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Adaptive stabilization of non-linear oscillators using direct adaptive control

JEONGHO HONGT and DENNIS S. BERNSTEIN{*

Direct adaptive controllers developed for linear systems are applied to non-linear oscillators. A wide range of non-
linearities are considered, including stiffness non-linearities, input non-linearities, limit cycle oscillations and friction.
Numerical results suggest that by increasing the speed of adaptation, these direct adaptive controllers are highly effective

when applied to non-linear plants.

1. Introduction

The goal of both robust control and adaptive control
is to achieve system performance without excessive
reliance on plant models. While robust control seeks
to desensitize a control system to plant uncertainty,
the gains of a robust controller are fixed. On the other
hand, an adaptive controller seeks to adjust controller
gains during operation in order to permit greater
uncertainty levels than can be tolerated by robust
control and to improve system performance during
operation, which is not possible with robust control.

This paper considers an output feedback adaptive
stabilization problem with unknown constant disturb-
ance rejection. Our results are closely related to those
of Astrom and Wittenmark (1995), Krstic et al. (1995),
Ioannou and Sun (1996) and Kaufman et al. (1998)
which focus on model reference adaptive control. The
adaptive controller given by Theorem 1 requires that the
disturbance satisfy a matching condition and that an
output range condition be satisfied. This range con-
dition is related to a positive real condition for the
closed-loop system. Next we specialise this result in
Corollary 1 and Corollary 2 to the case of full-state
feedback, in which case the range condition is satisfied.
By representing the system in controllable canonical
form, we show that adaptive stabilization is possible
without additional knowledge of the plant dynamics.
However, this approach assumes that the sign of the
input coeflicient is known. If this assumption is violated
then universal stabilization techniques are required
(Ilchmann 1993).

The primary objective of the present paper is to
apply the adaptive controller of Corollary 2 to non-
linear systems. In particular, we consider non-linear
oscillators possessing various non-linearities including
stiffness non-linearities, input non-linearities, limit
cycle oscillations and friction. As shown in the paper,

Received 23 August 1999. Revised 28 September 2000.

* Author for correspondence. e-mail: dsbaero@umich.edu

tDepartment of Aerospace Engineering, Department of
Electrical Engineering and Computer Science, The University
of Michigan, Ann Arbor, MI 48109-2140, USA.

the direct adaptive controller is remarkably effective in
adaptively stabilizing these plants in spite of the broad
range of non-linearities.

2. Adaptive stabilization with constant disturbance
rejection

Consider the linear system
%(1) = Ax(1) +Bu(t) +d (1)
y(t) = Cx(1) (2)
(1) = Ex(1)

where x(r) € R u(r) € R".d € ®", y(r) €R" and
(1) € R".

Theorem 1: Assume there exists Ky € R"*™ such that
As 2 A +BK,C is asymptotically stable and assume
there exists ¢s € R™ such that Bs =d. Let R € R™*"™
be positive semidefinite and assume (A¢,R) is control-
lable. Let P € R™*" be the positive-definite solution to
the Lyapunov equation 0 = AEP +PA +R, and assume
there exists M € R™*" such that BTP = ME. Finally,
let T € R™* ™ and A € R be positive definite, and
let A > 0. Then (2.1)—(2.3) with the control law

t
t

u(t) = K(0)y(1) + (1) (4)
where

K(1) = —TMz(1)y"(1)A (5)

TORESVED (6)

yields Rx(t) — 0 as t — oo.
Proof: Define

K(1)
o1) £ 6(1) +,
so that (5) and (6) imply

II>

K(t) — K,
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Then the closed-loop system consists of (7) and (8) and
%(1) = (A, +BK(1)C)x(1) +B(1t) (9)

Next, consider the positive-definite Lyapunov candi-
date

V(x,lf,q;) =x"Px +tr T 'KA'KT +tr o)~ o7

The derivative of V along trajectories of the closed-loop
system is given by

V(x,K,$) =x"(ATP +PA)x +2x"PBKCx

+2"PB) +2ur TR ATKT
L 2tr A lgT

= x"Rx +2u0K(A7' KT +Cxx"PB)
+2tr qg()flq;T +x"PB)

— x"Rx +2tr K(A' KT + Cxx"E™M ")
12t (A oT +xTETMT)

= xTRx + 20 K(A'KTT ™" +y"MT)
F2u (AT +2TMT)

= —x"Rx

It now follows from Theorem 4.4 in Khalil (1996) that,
for every initial condition x(0), K(0) and ¢(0), the
states of the closed-loop system are bounded, and
x"(£)Rx(t) — 0 as t — co. Since R is positive semi-
definite, it follows that Rx(t) — 0 as t — oo. O

Theorem 1 requires that there exist K, and ¢, such
that A, =A +BK,C is asymptotically stable and
B¢, =d. However, the control law (4)—(6) does not
require explicit knowledge of K ,¢, and d. On the
other hand, implementation of (5) and (6) requires
that there exist a known matrix M such that
BTP = ME. This condition and the Lyapunov equation
0=A!P+PA,+R are KYP conditions that are
equivalent to the assumption that (A¢,B,ME) is the
realization of a positive real transfer function.

Note that (6) is an integrator state which serves to
reject the constant disturbance d.

Next, we specialise Theorem 1 to the full-state feed-
back case. In this case C = E =1 so that the assump-
tions of Theorem 1 are satisfied with M = B P.

Corollary 1: Assume there exists K, € R™*™ such that
A £ A +BK is asymptotically stable and assume there
exists ¢; € R™ such that Boy=d. Let R € R™ " be
positive semidefinite and assume (Ag,R) is controllable.
Let P € R™*"™ be the positive-definite solution to the
Lyapunov equation 0 =ATP +PA+R. Finally, let

I e R™ and A € R™*" be positive definite, and let
A > 0. Then (1) with the control law

u(t) = K(t)x(t) +¢(1) (10)

where
K(t) = —T'B"Px(t)x"(1)A (11)
(1) = —BTPx(1)A (12)

yields Rx(t) — 0 as t — oo.

3. State feedback for uncertain systems

Consider the linear system (1) with

A= [Ao} B— |:O(nt1)><1:| J— |:0(nt1)><1:|
a b do
(13)

where x(1) € R, u(r) €%, d € R, Ao € RV,
acR™™, b, dy € R and b # 0. Define

B A |:0(nt1)><1:|
0 sign b

Corollary 2: Assume there exists K, € '™ such that
A £ A +BK, is asymptotically stable. Let R € R%*™
be positive semidefinite and assume (A ,R) is controll-
able. Let P € "™ be the positive-definite solution to
the Lyapunov equation 0 = ATP +PA +R. Finally, let
I'>0and X\ >0 and let A € R be positive definite.
Then (1) with the control law

u(t) = K(1)x(1) +¢(t) (14)

where
K(t) = —T'BJPx(1)x"(1)A (15)
Ht) = =By Px(1)\ (16)

yields Rx(t) — 0 as t — oo.

Proof: First, note that because of the structure of B
and d, it follows that ¢, =dy/b satisfies Bo, =d.
Second, since A and A are arbitrary, 4 in (11) and A in
(12) can be replaced by |b| ™' 4 and |b| "'\, respectively.
Thus, (11) and (12) imply (15) and (16). |

Note that (15) and (16) require the solution P of the
Lyapunov equation 0 =AIP +PA_ +R. Since b # 0,
let K, = (1/b)(a, — a), where a, € R 1t thus follows

that
A 0]1 A
amaon= [ e[l -0 =[]
aS

a b

Since ag can be chosen to stabilize A without knowledge
of either a or b, it follows that P can be determined
without knowledge of either a or b. However, sign b
must be known in order to implement (15) and (16).
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To illustrate Corollary 2, consider the case n, =1
and let a;, <0 and R = —2a,. Then P =1, and (15)
and (16) are given by
(17)

(18)

K(1) = —(sign b)X\x%(1)
(1) = ~(sign b)Aox(1)

where \; £ A/ and \, £ \. Note that (17) and (18)
yield x(#) — 0 as t — oo for all \;,\, > 0.

Next, consider the case n, =2, and let A, =[0 1],
p>0,a <0, ayp < —pand

—2pay 0
R = Py
0 —2p —2ag,

Then

Adaptive control of a non-linear oscillator with hardening spring: (a) K, (solid), K, (dashed), (b) ¢, (c) u, (d) r4e (solid),

p= [pa52asl p:|
p 1

satisfies 0 = AL P +PA, +R
by

and (15) and (16) are given

K (1) = —(sign b)[\pxi(t) + (A1 + Nap)x i (1)xa(1)

+ Aiax3(1)]

Ky(1) = —(sign b)[A;pxi(1)
+ ox5(1)]

o(1) = —(sign b)Xs[ px (1) +x5(1)]

(19)

(A2 +Xop)x (1)x,(1)
(20)

(21)
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Figure 2. Deadzone non-linearity.

where

[Al Az

M AZ] £(1/nAa

is positive definite and A\; £ A\ > 0. Note that (19)—(21)
yield x(z) — 0 as t — oo for all p,A;,Ay,A\3 >0 and
for all Ay, such that )\%2 < AA,p. Setting A, =0
for simplicity yields

K\(1) = —(sign )X\ [ pxi(r) +x,(1)xo(1)]  (22)
Ko(1) = —(sign b)Xy[x3(1) +pxi()xy(1)]  (23)
@(1) = —(sign b)As[ px,(1) +x5(1)] (24)

Corollary 2 can be applied to the following step
command problem. Consider the nth-order linear system

A1) = ayr (1) = o — ayi(1) —ayr(t) = bu(r) (25)

with the requirement that n(¢) approach rg., without
knowledge of a=[a; --- a,] and b, except the sign
of b. Defining the error signal x,(¢) £ t) — ry,, and
the state x = [x; X, - x(lnfl)]T, (25) becomes

O(n—-1)x
(1) = Ax(1) +Bu(1) + (d” ‘] (26)
0
where
A
A= O]
a
and  dy = —ajrg, where  Ag=1[00, _1yx1 Ly 1
a=la, --- a,), and I, | is the (n, —1) x(n, — 1)

identity matrix. Thus (26) has the form (1) and (13).
Note that dy is unknown since a; is unknown.

Thus the controller (14)-(16) can be used for this
problem.

4. Non-linear stiffness

Consider an oscillator with non-linear stiffness
modelled by
(1) +ci(t) +f(n(1)) = bu(1) (27)

where f: %t — R. The control objective is to require n(?)
to approach r,,, without knowledge of c,f(-), and b,
except the sign of b which is taken to be positive. If
¢ >0 and rf(r) > 0 for all r € R, then (27) is a stable
oscillator. However, we do not invoke these assump-
tions. Defining the error signal x(t) & r(t) — rye, and
the state x £ [x, x,]", equation (27) becomes

0 1 0 0

0= | oy 0+ o]0+ [] @9

Wheref(xl)xl :f(xl +rcles) 7f(rdes) and dO = 7f(rdes)-

Equation (28) is of the form (26) with a; replaced by the

unknown state-dependent coefficient —f(x,) and

a, = —c. The controller (14) with (22)-(24) is applied
to this problem.

First we let f(-) be a hardening spring modelled by

f(r) = kyr+k;r° (29)

where k; > 0 and k3 > 0. In this case f(-) and d, are
given by

f(xl) = kl +kB»(x% +3rclesxl +3r§es)
dO = 7k1rdes - k3l‘3€s

We apply controller (14) with (22)-(24) and k; =1,
c=02, k3=1, b=3, and rgs = 0.5. Let /0) = —1,
{0) =0, K,(0) =0, K5(0) =0, ¢(0) =0 and choose
adaptation weights p=1, A\; =1, A\, =1, A3 =50.
Furthermore, at t = 20, k5 is changed from 1 to 4, and
Tqes 1S changed from 0.5 to 3.

Next, we let f(-) be the deadzone function shown
in figure 2. We apply controller (14) with (22)-(24)
and with e, = —-0.5, e, =05, c=1, b=15, and
rges = 0. Let A0)=0.1, #H0)=0.2, K,0)=0,
K,(0) =0, ¢(0) =0 and choose adaptation weights
p =1, Ay =10, A, = 10, A3 = 10. Initially, the adapta-
tion is stopped. As can be seen from figure 3, n(¢)
approaches 0.3 due to the deadzone. At t =10, the
adaptation is started, and, as can be seen from figure 3,
1) approaches 0.

Next, we let f(-) be the relay function shown in
figure 4. We apply controller (14) with (22)—(24) and
with ¢=1, b=5, and r4,=0. Let r0)=0.6,
{0) = 0.9, K,(0) =0, K,(0) =0, ¢(0) =0 and choose
adaptation weights p=1, X, =100, X, =100,
A3 = 100. Initially, the adaptation is stopped. As can
be seen from the dashed line in figure 5, the phase plot
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Figure 3. Adaptive control of a non-linear oscillator with deadzone in stiffness: (a) K, (solid), K, (dashed), (b) ¢, (c) u, (d) r.

shows a limit cycle. At ¢ = 30, the adaptation is started,
and, as can be seen from the solid line in figure 5, r(¢)
and #t) approach 0.

Finally, we let f(-) be the backlash/hysteresis
function shown in figure 6. We apply controller (14)
with (22)-(24) and with A=1, ¢=1, b=15 and
rges = 0. Let A0)=06, H0)=09, K(0)=0,
K,(0) =0, ¢(0) =0 and choose adaptation weights
p=1, X =100, X, =100, Az =100. Initially, the
adaptation is stopped. As can be seen from the dashed
line in figure 7, the phase plot shows a limit cycle. At
t = 30, the adaptation is started and, as can be seen
from the solid line in figure 7, n(¢) and () approach 0.

As can be seen from figures 1, 3, 5 and 7, n(1)
tracks ry., that is, the controller (14) with (22)-

(24) is able to compensate for the non-linear stiffness
in (27).

5. Non-linear damping

Consider an oscillator with position-dependent
damping modelled by

1) +g(r(1)) 1) +-krt) = bu(1) (30)

where g: ® — R. The control objective is to require #?)
to approach ry,, without knowledge of g(-),k and b,
except the sign of b, which is taken to be positive.
Defining the error signal x,(¢) £ r{t) —rqes and the
state x £ [x, %,]", equation (30) becomes
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Figure 4. Relay non-linearity.
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relay in stiffness.
0 1

—k 7g(x1(l‘) +rdes)
0
] (31)

7krdes

x(1)
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b

Equation (31) has the form (26) with a; = —k, a,
replaced by the unknown state-dependent coefficient
—g(x| +rges), and d replaced by the unknown constant
—krges. The controller (14) with (22)—(24) is applied to
this problem.

As a special case, consider the Van der Pol equation
modelled by

gr)=e1-r) (32)

f(x)

2w/

’
’
’

Figure 6. Backlash/hysteresis non-linearity.

- open-loop : - closed-loop

dr(ty/dt

Figure 7. Adaptive control of a non-linear oscillator with

backlash/hysteresis in stiffness.

with k =1 and b= 1. We apply controller (14) with
(22)-(24) and with € = 0.4 and ry, = 0. Let {0) =1,
{0) =0, K,(0) =0, K5,(0) =0, ¢(0) =0 and choose
adaptation weights p=1, A\ =1, =1, A\ =1.
Initially, the adaptation is stopped. As can be seen
from the dashed line in figure 8, the phase plot shows
a limit cycle. At ¢ = 20, the adaptation is started and, as
can be seen from the solid line in figure 8, H{¢) and #¢)
approach 0.

Next, we consider a time-varying command ry.(?)
and define the error signal x () £ r{t) — rye(?) and the
state x £ [x, %,]". Then equation (30) becomes
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Figure 9. Adaptive command following for Van der Pol’s
oscillator with ry.(#) = sin wr.

0 1
—(k +80x1(1))74es(1))

0 0 “
u(t) + [do(f)] (33)

b

where  g(x))x; = g(x| +raes) — 8(rae)  With  dy(t) =
—Faes() — &(Faes(1))Faes(t) — kraes(t). Equation (33) has
the form (26) with a; and a, replaced by unknown
state-dependent, time-varying coefficients and with
time-varying dy(t). The controller (14) with (22)-(24) is
applied to this problem.

As a special case, consider the Van der Pol equation
(32) with the time-varying command sinwt and k =1
and b = 1. Then g(-) and d, are given by

(1) =

+

frictional force

velocity

Figure 11. Stick-slip friction versus velocity.

8(x (1)) = —&(x(t) +2sin wt)
do(1) = w* sin wt — ew cos® wt — k sin wt

We apply controller (14) with (22)—(24) and with € = 0.8
and w=1. Let r0)=-5 #H0)=0, K,0)=0,
K,(0) =0, ¢(0) =0 and choose adaptation weights
p =1, =100, A, = 100, A\; = 100. Initially, the adap-
tation is stopped. As can be seen from the dashed line in
figure 9, the phase plot shows the Van der Pol limit
cycle. At t = 20, the adaptation is started and, as can
be seen from the solid line in figure 9, the phase plot
shows a change from the Van der Pol limit cycle to a
circle.

6. Stick-slip friction

The equations of motion for the mass-spring system
shown in figure 10 are given by

mi{t) +kr(t) = k((t) +kL — Fi(¢) (34)
k(1) = kn(t) — kL +u(t) (35)

where m, k > 0, L is the distance between the mass and
the massless bar when the spring is relaxed and the stick-



Adaptive stabilization of non-linear oscillators 439

200 T ' ' ' ' T T ' '
1400 1 1 1 1 I 1 1 1 1
0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2
time
(@)
500 T T T T T T T T T
O - R RISEELE T SR I .
1) P N S R .
1000 - f A R ER e LR PEET SR PP TP TR LT PREE SEPPEERD 4
B0 o R A AR R SRRSELELELIEETRIE SEEEERIIE EITEE 1
-2000 1 1 1 1 I 1 1 1 1
0 02 0.4 0.6 0.8 1 12 14 1.6 1.8 2
time
(©
Figu

slip frictional force Fy(7) is given by (Canudas de Wit
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re 12. Adaptive control of a mass-spring system with stick-slip friction: (a) K; (solid), K, (dashed), (b) ¢, (c¢) u,
(d) command =1, r (solid), ¢ (dashed).

et al. 1993)

The

and

Fe(t) = (1 — w(0))F{(t) +x(t)F4(t) (36)
stick friction Fy(f) is given by
F(t) = sat(y, a,) (k1) +d,i(1)) (37)
the dynamic friction Fy(7) is given by
Fy(1) = agsgn (1)) + aai(1) (38)

where g, oy, o, kg, dg >0

7 i(1) = —k(t) +1 — e (/HOY (39)

K

and
(1) = (1 —r(2))x(t) — ﬁ(t)ln(t) (40)

T
where 7,., 7, > 0. The sat function is defined by

a if n>a

sat () =q 0 if Inl<a (41)
—a if n<a

As can be seen in figure 11, the magnitude of stick
friction, which affects the initial movement of the
mass, is greater than the magnitude of the slip friction,
which is the frictional force when the mass is moving. By
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Figure 13. Adaptive control of a non-linear oscillator with deadzone in the input path: linear controller: (a) u, (b) r without
deadzone (dashed), with deadzone (solid); adaptive controller: (¢) u, (d) r.

defining the error signal x(¢) £ ) — rges and eliminat-
ing the internal physical variable ((7), (34) becomes

. N 1 1

60) = 5(0) = —u) ——F()  (42)
The controller (14) with (22)—(24) is applied to this prob-
lem.

Figure 12 shows the response of the mass-spring
system with stick-slip friction with m =1, k = 100,
L=10,r4es=1, 09=1, oy =15, ap = 0.6, 7,, = 0.01,
7, =0.001, k, = 10000, and d, = 1100. Let ) =0,
{0) = 0.04, K,(0) = 0, K,(0) =0, ¢(0) =0 and choose
adaptation weights p =40, A\; = 500, A\, = 1, A3 = 100.
As can be seen in figure 12(d), Ht) approaches the

commanded position. However, due to stick friction,
figure 12(d ) shows overshoot at the beginning of con-
trol. A critical aspect is the distance between the mass
and the massless bar, which has increased due to the
control action.

7. Input non-linearity

Consider an oscillator with input non-linearity
modelled by the Hammerstein system

A1) +ci(t) +hr(t) = bf (u(1)) (43)

The control objective is to require 1) to approach rye
without knowledge of ¢, k, f(-) and b, except the sign of
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(d)

Figure 14. Adaptive control of a non-linear oscillator with relay in the input path: linear controller: (a) u, (b) r, without relay
(dashed), with relay (solid); adaptive controller: (¢) u, (d) r.

b which is taken to be positive. Defining the error signal
x1(t) £ H(t) — ryes, equation (7.1) becomes

0 1 0
0=[2 ol o
which has the form (26) with a; = —k and a, = —c and
with bu(t) replaced by bf(u(t)). The controller (14) with
(22)—(24) is applied to this problem.

First, we let f(-) be the deadzone non-linearity
shown in figure 2. In this case, uf(u) > 0, and thus u
and f(u) have the same sign. We apply controller (14)
with (22)—-(24) and with e; = —0.5, ¢, = 0.5, ¢ = =2,
k=—-1, b=1, rge =0, {0)=-0.3, and /0)=0.5.
For comparison, a stabilizing linear controller is

designed for the system (44) with f(u) = u, which is
u(r) = —2x,(t) — 4x,(r). This controller is applied to
the system (44) with the deadzone non-linearity f(-). It
can be seen from the solid line in figure 13(b) that n(t)
does not approach ry.s when a linear controller is used.
However, by choosing adaptation weights p =1,
A =10°, X\, =10°, \; =10 and letting K,(0) =0,
K,(0) =0, and ¢(0) =0, figure 13(d) shows that n(t)
approaches rq., when the adaptive controller is used.
Next, we let f(-) be the relay non-linearity shown in
figure 4. Note that in this case u and f(«) do not always
have the same sign. We apply controller (14) with
(22)-24) and with ¢ =2, k=—1, b=1, rg, =0,
H0) = —0.4, and #0)=0.5. For comparison, a
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Figure 15. Adaptive control of a non-linear oscillator with backlash/hysteresis in the input path: linear controller: (a) u,
(b) r, without hysteresis (dashed), with hysteresis (solid); adaptive controller: (c) u, (d) r.

stabilizing linear controller is designed for the system
(44) with f(u) = u, which is u(t) = —2x (1) — 4x,(1).
This linear controller is applied to the system (44) with
relay f(-). Choose adaptation weights p =1, A\; = 10°,
A =10°, A3 =10 and let K,(0) =0, K,(0) =0, and
#(0) =0. As can be seen from the solid line in
figure 14(b), n(t) does not approach r4, when the
linear controller is used. However, figure 14(d) shows
that r(¢) approaches r,, when the adaptive controller is
used.

Next, we let f(-) be the backlash/hysteresis non-
linearity shown in figure 6. Note that in this case u
and f(u) do not always have the same sign. We apply

controller (14) with (22)—(24) and with backlash/hyster-
esis with h=1, c=-2, k=—-1, b=1, ry4s=0,
H0) = —0.4, and A0)=0.5. For comparison, the
stabilizing linear controller u(t) = —2x(f) —4x,(1) is
designed for the system (44) with f(u) = u. This linear
controller is applied to the system (44) with the back-
lash/hysteresis non-linearity f(-). Choose adaptation
weights p=1, A\, =10 X, =10 X\;=10* and let
K,(0) =0, K,(0) =0, and ¢(0) =0. As can be seen
from the solid line in figure 15(b), /(t) does not approach
rqes When a linear controller is used. However,
figure 15(d) shows that H{¢) approaches ry,, when the
adaptive controller is used.
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Figure 16. Adaptive control of a non-linear oscillator with linear and odd quadratic input: (a) u, (b) r for linear input; (¢) u, (d) r
for odd quadratic input.

Finally, we let f(x)=sign(x)x% In this case,
uf(u) > 0, and thus u and f(u) have the same sign.
We apply controller (14) with (22)—(24) and
with ¢=0.1, k=5, b=1, rg=1, f0)=0 and

{0) =0. Choosing adaptation weights p =1,
)\1 = 1, )\2 = 1, )\3 =5 and let KI(O) == 0,
K,(0) =0 and ¢0)=0, figure 16 shows the

response of the adaptive controller. For comparison,
figure 16 shows also the response of the same
system with f(#) = u. As can be seen from figure 16(a),
u(r) has negative values from time to time when a linear
input is used. However, figure 16(c) shows that u(t)
remains positive when the odd quadratic non-linearity
is present.

8. Conclusion

In this paper we applied a direct adaptive control law
derived for linear systems to non-linear oscillators pos-
sessing dynamic and input non-linearities. The adaptive
controller was shown to be effective in all cases consid-
ered for the problems of adaptive stabilization and com-
mand following. Finally, it was shown by Roup and
Bernstein (2000) that the controller given by Theorem
1 is guaranteed to stabilize a class of non-linear systems.
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