [] 

Remark 2.3. If 6i is assumed to be complex for some i, then it can be shown that O(P) given by (13) 
does not satisfy (11). Hence, unlike the quadratic stability bound of [10, 13], the bound (13) can distinguish 
between real and complex uncertainty. 

Combining Lemma 2.1 with Lemma 2.2 yields the following result. For convenience define the shifted 
dynamics matrix As~ __a A + 7 -2 ~i~=1 o~ifl iAiS i. 

Theorem 2.1. For i = 1 . . . . .  r, let at E ~, fli > O, and St E ~nxn.  Furthermore, suppose there exists a non- 
negative-definite matrix P satisfyin9 

fl2iPAiATiP) 7-1fizllo~iIzi --~ flZ2~.] -q- R. (14) O = ATsrP + PAsr + [7-2(o~iSiSiq X ~_ 

i=1 

Then (A + AA, E) is detectable for all AA E °ll i f  and only if  A + AA is asymptotically stable for all AA E ql. 
In this case, 

PAA <. P, AA E ql, 

where PaA satisfies (6), and 

J ( ~ )  <<. trPV. 

(15) 

(16) 

Remark 2.4. If only robust stability is required, then E can be chosen such that (A + AA, E) is detectable for 
all AA E q/. For example, choosing E = eln with e > 0 implies the detectability condition, where e is chosen 
so that (14) has a solution P with R = e2In. For robust performance, however, (14) must be solved with E 
specified by the robust performance problem. 

Remark 2.5. To draw connections of Theorem 2.1 with traditional Lyapunov theory, let R be positive definite, 
assume there exists a positive-definite solution to (14), and define the Lyapunov function candidate V(x) a= 
xXPx. Then the Lyapunov derivative is given by 

12(x) = --xT[f2(P) -- {AATp + PAA} + R] x, 
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where O(P) is given by (13). Now, using (7), it follows that ~'(x(t)) < 0 for x(.) satisfying (1) and for 
all AA E ql. Thus V(.) is a Lyapunov function for (1) that guarantees robust asymptotic stability over q/. 
A unified framework for constructing other Lyapunov functions satisfying (7) for #/ given by (12) is given 
in [1]. 

To improve the performance bound (16) we can optimize j & t rPV with respect to ~i and fli. The simplest 
case to consider is the case where S~ is skew symmetric or, equivalently, Zi -- 0. In this case 

and 

~3°¢ = 2fli7 -2 trPAiSi Q + 2a/7 -2 trSTSi Q = 0 
c3~i 

63°¢ --  2~i7 -2  trPAi Si Q + 2fli 7 -2  trPAiATpQ -- 2fl7 3 trD Q = 0, 

where Q satisfies 

--2 2 T --2 2 T O= AsT + "P fliAiAiP Q + Q AsT + 7 fliAiAi P + V. 
i=1 i=1 

If (19) has a solution then (17) and (18) imply 

tr PAi Si Q _ 71/2 tr~-Q tr Si QS T 
1/4. 

tr Si QS T tr ATi pQPAi -- ( tr PAi Si Q)2 

(17) 

(18) 

(19) 

(20) 

Furthermore, in this case, 

82j  trSiOST>~O, (21) ~ 2  - 27 -2 

~2j  _ 27 -2 trAJ'PQPAi + 6fl] -4 tr~-O ~> 0, (22) 

~2j  ~2j  
_ ( O : ! j  ,~2 = 1 6 7 - 2 f l ~ 4 t r l i O t r S i O  ST>IO 

and 

(23) 

which imply that (20) provides necessary conditions for a local minimum. 
In the case Zi ~ 0 we need to consider the cases ~i = 0 and ~i # 0 since J is not differentiable at ~i = 0. 

First, let ~i = 0. In this case 

gfl---~. = 2fli7 -2 trPAiATP Q - 2fl~ -3 tr~Q = 0, (24) 

where Q satisfies (19) with ~i = 0. If (19) has a solution with ~i = 0 then (24) implies 

. n 1/4 
fli=71/2 trl;Q I / ' (25) 

tr AT.-~Q--pA i 

Furthermore, in this case (22) holds which implies that (25) provides necessary conditions for a local mini- 
mum. Next, consider the case where ~i ~ 0. In this case 

~---~ = 2f l i7  -2  trPAiSi Q + 2~i7 -2  tr S/TS/O + 7 - 1 f l ~ l s g n ~ i  trZiQ = 0 (26) 
~cti 
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and 

~ J  
~[3i - 2~i7-2 t r P A i S i  Q + 213i7 -2  t r P A i A T P  Q - 7-~/V21~,1 t r Z i Q  - 2fl73 tr~-Q = O, (27) 

where Q satisfies (19) and sgn ~i ~= [O~i[/OQ. I f  (19) has a solution then (27) implies 

trPAiSiQ _ trZiQ 
CXi -- ~ [Ji 2trSiQST Tfl~l sguo~i . (28) 

Next, we obtain a frequency-domain condition for robust stability in terms of  an implicit small gain 
condition. 

Corollary 2.1. Let e > 0, let C~7 satisfy x CdTC~ = e2In + ~-~=~ [~-20~2sT si "q- ]1--1 fli-"l I~;IZ~ +/~/-2~], and define 
Bs a_ [ f l iA1".  fl~Ar]. I f  Ase is asymptotically stable and 

(29) 

then (1) is asymptotically stable for  all AA E all. 

Proof .  I f  A~7 is asymptotically stable and (29) holds, then it follows from Theorem 2.7 of  [10] that there 
exists a unique nonnegative-definite matrix P satisfying (14). Now, asymptotic stability of  (1) for all AA E 
follows from Lemma 2.1 with I2(P) given by (13). [] 

Remark  2.6. Note that (29) is an implicit small gain condition since As~ and Cs~ depend on the uncertainty 
bound 7. 

Re mark  2.7. I f  ,7, i = 1 . . . . .  r, is skew symmetric then Cs7 can be chosen to be 

Cs7 ~-----:-- [7-1 ~lSl .-[- 311[1 . . .  7-1o~rar --~ f l r l l r  gin] T. 

Re mark  2.8. Let ai = 0, /~i = 1, and [i = ln, i = 1 . . . . .  r, let e = 0, and define Bo ~= [B1 " "  Br] and Co & 
[ C ~ . . .  cT] v. Then (29) becomes 

l i fo(s in  - A)-~g011~ < 7, (30) 

which is a necessary and sufficient condition for robust stability with respect to complex uncertainty. In 
contrast, as noted in Remark 2.3, (29) is sufficient for real uncertainty. In Section 4 we show by means of  a 
counterexample that (29) is not sufficient for complex uncertainty. 

3. A peak upper bound for real-/~ 

In this section we obtain an upper bound for the real structured singular value. For i = 1 . . . . .  r, let A~ = BiCi, 
w h e r e  B i E ~n×qi, Ci E ~qixn, and qi <~ n. Defining B0 i, [B1 • Br] and Co zx [C [ T T . . . . . . .  C] ] , q / c a n  be written 
as 

ql = {AA E ~n×' :AA = BoACo, A = block~tiag(61Iq, . . . . .  6rlqr), [~il ~7 -~, i =  1 . . . . .  r}, (31) 

which is the real parameter uncertainty set considered in [5]. Conversely, an uncertainty set o f  the form (31 ) 
can always be written in the form (12) by partitioning B0, Co as above and defining ,4 i = BiCi ,  i = 1 . . . . .  r. 

Next, to obtain an upper bound for the real structured singular value, we note that the robust stability of  
(1) for all AA E q/ is equivalent to the robust stability of  the feedback interconnection of  G(s) and A, where 
G(s) ~= Co(sin-A)-1Bo and A E A~, where Ar & {A E ~q×q" A = block-diag(611q~ . . . . .  ~rlqr), 16il ~<7 - l ,  i = 



W.M. Haddad et al./ Systems & Control Letters 29 (1997) 197-205 203 

1,. . . ,  r} and q ~ ~-~li- 1 qi. Stability of this interconnection can be analyzed in terms of the real structured 
singular value defined by [5] 

( I~( G(3o9) ) ~I],~n{O'max(A): det (In + G(3e))A) = 0 

and, if det(I, + G(3~,)A) 7 ~ 0 for all A E A, then I~(G(3e))) ~= 0 where A ~= {A E ~qxq: A = block- 
diag(fllq,,. . . , fJq~), 6i E ~, i = 1, . . . , r} .  A necessary and sufficient condition for robust stability of the 
feedback interconnection of G(s) and A for all A E A 7 is given by #(G(3o))) < 7 for all o) E ~ [9]. 

Using the implicit small gain condition (29) we provide a peak upper bound for #(G(3e))), that is, a bound 
for the peak value of #(G(3o))) over frequency. For the statement of this result define 

#isg(G(s)) ~ inf{~ > 0: there exist cti E ~, e, fli > O, Si E R "xn, i = 1 . . . . .  r, such that 

Asf is asymptotically stable, and [[Csf(SI,-Asq)-lBs[[oo < ~}. (32) 

Corollary 3.1. Let #isg(G(s)) be 9iven by (32). Then 

sup I~( G( 3e) ) ) <~ #isg(G(s)). 
cocR 

(33) 

Proof. Suppose ~tisg(G(s))< supo)E R #(G(3o))) and let ~ > 0 be such that Pisg(a(s))< ~ ~< suppER I~(G(3o)). 
Then it follows from Corollary 2.1 that the feedback interconnection of G(s) and A is asymptotically stable for 
all A E A~. However, since supo~c ~ G(3e))>>.~ it follows from Theorem 4.1 of [9] that there exists A E A~ such 
that the feedback interconnection of G(s) and A is not asymptotically stable, which is a contradiction. [] 

4. Numerical examples 

Example 4.1. Let 

i01  ,ana. 
where q, fod, p > 0. Since PAA = (p/2rl)I2 solves (6) for all AA E ql, it follows that J(q/)  = (p/2q)tr V. Next, 
note that P = p12 solves (14) with Z1 = 0 and I1 = I2, where p is given by 

1 (~1 f l lq - . r lTz -Tv /2~l f l l r l - (1+pf l~) -k - r1272)  P =  (34) 

which is positive for all ~1~>(1 +pfl~)/2rlfll and 7,fll > 0. With cq = (l+pfl~)/2qfll satisfying (20), 
it follows that p = (l+pfl~)/2rlfl 2 and hence trPV = [(1 +pfl~)/2rlfl~]trV which implies that J(q/)~< 
inf/h~R[(1 + pfl2)/2rlfl~] tr V = (p/2q)tr  V. Finally, since J(q/ )  = (p/2r/)tr V it follows that Theorem 2.1 
is nonconservative with respect to both robust stability and worst-case//2 performance. 

Example 4.2. To compare the new bound (16) with the results given in [2, 4, 16] let 

[ 00, 1 I E °1 101 . 01 ] 141 -0.005 ' - ' 0.12 2.5 ' ' 

and S1 = AI. This example, which was considered in [2, 16], differs from Example 4.1 since R is not of 
the form /)12. For this example, A + 61A1 is asymptotically stable for all fil E ( -oo ,  oo) while Fig. 1 shows 
the worst-case //2 performance using the implicit small gain bound (16) for fil E (--2,2). For 7 -1 = 2, ~1 
and fll satisfying (21)) are given by 553.92 and 2.12, respectively. Applying the guaranteed cost bound of 
[4], robust stability is predicted only for 61 E (--1, 1), while the small gain theorem predicts stability only 
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2.5 

.~ 2 

~ 1.5 

o 

i I i i i J i 

(12) 

..... [4] 
[2] 

- -  [ 1 6 1  

+ Actual / 

+ + + + + + + + + 

/ 
/ 

: , , , : : , : 
0 . 5  0.2 0 4 0.6 0.8 1 1 2 1 4 1.6 1 8 2 

1/gamma 

Fig. 1. Performance bounds versus uncertainty bound. 

for 61 E ( -0 .005 ,  0.005). Furthermore, as shown in Fig. 1, the implicit small gain bound (16) provides a less 
conservative estimate of  robust performance than the robust performance bounds obtained in [2, 4, 16]. The 
cost bounds in Fig. 1 have been normalized with respect to the worst-case cost J (q / ) .  

Next, we only consider robust stability so that R = e212. Since in this case the uncertainty structure 
consists o f  a repeated scalar uncertainty, complex-/t can be computed exactly [11] and gives the same stability 
predictions as the small gain theorem. With cq = 1.702, fll = 483.2, and e = 0, the implicit small gain bound 
(16) was computed for 31 E ( -105 ,  105) which shows that f l i s g ( G ( s ) )  is not an upper bound for complex-/~. 

Example  4.3. Consider a pair of  coupled oscillators with uncertain modal frequencies modeled by 

A = 
0011000 4 [0'0il 

- 1  -0 .01 0 0.01 - 1  0 0 
0.01 0 -0 .01  , At = 0 0 0 ' 
0 0.01 - 4  - 0 . 0 1 ]  0 0 0 

A2 z 

0o 0!] 
0 0 0 
0 0 0 " 
0 0 - 1  

Let S 1 = A 1 and $2 = A2.  For this example, the standard small gain condition (30) guarantees robust stability 
for all AA E q/ with V -1 = 0.0071, while peak structured singular value analysis using fixed-structure Popov 
multipliers [14] guarantees robust stability for AA E q/ with V - t  = 0.01. Furthermore, the real-p bound with 
frequency-dependent multipliers [5] predicts robust stability for all AA E q/ with 7-1 = 1.493. With c<i = 5.0, 
fli = 35.96, i = 1,2, obtained from (20) and e = 10 -3,  the implicit small gain condition (29) guarantees 
robust stability for AA E q/ with 7 -1 = 1.499. 

Example  4.4. Finally, we consider a system with two distinct uncertainties corresponding to uncertainty in 
the diagonal elements and the nondiagonal elements. The nominal system and uncertainty structure matrices 
are given by 

[0' °1] [o ,] A = - 1  ' AI = , A2 = 0 " 
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Let $1 = $2 = A2 SO that Z1 = Z2 = 0. For this example, both the standard small gain condition (30) and the 
peak structured singular value analysis using fixed-structure Popov multipliers [14] guarantee robust stability 
for all AA E ql with 7 - l  = 0.151, and the real-/~ bound with frequency-dependent multipliers [5] predicts 
robust stability for all AA E ql with 7 -1 = 0.219. With cq = 2.22 x 10 -3, ~2 -- 1.3 x 10 -3, fll = 2.84 x 104, 
/32 = 2.36 x 104, and ,3 = 10 -8 the implicit small gain condition (29) guarantees robust stability for AA E ql 
with 7 -1 -- 0.219. 

5. Conclusions 

A novel peak upper bound for the real structured singular value that has the form of an implicit small 
gain theorem was developed. Specifically, this upper bound involves a small gain condition for a shifted 
plant whose dynamics depend upon the uncertainty set bound and, unlike prior bounds, does not require 
frequency-dependent scales or multipliers. The implicit small gain condition is equivalently characterized by a 
Riccati equation with a shifted dynamics matrix that additionally guarantees robust H2 performance. Numerical 
examples were given to demonstrate the bound. 
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