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ABSTRACT
This paper presents a numerical investigation of three direct architectures and three indirect architectures
for identifying a plant operating in closed loop. Motivated by adaptive control of systems with
nonminimum-phase (NMP) zeros and taking advantage of the fact that zeros are not moved by feedback,
the performance metric is the accuracy of the estimates of the NMP zeros of the plant. Assuming known
plant order, single-input, single-output, infinite-impulse-response models are constructed in the presence
of process and sensor noise. Least squares provides the baseline estimation technique, andprediction error
methods are used to account for correlation between the model input and noise. The goal is to compare
the accuracy of the NMP-zero estimates obtained from each method and for each architecture.
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1. Introduction

During closed-loop operation, it is often necessary to monitor
the plant in order to detect changes that can degrade stability
and performance. At the same time, more-accurate modelling
of the plant can facilitate the ability to enhance closed-loop
performance through on-line controller modification (Lan-
dau, 1999; Langer & Landau, 1996; vonWangenheim, 2012; Zhu
& Butoyi, 2002). Accordingly, closed-loop identification has
been extensively studied (Forssell & Ljung, 1999; Gustavsson,
Ljung, & Soderstrom, 1977; Hjalmarsson, 2005; Hjalmarsson,
Gevers, & De Bruyne, 1996; Van den Hof, 1998; Ljung, 2010;
Shen, Ding, Alsaedi, & Hayat, 2017), and various applications
are discussed in Epperlein, Bamieh, and Åström (2015), Engel-
hart, Boonstra, Aarts, Schouten and van der Kooij (2016), de
Vlugt, Schouten, and van der Helm (2003), and Smith (1998).

One of the benefits of feedback control is the ability to move
plant poles. In contrast, zeros are not moved by linear time-
invariant (LTI) feedback. In fact, nonminimum-phase (NMP)
zeros are one of the most challenging aspects of feedback con-
trol in terms of limiting achievable performance (Freudenberg,
Hollot, Middleton, & Toochinda, 2003). As discussed in Hoagg
and Bernstein (2007), knowledge of the locations of the NMP
zeros can impact the performance of adaptive control due to
the fact that the adaptive controller may attempt to cancel an
erroneously modelled NMP zero.

From the point of view of system identification, the fact
that zero locations are unchanged by LTI feedback can be
viewed as advantageous. In particular, both open-loop identi-
fication (Martensson & Hjalmarsson, 2005b,2009; Martensson,
Jansson, & Hjalmarsson, 2005; Rojas, Hjalmarsson, Gerencser,
& Martensson, 2011) and closed-loop identification (Martens-
son & Hjalmarsson, 2005a) can be used to estimate plant zeros.
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The present paper takes advantage of this fact by using closed-
loop identification methods to estimated NMP zeros. In partic-
ular, the goal of this paper is to compare the accuracy of various
architectures for estimating the NMP zeros of a plant operat-
ing in closed loop. After constructing a model of the open- or
closed-loop plant, the metric used to assess the performance of
the identification architecture is the accuracy of the estimate of
the NMP zeros.

The starting point for the present paper is the survey paper
(Forssell & Ljung, 1999), which analyses various architectures
for closed-loop identification. That work emphasises the prac-
tical importance of the problem and demonstrates the richness
of the subject in terms of the diverse architectures that can be
employed. The presentation in Forssell and Ljung (1999), how-
ever, does not include a numerical investigation of the relative
merits of candidate architectures and identification algorithms.
Consequently, as a complement to Forssell and Ljung (1999), the
contribution of the present paper is a detailed numerical study
that compares the accuracy of several closed-loop identification
architectures in estimating NMP zeros.

In contrast to open-loop identification, closed-loop identifi-
cation presents unique challenges in system identification (Van
denHof, 1998). For example, themodel inputmay lack sufficient
persistency due to the limited spectral content of the command
and disturbances. In addition, because of closed-loop operation,
the model input may be correlated with the exogenous noise,
potentially leading to parameter bias.

Unlike open-loop identification, closed-loop identification
can be performed with a variety of architectures. The basic
architecture for closed-loop identification is direct closed-loop
(DCL) identification, where the control signal and measure-
ment, that is, the plant input and output, are used to construct
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a plant model. The control signal, which serves as the model
input, arises in response to disturbance and sensor noise, and
thus is correlated with these noise signals, potentially leading to
bias in the parameter estimates.

A variation of DCL identification is to add an auxiliary sig-
nal to the control signal and then use the sum of these signals
as themodel input. This approach, called auxiliary direct closed-
loop (ADCL) identification, uses the auxiliary signal to enhance
identification accuracy at the cost of disrupting closed-loop
performance. The challenge of designing minimally disruptive
signals for closed-loop identification is discussed in Rivera, Lee,
Mittelmann, and Braun (2007).

An alternative approach to DCL identification is to estimate
a closed-loop transfer function rather than the plant itself. This
approach requires an external signal. The simplest approach of
this type, called indirect closed-loop (ICL) identification, uses the
command signal as the model input. To facilitate the method,
the command signal can be chosen to be sufficiently persistent
albeit at the cost of degrading closed-loop operation. A model
of the plant is subsequently extracted from the estimated closed-
loop model.

A variation of ICL identification is to add an auxiliary signal
to the control signal and then use only the auxiliary signal as the
model input. This approach, called auxiliary indirect closed-loop
(AICL) identification, identifies the overall closed-loop system.
As in the case of ICL identification, a model of the plant is sub-
sequently extracted from the estimated closed-loop model. In
order to simplify the identification, the auxiliary signal is chosen
to be a multiple of the command signal.

In addition to DCL, ADCL, ICL, and AICL identification, we
consider a nonstandard way in which the external signal used
for ADCL identification and AICL identification are injected
into the loop. In the standard approach, the auxiliary signal is
added to the control signal. In contrast, in intercalated injec-
tion, the auxiliary signal is added to an internal signal in the
feedback controller. This architecture arises in retrospective cost
adaptive control (Rahman, Xie, & Bernstein, 2017), where the
effect of the controller update at each step is equivalent to inter-
calated injection of a control-input perturbation. For closed-
loop identification, the intercalated auxiliary indirect closed-loop
and AICL architectures are characterised by the fact that the
resulting transfer functions have restricted numerators. This
paper thus considers six architectures for identifying a plant
operating in closed loop, namely DCL identification, standard
auxiliary direct closed-loop (ADCL/S) identification, interca-
lated auxiliary direct closed-loop (ADCL/I) identification, ICL
identification, standard auxiliary indirect closed-loop (AICL/S)
identification, and intercalated auxiliary indirect closed-loop
(AICL/I) identification.

In order to estimate NMP zeros, we apply identification tech-
niques with infinite impulse response (IIR) models. In order to
compare architectures for closed-loop identification, we make
the simplifying assumption that the plant order is known. In
the case where the plant order is unknown, additional tech-
niques for order estimation are needed. This can be done, for
example, by overestimating the plant order, impulsing the esti-
mated model, and then applying Ho-Kalman realisation theory
(Ho&Kalman, 1966; Juang & Pappa, 1985) along with heuristic
nuclear-normminimisation techniques (Recht, Fazel, & Parrilo,

2010; Smith, 2014) to estimate the model order and construct a
reduced-order model. Alternatively, this can be done by using
a finite impulse response (FIR) model structure to directly esti-
mate the Markov parameters for use in the Hankel matrix. This
is the approach used in Aljanaideh and Bernstein (2017), where
noncausal FIRmodels are used to account for the possibility that
the plant may be open-loop unstable.

We consider two techniques for identification, namely, least
squares (LS) and prediction error methods (PEM). LS provides
a baseline technique for estimation. In most cases, LS estimates
are biased (Ljung & Wahlberg, 1992) and, assuming that the
model input is white, Theorem 1 provides an analytical expres-
sion for the bias. A related expression is given in Section 6.5.2
of Eykhoff (1974). Setting the bias to zero yields a necessary
and sufficient condition under which themodel estimate is con-
sistent. In cases where Theorem 1 is applicable and the bias is
nonzero, the expression for the LS estimate is used in this paper
to provide a check on the correctness of the NMP-zero-error
estimate based on the numerical data.

A more effective approach to obtaining consistent estimates
within the context of closed-loop identification is PEM. PEM
is described in Ljung (1976, 2002) and applied to DCL and
ICL identification architectures in Van den Hof (1998), Fors-
sell and Ljung (1999), Van den Hof and Schrama (1993), and
Ljung and Forssell (1999). PEM can be viewed as an extension
of LS that fits the dynamics and noise model parameters over a
data window and a prediction horizon. Theminimisation of the
prediction error gives rise to a nonconvex optimisation prob-
lem in terms of the model parameters (Ljung, 1999; Söderström
& Stoica, 1988). The consistency of PEM for closed-loop iden-
tification is analysed in Forssell and Ljung (1999); Ljung (2002),
where it is shown that, if the command is persistently excit-
ing, the output noise has zero-mean and is uncorrelated with
the command, and the output noise model is asymptotically
stable and minimum phase, then the estimates of the model
parameters are consistent.

The contents of the paper are as follows. Section 3 describes
the estimation algorithms, including LS and prediction error
methods. Sections 4 and 5 describe the DCL and ICL identifi-
cation architectures, respectively, with and without an auxiliary
signal, including standard and intercalated injection. Section 6
presents a numerical comparison of the DCL identification
architectures. Two examples are considered. In the first exam-
ple, the plant is open-loop stable; in the second example, the
plant is open-loop unstable. Section 7 presents similar results
for the case of ICL identification architectures. Conclusions and
directions for future research are given in Section 8.

Notation: In denotes the n × n identity matrix, 0n×m denotes
the n × m zero matrix, and ‖ · ‖F denotes the Frobenius norm.

2. Model structure

Consider the discrete-time n0th-order single-input, single-
output transfer function G0 defined by

G0(q)
�= N0(q)

D0(q)
, (1)
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where q is the forward shift operator and

N0(q) =
n0∑
i=0

biqn0−i, D0(q) = qn0 +
n0∑
i=1

aiqn0−i. (2)

Letting u0 and y0 denote the input and output, respectively, of
G0, that is,

y0(k) = G0(q)u0(k), (3)

it follows that, for all k ≥ 0,

y0(k) = −a1y0(k − 1) − · · · − an0y0(k − n0) + b0u0(k)

+ · · · + bn0u0(k − n0), (4)

which can be written as

y0(k) = φy0,u0(k)θ , (5)

where

φy0,u0(k)
�= [−y0(k − 1) · · · − y0(k − n0) u0(k)

· · · u0(k − n0)], (6)

θ
�= [a1 · · · an0 b0 · · · bn0 ]T. (7)

The measured output y of G0 is defined as

y(k) �= y0(k) + w0(k) = G0(q)u0(k) + w0(k), (8)

where w0 is a noise signal. Since w0 is added to y0 in (8), it
appears to represent sensor noise. However, w0 can represent
either sensor noise or process noise or both by viewing w0 as
the output of a system Gw, that is,

w0(k) = Gw(q)w(k) = Nw(q)
Dw(q)

w(k), (9)

where Gw is a proper transfer function of order n̄ and w is zero-
mean white noise with standard deviation σw. In the case of
sensor noise,Gw represents a colouring filter. In the case of pro-
cess noise, Gw represents the effect of w depending on how w
enters the plant. In the special case where w and u0 are colo-
cated inputs, Gw is a copy of G0, where the initial conditions of
G0 and Gw are assigned so that (8) provides the correct forced
response. Note that the free response ofGw andG0 is accounted
for by the use of the forward shift operator q rather than the
complex Z-transform variable z (Aljanaideh&Bernstein, 2018).
It follows that, for all k ≥ 0,

w0(k) = −ā1w0(k − 1) − · · · − ān̄(k − n̄) + b̄0w(k)

+ · · · + b̄n̄w(k − n̄), (10)

which can be written as

w0(k) = φw0,w(k)θw, (11)

where

φw0,w(k) �= [−w0(k − 1) · · · − w0(k − n̄) w(k)· · ·w(k − n̄)],
(12)

θw
�= [ā1 · · · ān̄ b̄0 · · · b̄n̄]T. (13)

3. Identification algorithms

In this section, we briefly review LS and PEM for estimating
the coefficients of G0. For LS, Theorem 1 provides an explicit
expression for the bias of the estimates of the coefficients of
a transfer function whose model order is known. For simplic-
ity, we assume throughout the paper that the order n0 of G0
is known. For the DCL identification algorithms, n0 represents
the plant order, whereas, for the ICL identification algorithms,
n0 represents the order of the closed-loop transfer function. We
also assume that all random processes in the paper are ergodic
so that ensemble averages are equal, with probability 1, to time
averages of realisations.

3.1 LS estimation

In order to estimate G0, we use the model structure

Gm(q) �= Nm(q)
Dm(q)

, (14)

where Nm(q) �= ∑n0
i=0 b̂iq

n0−i and Dm(q) �= qn0 + ∑n0
i=1 âi

qn0−i. Define

φy(k)
�= [−y(k − 1) · · · − y(k − n0)],

φu0(k)
�= [u0(k) · · · u0(k − n0)], (15)

and ñ �= max {n0, n̄}. Let � ≥ ñ be the number of samples of y
and u0, and define

�y,�
�=

⎡
⎢⎢⎣

φy(ñ)
...

φy(�)

⎤
⎥⎥⎦ ∈ R

(�−ñ+1)×n0 ,

�u0,�
�=

⎡
⎢⎢⎣

φu0(ñ)
...

φu0(�)

⎤
⎥⎥⎦ ∈ R

(�−ñ+1)×(n0+1), (16)

�y,u0,�
�= [

�y,� �u0,�
] ∈ R

(�−ñ+1)×(2n0+1),

�y,�
�=

⎡
⎢⎢⎣
y(ñ)
...

y(�)

⎤
⎥⎥⎦ ∈ R

�−ñ+1. (17)

Then the LS estimate θ̂LS� of θ , which is defined by

θ̂LS�

�= argminθ̄∈R2n0+1‖�y,u0,�θ̄ − �y,�‖F, (18)

is given by

θ̂LS�

�= (�T
y,u0,��y,u0,�)

−1�T
y,u0,��y,�. (19)
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Next, define the (2n0 + 1) × (2n0 + 1) positive-semidefinite
covariance matrices

�
�= E⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y2(k) · · · Y(k)Y(k + n0 − 1)

...
. . .

...

Y(k)Y(k + n0 − 1) · · · Y2(k)

−Y(k)U0(k + 1) · · · −Y(k)U0(k + n0)

...
. . .

...

−Y(k)U0(k − n0 + 1) · · · −Y(k)U0(k)

−Y(k)U0(k + 1) · · · −Y(k)U0(k − n0 + 1)

...
. . .

...

−Y(k)U0(k + n0) · · · −Y(k)U0(k)

U2
0 (k) · · · U0(k)U0(k + n0)

...
. . .

...

U0(k)U0(k + n0) · · · U2
0 (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

�0
�= E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y2
0 (k) · · · Y0(k)Y0(k + n0 − 1)

...
. . .

...

Y0(k)Y0(k + n0 − 1) · · · Y2
0 (k)

−Y0(k)U0(k + 1) · · · −Y0(k)U0(k + n0)

...
. . .

...

−Y0(k)U0(k − n0 + 1) · · · −Y0(k)U0(k)

−Y0(k)U0(k + 1) · · · −Y0(k)U0(k − n0 + 1)

...
. . .

...

−Y0(k)U0(k + n0) · · · −Y0(k)U0(k)

U2
0 (k) · · · U0(k)U0(k + n0)
...

. . .
...

U0(k)U0(k + n0) · · · U2
0 (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

It thus follows that

�
wp1= lim

�→∞
1
�
�T

y,u0,��y,u0,�, �0
wp1= lim

�→∞
1
�
�T

y0,u0,��y0,u0,�.

(22)

Define the n0 × n̄matrixHGw , where, if n̄ ≤ n0, then

HGw
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
i=0

H2
w,i · · ·

∞∑
i=0

Hw,iHw,n̄−1+i

...
. . .

...
∞∑
i=0

Hw,iHw,n̄−1+i · · ·
∞∑
i=0

H2
w,i

... · · · ...
∞∑
i=0

Hw,iHw,n0−1+i · · ·
∞∑
i=0

Hw,iHw,n0−n̄+i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

and, if n̄ ≥ n0, then

HGw
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
i=0

H2
w,i · · ·

∞∑
i=0

Hw,iHw,n0−1+i

...
. . .

...
∞∑
i=0

Hw,iHw,n0−1+i · · ·
∞∑
i=0

H2
w,i

· · ·
∞∑
i=0

Hw,iHw,n̄−1+i

· · · ...

· · ·
∞∑
i=0

Hw,iHw,n̄−n0+i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (24)

whereHw,i is the ith Markov parameter of Gw. Note that, if n̄ =
n0, then (23) and (24) coincide and are given by the n0 × n0
matrix

H̃Gw
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
i=0

H2
w,i · · ·

∞∑
i=0

Hw,iHw,n0−1+i

...
. . .

...
∞∑
i=0

Hw,iHw,n0−1+i · · ·
∞∑
i=0

H2
w,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(25)

Lemma 1: Let u0 and w be realisations of zero-mean, uncorre-
lated stationary white random processes U0 and W , respectively,
with finite second moments, and let w0 be given by (9). Then

� = �0 +
[

σ 2
wH̃Gw 0n0×(n0+1)

0(n0+1)×n0 0(n0+1)×(n0+1)

]
. (26)

Proof: See Appendix 1. �

Note that, if � > 3ñ = 3max{n0, n̄}, then �y,u0,� is a tall
matrix. The following result is a consequence of the fact that
� 	→ σmin(�

T
y,u0,��y,u0,�) is nondecreasing.
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Lemma 2: Let ñ ≥ 1. Then � is positive definite if and only if,
with probability 1, there exists � ≥ 3ñ such that rank�y,u0,� =
2n0 + 1.

Next, define the n0 × (n̄ + 1) matrix Hw, where, if n̄ < n0,
then

Hw
�=

⎡
⎢⎢⎢⎢⎢⎣

0 Hw,0 · · · Hw,n̄−1

...
. . . . . .

...

0 · · · 0 Hw,0

0(n0−n̄)×1 · · · · · · 0(n0−n̄)×1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

n0×(n̄+1),

(27)
if n̄ = n0, then

Hw
�=

⎡
⎢⎢⎣

0 Hw,0 · · · Hw,n0−1

...
. . . . . .

...

0 · · · 0 Hw,0

⎤
⎥⎥⎦ ∈ R

n0×(n0+1), (28)

and, if n̄ > n0, then

Hw
�=

⎡
⎢⎢⎣

0 Hw,0 · · · Hw,n̄−n0 · · · Hw,n̄−1

...
. . . . . .

...
. . . . . .

0 · · · 0 Hw,0 · · · Hw,n̄−n0

⎤
⎥⎥⎦

∈ R
n0×(n̄+1). (29)

Also, define

Nw
�=

⎡
⎢⎢⎢⎣
b̄0
...

b̄n̄

⎤
⎥⎥⎥⎦ , Dw

�=

⎡
⎢⎢⎣
ā1
...

ān̄

⎤
⎥⎥⎦ , θw

�=
[
Dw

Nw

]
∈ R

2n̄+1, (30)

where Nw(q) = ∑n̄
i=0 b̄iq

n̄−i, and Dw(q) = qn̄ + ∑n̄
i=1 āiq

n̄−i.
The following result gives an explicit expression for the bias

in LS estimation of the coefficients of (1) in the case where the
input is white noise and the measurement noise is coloured and
uncorrelated with the input. This result is an equivalent version
of a result given in Section 6.5.2 of Eykhoff (1974).

Theorem 1: Consider the problem of estimating the transfer
function (1) with noisy measurements (8), where the measure-
ment noise is given by (9). Assume that u0 and w are realisations
of zero-mean, uncorrelated stationary white random processes U0
andW , respectively, with finite second moments. Then

� lim
�→∞

θ̂LS�

wp1= �0θ +
[
σ 2
wHGwDw − σ 2

wHwNw

0(n0+1)×1

]
. (31)

Now assume that � is positive definite. Then

lim
�→∞

θ̂LS� − θ
wp1= (�−1�0 − I2n0+1)θ

+ �−1

[
σ 2
wHGwDw − σ 2

wHwNw

0(n0+1)×1

]
. (32)

Consequently, the following statements are equivalent:

(i) H̃GwD0 = HGwDw − HwNw.

(ii) lim�→∞ θ̂LS�

wp1= θ .

Proof: See Appendix 2. �

In the case where� is positive definite, Theorem 1 shows that
the asymptotic bias b �= lim�→∞ θ̂LS� − θ of the LS estimate θ̂LS�

is also given by (32). Setting �b = 0 yields

HGwDw − HwNw = 1
σ 2
w
[In0 0n0×(n0+1)](� − �0)θ = H̃GwD0,

(33)
which is a necessary and sufficient condition under which the
LS estimate θ̂LS� is consistent. As a special case, assume that
n̄ = n0, Nw = 1, and Dw = D0. Then H̃Gw = HGw and, since
the relative degree of Gw is n0, it follows thatHw = 0n0×(n0+1).
Therefore, (i) is satisfied, and thus b = 0. This case is consid-
ered in Söderström and Stoica (1988, p. 186) and Ljung (1999,
p. 205).

Theorem 1 assumes that the random processes U0 and W
are uncorrelated. As shown below, for the DCL identification
architectures, u0 represents the control signal, whereas, for the
ICL identification architectures,u0 represents the command sig-
nal. Consequently, these randomprocesses are correlated for the
DCL identification architectures considered in Section 4, but
they are uncorrelated for the ICL architectures considered in
Section 5.

3.2 Prediction errormethods

For PEM, y is written as

y(k) = G0(q)u0(k) + w0(k), (34)

where

w0(k) = Gw(q)w(k) (35)

and Gw represents the noise dynamics, the order of Gw is n̄,
and w is zero-mean white noise. The one-step-ahead predictor
of (34) is defined by Ljung (1999)

ŷ(k | θ̂�, θ̂w,n̄,�)
�= (1 − Gw(q, θ̂w,n̄,�)−1)u0(k)

+ Gw(q, θ̂w,n̄,�)−1Ĝ0(q, θ̂�)y(k), (36)

where Ĝ0(q, θ̂�) and Gw(q, θ̂w,n̄,�) are models of G0(q) and
Gw(q), respectively, and Gw(q) is minimum phase. Note that
Ĝ0(q, θ) = G0(q).

Using the one-step-ahead predictor model (36), the predic-
tion error is defined as

ε(k | θ̂�, θ̂w,n̄,�)
�= y(k) − ŷ(k | θ̂�, θ̂w,n̄,�). (37)

The prediction error estimate θ̂PEM� of θ is thus given by

θ̂PEM� = argmin
θ̄∈R2n0+1,θ̄w,n̄∈R2n̄+1

V�(θ̄�, θ̄w,n̄,�), (38)
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where

V�(θ̄�, θ̄w,n̄,�)
�= 1

�

�∑
k=1

‖ε(k | θ̄�, θ̄w,n̄,�)‖2. (39)

In Sections 6 and 7, we use the Matlab System Identification
Toolbox (Ljung, 2001) to obtain PEM-based estimates of the
plant NMP zeros. Note that the predictor filters in (36) are func-
tions of both G0 and the noise model Gw. Unlike LS, PEM
estimates a model of the noise dynamics Gw. As discussed in
Söderström and Stoica (1988, p. 209), if the order of themodel is
underparameterised, the parameter estimates will converge to a
minimiser of the asymptotic loss function, and thus will not give
consistent estimates. Therefore, for all examples in this paper,
we choose the order of the model of Gw to be equal to order
n0 of G0. When utilising PEM within the System Identification
Toolbox, we use the Box–Jenkins model structure.

4. DCL architectures

Consider the discrete-time closed-loop system in Figure 1 con-
sisting of the single-input, single-output transfer functions,
plant G of order n, and controller Gc of order nc. Note that the
plant and controller are defined as

G(q) �= N(q)
D(q)

, Gc(q)
�= Nc(q)

Dc(q)
. (40)

The signal r is the command, y is the measured output, the
error e = r − y, andw0 represents sensor noise. DCL identifica-
tion is used to identify the open-loop transfer function within
a closed-loop system by using measurements of the input and
output of the plant. In this section, we define three architectures
associated with DCL identification. For all three DCL architec-
tures, the estimated transfer functionGm is of order n, the plant
G = G0, and the noise transfer function Gw = 1. As stated in
Section 3.2, the order of the PEMnoisemodel estimate is chosen
to be of order n.

4.1 DCL identification

In DCL identification, the plant G = G0 is identified from the
control input u to the output y as shown in Figure 1. The

measured output y is given by

y(k) = y0(k) + w0(k), (41)

where

y0(k)
�= G(q)u(k). (42)

4.2 ADCL/S identification

In ADCL identification, we specify an auxiliary signal v0 that
is added to the controller output. The auxiliary signal v0 can
be used to enhance persistency for identification, and we iden-
tify the transfer function from u to y. We consider two varia-
tions of ADCL identification, namely standard and intercalated
auxiliary closed-loop identification.

In ADCL/S identification, the auxiliary signal v0 is added to
the controller output uc, andG = G0 is identified by using u and
y, where

u(k) = uc(k) + v0(k), (43)

as shown in Figure 2. Note that, if v0 = 0, then ADCL/S is
equivalent to DCL identification.

4.3 ADCL/I identification

In ADCL/I identification, the auxiliary signal v0 is added to the
controller output uint between the numerator and denominator
of the controller, where

uint(k) = Nc(q)
Dc(q)

e(k) + qnc − Dc(q)
Dc(q)

v0(k), (44)

and G = G0 is identified by using u and y as shown in Figure 3,
where, by using (43) and (44),

u(k) = Nc(q)
Dc(q)

e(k) + qnc

Dc(q)
v0(k). (45)

Note that, if v0 = 0, then u = uint and ADCL/I is equivalent to
DCL identification.

5. ICL architectures

ICL identification can be used to estimate the open-loop trans-
fer function within a closed-loop system by first estimating the

Figure 1. DCL identification from u to y. No auxiliary signal is used, and the persistency of u depends on the command r and the noisew0.



INTERNATIONAL JOURNAL OF CONTROL 7

Figure 2. ADCL/S identification from u to y. To enhance persistency, the auxiliary signal v0 is added to the controller output uc.

Figure 3. ADCL/I identification from u to y. To enhance persistency, the auxiliary signal v0 is added to uint, which is an internal signal in the controller. Intercalated injection
arises in adaptive control (Rahman et al., 2017).

closed-loop system and then determining the open-loop plant
by using knowledge of the controller. However, since feedback
does notmove the zeros of the plant, it is not necessary to extract
a model of the open-loop plant in order to estimate the NMP
plant zeros. In this section, we define three architectures asso-
ciated with ICL identification. For all three ICL architectures,
the true model G0 varies for each architecture but the order for
each is the same, namely, n0 = n + nc. The noise model Gw for
each architecture is the sensitivity function, which is of order
n̄ = n + nc. Hence, n0 = n̄. Therefore, the estimated transfer
functionGm is of order n + nc, and, as stated in Section 3.2, the
order of the PEM noise model estimate is chosen to be of order
n0 = n̄.

5.1 ICL identification

In ICL identification, the closed-loop transfer function from r
to y is identified as shown in Figure 4. The measured output y is
given by

y(k) = T(q)r(k) + S(q)w0(k), (46)

where

T(q) �= G(q)Gc(q)
1 + Gc(q)G(q)

= N(q)Nc(q)
D(q)Dc(q) + N(q)Nc(q)

, (47)

S(q) �= 1
1 + Gc(q)G(q)

= D(q)Dc(q)
D(q)Dc(q) + N(q)Nc(q)

. (48)

Figure 4. ICL identification from r to y. No auxiliary signal is used, and the persistency of u depends on the command r and the noisew0.
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Figure 5. AICL/S identification from r to y. To enhance persistency, the auxiliary signal v0, which is added to the controller output uc, is proportional to the command r.

Figure 6. AICL/I identification from v0 and r to y. To enhance persistency, the auxiliary signal v0, which is added to uint, is proportional to the command r.

Note that for ICL, G0(q) = T(q) with n0 = n + nc, and
Gw(q) = S(q).

5.2 AICL/S identification

In AICL identification as well as in ADCL identification, we
specify an auxiliary signal v0 that is added to the controller
output. Unlike ADCL identification, however, we identify the
closed-loop transfer function from r to y. In AICL/S, the auxil-
iary signal v0 is added to the controller output uc, as shown in
Figure 5, where v0(k) = αr(k) and α is a constant scalar value.
The measured output y is given by

y(k) = T(q)r(k) + �(q)v0(k) + S(q)w0(k)

= (T(q) + α�(q))r(k) + S(q)w0(k), (49)

where T and S are defined in (47) and (48), respectively, and

�(q) �= G(q)
1 + Gc(q)G(q)

= N(q)Dc(q)
D(q)Dc(q) + N(q)Nc(q)

. (50)

Note that both of the zeros of the transfer functions T and �

include the zeros of G. Furthermore, the transfer function from
r to y is

G0(q)
�= T(q) + α�(q) = N(q)(Nc(q) + αDc(q))

D(q)Dc(q) + N(q)Nc(q)
, (51)

and the noise transfer function Gw(q) = S(q).

5.3 AICL/I identification

In AICL/I identification, the auxiliary signal v0 is added to the
controller output uint between the numerator and denomina-
tor of the controller written as in (44) with the plant input u
specified in (45). The transfer function from r to y is identified
as shown in Figure 6, where v0(k) = αr(k) and α is a constant
scalar.

The plant output y is given by

y(k) = T(q)r(k) + �int(q)v0(k) + S(q)w0(k)

= (T(q) + α�int(q))r(k) + S(q)w0(k), (52)

where

�int(q)
�= �(q)

qnc

Dc(q)
= N(q)qnc

D(q)Dc(q) + N(q)Nc(q)
, (53)

and T and S are defined in (47) and (48), respectively. Note
that �int given by (53) is similar to (50) except that the numer-
ator of (53) includes nc zeros at 0 rather than the controller
denominator. Furthermore, the transfer function from r to y is
given by

G0,int(q)
�= T(q) + α�int(q) = N(q)(Nc(q) + αqnc)

D(q)Dc(q) + N(q)Nc(q)
,

(54)
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Table 1. Summary of DCL and ICL identification architectures.

Architecture Input of Gm Gm Order of Gm

DCL Gc(q)e(k) G(q) n
ADCL/S Gc(q)e(k) + v0(k) G(q) n

ADCL/I Gc(q)e(k) + qnc

Dc(q)
v0(k) G(q) n

ICL r(k) T(q) n + nc
AICL/S r(k) T(q) + α�(q) n + nc
AICL/I r(k) T(q) + α�int(q) n + nc

For each architecture, the input, estimated transfer function, and order of the
estimated transfer function are shown.

and the noise transfer function Gw(q) = S(q). For each identi-
fication architecture, Table 1 summarises the input to the esti-
mated transfer functionGm, the estimated transfer functionGm,
and the order of Gm.

6. Numerical investigation of DCL identification
architectures

In this section, we investigate the accuracy of the NMP-
zero estimates obtained from LS and PEM for the DCL
architectures. Two examples are considered, both of which
involve a third-order plant with one minimum-phase zero
and one NMP zero. The first plant is asymptotically stable
with a pole near the unit circle, while the second plant is
unstable.

Table 2. DCL architecture exogenous-signal standard deviations for Example 6.1.

Architecture Command r Auxiliary signal v0 Noisew0

DCL 1.2 − 0.024
ADCL/S 1.2 0.5 0.034
ADCL/I 1.2 0.5 0.032

The standard deviation of the noise w0 is adjusted so that the signal-to-noise
ratio (57) is 31.5 dB for all simulations.

Example 1 (Asymptotically stable, NMP plant): Consider the
asymptotically stable, NMP plant

G(q) = (q − 0.6)(q − 1.5)
(q − 0.1)(q − 0.5)(q − 0.98)

, (55)

where the NMP zero is zNMP = 1.5, with the controller

Gc(q) = −0.5174q2 + 0.3315q − 0.02795
q3 − 0.2265q2 + 0.6855q − 0.5142

. (56)

The exogenous inputs r, w0, and v0 (where applicable) are inde-
pendent zero-mean white noise signals whose standard devia-
tions are listed in Table 2. For each architecture, the signal w0 is
adjusted so that the signal-to-noise ratio defined by

SNRdB
�= 20log10

RMS(y)
RMS(w0)

, (57)

where RMS(x) represents the root mean square of the sampled
signal x. For all simulations, the signal-to-noise ratio is fixed to

Figure 7. Simulation statistics for Example 6.1 for theDCL architectures for LS andPEM. For 2000 independent realisations of the inputs, the upper plot shows the absolute
value of the mean NMP-zero error as a function of the number of samples. The lower plot shows the corresponding standard deviation of the NMP-zero error.
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be 40, which corresponds to 31.5 dB. The motivation for main-
taining a constant signal-to-noise ratio across all simulations is
to ensure that comparisons between different architectures are
meaningful.

For the DCL architectures using both identification algo-
rithms, Figure 7 shows the mean absolute value of the error in
the estimated NMP zero and the corresponding standard devi-
ation averaged over 2000 independent realisations of the inputs
for an increasing number of samples �. To account for the pres-
ence of complex zeros in the estimated model and to determine
the distance to the closed NMP zero, the NMP-zero estimate is
found by taking theminimum of the difference between the real

Table 3. Comparison for the DCL architectures of the mean NMP-zero-error esti-
mate based on LS with � = 105 and the NMP-zero error based on (32) for Example
6.1.

Architecture
Mean NMP-zero-error
estimate based on LS

NMP-zero error
based on (32)

DCL 2.92 × 10−4 4.54 × 10−3

ADCL/S 7.98 × 10−4 3.61 × 10−3

ADCL/I 1.16 × 10−4 3.63 × 10−3

Table 4. DCL architecture input signal standard deviations for Example 6.2.

Architecture Command r Auxiliary signal v0 Noisew0

DCL 0.134 − 0.033
ADCL/S 0.134 0.5 0.147
ADCL/I 0.134 0.5 0.040

The noise w0 is scaled so that the signal-to-noise ratio (57) is 31.5 dB for all
simulations.

part of the roots of the estimated transfer function numerator
and the true zero zNMP. Note that, since the input u is corre-
lated with the noise w0, the LS estimates are not consistent for
any of the three architectures. In contrast, the accuracy of the
PEM estimates improves as the number of samples increases,
especially for large numbers of samples, thus suggesting consis-
tency. For both identification algorithms, the standard deviation
decreases in a similar fashion, with PEM at a lower value.

In all three DCL architectures, the input r is correlated with
the noise signalw0, and thusTheorem1 is not applicable. Table 3
compares the accuracy of the LS estimates of the NMP zero
obtained from data from 2000 independent realisations of the
inputs averaged over � = 105 samples with the estimate of the
NMP-zero based on the analytical expression for lim�→∞ θ̂LS�

given by (32). Note that, because of the correlation between the
input u and the noisew0, the NMP-zero-error bias given by (32)
is inaccurate, as expected.

Example 2 (Unstable, NMP plant): Consider the unstable,
NMP plant

G(q) = (q − 0.6)(q − 1.5)
(q − 0.1)(q − 0.5)(q − 1.3)

, (58)

where the NMP zero is zNMP = 1.5, with the stabilising con-
troller

Gc(q) = −6.357q2 + 3.827q − 0.3191
q3 + 0.1312q2 + 6.943q − 4.419

. (59)

The inputs r, w0, and v0 (where applicable) are independent
zero-mean white noise signals whose standard deviations are

Figure 8. Simulation statistics for Example 6.2 for all three DCL architectures using LS and PEM. For 2000 independent realisations of the inputs, the upper plot shows the
absolute value of themean NMP-zero error as a function of an increasing number of samples. The lower plot shows the corresponding standard deviation of the NMP-zero
error.
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listed in Table 4. As in the previous example, w0 is adjusted so
that the signal-to-noise ratio is 31.5 dB for all simulations.

For all three DCL architectures using LS and PEM, Figure 8
shows the absolute value of the mean errors in the NMP-zero
estimates and the standard deviations based on 2000 indepen-
dent realisations of the inputs for various values of �. Note that,
as in the previous example, the LS estimates are not consistent
for any of the three architectures since the input u is corre-
lated with the noisew0; in contrast the PEM estimates appear to
be consistent. For both identification algorithms, the standard
deviation decreases as the number of samples increases.

In all three DCL architectures, the input r is correlated with
the noise signalw0, and thusTheorem1 is not applicable. Table 5
compares the accuracy of the LS estimates of the NMP zero
obtained from data from 2000 independent realisations of the
inputs averaged over � = 105 samples with the estimate of the
NMP-zero based on the analytical expression for lim�→∞ θ̂LS�

given by (32). Note that, because of the correlation between the
input u and the noisew0, the NMP-zero-error bias given by (32)
is inaccurate, as expected.

7. Numerical investigation of ICL identification
architectures

In this section, Examples 6.1 and 6.2 are used to compare the
consistency of the NMP-zero estimates obtained from LS and
PEM for all three ICL architectures.

Table 5. Comparison for the DCL architectures of the mean NMP-zero-error esti-
mate based on LS with � = 105 and the NMP-zero error based on (32) for Example
6.2.

Architecture
Mean NMP-zero-error
estimate based on LS

NMP-zero error
based on (32)

DCL 0.194 0.353
ADCL/S 0.183 0.333
ADCL/I 0.167 0.309

Table 6. ICL architecture input signal standard deviations for Example 7.1.

Architecture Command r Noisew0

ICL 1.2 0.0235
AICL/S 1.2 0.0341
AICL/I 1.2 0.0267

The noisew0 is scaled so that the signal-to-noise ratio (57) remains at 31.5 dB for all
simulations.

Example 3 (Asymptotically stable, NMP plant): We consider
the asymptotically stable NMP plant and controller in Exam-
ple 6.1. The inputs r and w0 are independent zero-mean white
noise signals and, for the AICL/S and AICL/I architectures,
we choose α = 0.5 so that v0(k) = 0.5r(k). As in the previ-
ous examples, the standard deviation of w0 is adjusted so that
the signal-to-noise ratio is 31.5 dB for all simulations shown in
Table 6.

For the ICL architectures using both identification algo-
rithms, Figure 9 shows the absolute value of the mean errors in
the estimated NMP zero and the standard deviations based on

Figure 9. Simulation statistics for Example 7.1 for all three ICL architectures using both identification algorithms. For 2000 independent realisations of the inputs, the
upper plot shows the absolute value of the mean NMP-zero error as a function of an increasing number of samples. The lower plot shows the corresponding standard
deviation of the NMP-zero error.
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Table 7. Comparison for the ICL identification architectures of the mean NMP-
zero-error estimate based on LS with � = 105 and the NMP-zero error based on
(32) for Example 7.1.

Architecture
Mean NMP-zero-error
estimate based on LS

NMP-zero error
based on (32)

ICL 0.84 × 10−4 1.28 × 10−4

AICL/S 1.80 × 10−5 2.76 × 10−5

AICL/I 1.70 × 10−4 1.63 × 10−4

2000 independent realisations of the inputs for various values
of �. Note that, for all three architectures, the LS estimates are
not consistent. Although the input signals r and w0 are uncor-
related and the model and noise transfer functions have the
same denominator, the matrixHwNw is not zero, and thus (i) of
Theorem 1 is not satisfied. For both identification algorithms,
the standard deviation decreases as the number of samples
increases.

In all three ICL architectures, the input r is uncorrelated
with the noise signal w0, and thus Theorem 1 is applicable. For
2000 independent realisations of the inputs and � = 105 sam-
ples, Table 7 compares the averages of the NMP-zero errors
using LS with the analytical expression (32) for the bias given
by Theorem 1. Compared with the cases considered in Figures 3
and 5, where r and w0 are correlated, the NMP-zero error based
on (32) is significantly closer to the numerical estimates, which
demonstrates agreement between Theorem 1 and the numerical
data.

Example 4 (Unstable, NMPplant): To compare the three indi-
rect architectures, we consider the unstable, NMP plant (58)

Table 8. ICL architecture input signal standard deviations for Example 7.2.

Architecture Command r Noisew0

ICL 0.134 0.0334
AICL/S 0.134 0.0383
AICL/I 0.134 0.0322

The noise w0 is scaled so that the signal-to-noise ratio (57) is 31.5 dB for all
simulations.

with the stabilising controller (59). The inputs r andw0 are inde-
pendent zero-mean white noise signals and, for the AICL/S and
AICL/I architectures, we set α = 0.5 so that v0(k) = 0.5r(k).
As in the previous examples, the standard deviation of w0 is
adjusted so that the signal-to-noise ratio is 31.5 dB for all
simulations shown in Table 8.

For all three ICL architectures using both identification algo-
rithms, Figure 10 shows the absolute value of the mean errors
in the estimated NMP zero and standard deviations based on
2000 independent realisations of the inputs for various values
of �. Note that, for all three architectures, the LS estimates are
not consistent. Although the input signals r and w0 are uncor-
related and the model and noise transfer functions have the
same denominator, the matrixHwNw is not zero, and thus (i) of
Theorem 1 is not satisfied. For both identification algorithms,
the standard deviation decreases as O(�−1/2) as the number of
samples increases.

In all three ICL architectures, the input r is uncorrelated
with the noise signal w0, and thus Theorem 1 is applicable. For
2000 independent realisations of the inputs and � = 105 sam-
ples, Table 9 compares the averages of the NMP-zero errors

Figure 10. Simulation statistics for Example 7.2 for all three ICL architectures using both identification algorithms. For 2000 independent realisations of the inputs, the
upper plot shows the absolute value of the mean NMP-zero error as a function of an increasing number of samples. The lower plot shows the corresponding standard
deviation of the NMP-zero error.
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Table 9. ICL architecture comparison between the LS NMP-zero-error estimates
with � = 105 and the NMP-zero error based on (32) for Example 7.2.

Architecture
Mean NMP-zero-error
estimate based on LS

NMP-zero error
based on (32)

ICL 3.05 × 10−3 3.26 × 10−3

AICL/S 9.19 × 10−3 9.44 × 10−3

AICL/I 3.94 × 10−3 3.95 × 10−3

using LS with the analytical expression (32) for the bias given
by Theorem 1. Compared with the cases considered in Figures 3
and 5, where r and w0 are correlated, the NMP-zero error based
on (32) is significantly closer to the numerical estimates, which
demonstrates agreement between Theorem 1 and the numerical
data.

8. Conclusions and future research

This paper numerically investigated the effectiveness of vari-
ous architectures for closed-loop identification, including three
DCL identification architectures and three ICL identification
architectures. These architectures included standard cases with
and without auxiliary signals as well as two novel architec-
tures involving intercalated injection of the auxiliary signal. IIR
models were fit using LS estimation, which provided a baseline
method, and PEM, which account for noise correlation. To sim-
plify the study, the plant order was assumed to be known; for
each indirect architecture, the auxiliary signal was chosen to
be a multiple of the command; and errors-in-variables (EIV)
noise was not considered. To allow a meaningful comparison,
the signal-to-noise ratio was normalised across all architectures.
Motivated by adaptive control of systems with NMP zeros and
taking advantage of the fact that zeros are not moved by feed-
back, the performance metric is the accuracy of the estimates
of the NMP zero of the plant. Two examples were consid-
ered, both of which were third-order and NMP. One plant was
asymptotically stable and one was unstable.

As expected, for all of the architectures and for both exam-
ples, the LS estimates exhibited bias, whereas the PEM estimates
indicated consistency. In fact, Figures 7 and 8 show that PEM
is highly accurate for large numbers of samples. In comparing
architectures, some observations can be made. Based on PEM
for DCL identification, standard injection of the auxiliary signal
appears to be advantageous; DCL and ADCL with intercalated
injection provide roughly the same accuracy. For ICL identifica-
tion, the trends are mixed. For the asymptotically stable plant,
standard injection of the auxiliary signal appears to be advan-
tageous, whereas, for the unstable plant, intercalated injection
appears advantageous.

In view of the practical importance of closed-loop identi-
fication, further investigation is warranted. A more detailed
study would include a comparison with instrumental vari-
ables (Söderström & Stoica, 2002; Taylor, Pedregal, Young,
& Tych, 2007; Young, Jakeman, &McMurtrie, 1980) as an alter-
native to PEM. An extension of practical value is the case where
noise corrupts the signals used for identification; this is an EIV
identification problem (Diversi, 2008; Hjalmarsson, Martens-
son, Rojas, & Soderstrom, 2011; Söderström, 2007; Van Huf-
fel & Lemmerling, 2013). The cases of unknown plant order,
MIMOplants, and higher order plants withmultipleNMP zeros

are of interest. Finally, experimental application of the various
architectures and identification methods may shed more light
on the relative advantages of the competing architectures.
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Appendices

Appendix 1. Proof of Lemma 1
First, note that

�y,� = �y0,� + �̃w0,�, (A1)
where

�y0,� =

⎡
⎢⎢⎢⎣

−y0(ñ − 1) · · · −y0(ñ − n0)

... · · ·
...

−y0(� − 1) · · · −y0(� − n0)

⎤
⎥⎥⎥⎦ ∈ R

(�−ñ+1)×n0 , (A2)

�̃w0,� =

⎡
⎢⎢⎢⎣

−w0(ñ − 1) · · · −w0(ñ − n0)

... · · ·
...

−w0(� − 1) · · · −w0(� − n0)

⎤
⎥⎥⎥⎦ ∈ R

(�−ñ+1)×n0 . (A3)

Next, note that

lim
�→∞

1
�
�T

y0,��y,�
wp1= lim

�→∞
1
�
�T

y0,��y0,�,

lim
�→∞

1
�
�T

u0,��y,�
wp1= lim

�→∞
1
�
�T

u0,��y0,�, (A4)

lim
�→∞

1
�
�̃T

w0,��y,�
wp1= lim

�→∞
1
�
�̃T

w0,��̃w0,�
wp1= σ 2

wH̃Gw . (A5)

Using (22), (A1), (A4), and (A5) yields

�
wp1= lim

�→∞
1
�

[
�T

y,��y,� �T
y,��u0,�

�T
u0,��y,� �T

u0,��u0,�

]
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�→∞

1
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⎣�T

y0,��y0,� + �̃T
w0,��̃w0,� �T

y0,��u0,�

�T
u0,��y0,� �T

u0,��u0,�

⎤
⎦ ,

= lim
�→∞

1
�

[
�T

y0,��y0,� �T
y0,��u0,�

�T
u0,��y0,� �T

u0,��u0,�

]

+ lim
�→∞

1
�

[
�̃T

w0,��̃w0,� 0n0×(n0+1)
0(n0+1)×n0 0(n0+1)×(n0+1)

]
,

= �0 +
[

σ 2
wH̃Gw 0n0×(n0+1)

0(n0+1)×n0 0(n0+1)×(n0+1)

]
.

Appendix 2: Proof of Theorem 1
Note that (19) implies that

�T
y,u0,��y,u0,�θ̂

LS
� = �T

y,u0,��y,�. (A6)

Dividing (A6) by � and letting � → ∞ yields

lim
�→∞

1
�
�T

y,u0,��y,u0,�θ̂
LS
� = lim

�→∞
1
�
�T

y,u0,��y,�. (A7)

Using (22) we can write

lim
�→∞

1
�
�T

y,u0,��y,u0,�θ̂
LS
�

wp1= � lim
�→∞

θ̂LS� . (A8)

Next, note that

�y,� = �y0,� + �w0,�, (A9)
where

�y0,� = �y0,u0,�θ , �w0,� = �w0,w,�θw, (A10)
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and

�y0,u0,�
�=

⎡
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φy0,u0 (ñ)

...

φy0,u0 (�)

⎤
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φw0,w(ñ)
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φw0,w(�)
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Using (A9) and (A10) we can write
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where
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w(ñ) · · · w(ñ − n̄)

... · · ·
...

w(�) · · · w(� − n̄)

⎤
⎥⎥⎥⎦ , (A13)

�w0,�
�=

⎡
⎢⎢⎢⎣
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Moreover, note that
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where
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Using (A12), (A11) can be written as
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Since U and W are uncorrelated zero-mean random processes, it follows
that
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Using (A17)–(A21), dividing (A16) by �, and letting � → ∞ yields
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Using (A8) and (A22), (A7) yields
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