
Adaptive stabilization of non-linear oscillators using direct adaptive control
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Direct adaptive controllers developed for linear systems are applied to non-linear oscillators. A wide range of non-
linearities are considered, including sti� ness non-linearities, input non-linearities, limit cycle oscillations and friction.
Numerical results suggest that by increasing the speed of adaptation, these direct adaptive controllers are highly e� ective
when applied to non-linear plants.

1. Introduction

The goal of both robust control and adaptive control
is to achieve system performance without excessive
reliance on plant models. While robust control seeks
to desensitize a control system to plant uncertainty,
the gains of a robust controller are � xed. On the other
hand, an adaptive controller seeks to adjust controller
gains during operation in order to permit greater
uncertainty levels than can be tolerated by robust
control and to improve system performance during
operation, which is not possible with robust control.

This paper considers an output feedback adaptive
stabilization problem with unknown constant disturb-
ance rejection. Our results are closely related to those
of AÊ ström and Wittenmark (1995), Krstic et al. (1995),
Ioannou and Sun (1996) and K aufman et al. (1998)
which focus on model reference adaptive control. The
adaptive controller given by Theorem 1 requires that the
disturbance satisfy a matching condition and that an
output range condition be satis� ed. This range con-
dition is related to a positive real condition for the
closed-loop system. N ext we specialise this result in
Corollary 1 and Corollary 2 to the case of full-state
feedback, in which case the range condition is satis� ed.
By representing the system in controllable canonical
form, we show that adaptive stabilization is possible
without additional knowledge of the plant dynamics.
However, this approach assumes that the sign of the
input coe� cient is known. If this assumption is violated
then universal stabilization techniques are required
(Ilchmann 1993).

The primary objective of the present paper is to
apply the adaptive controller of Corollary 2 to non-
linear systems. In particular, we consider non-linear
oscillators possessing various non-linearit ies including
sti� ness non-linearities, input non-linearities, limit
cycle oscillations and friction. As shown in the paper,

the direct adaptive controller is remarkably e� ective in
adaptively stabilizing these plants in spite of the broad
range of non-linearities.

2. Adaptive stabilization with constant disturbance
rejection

Consider the linear system

_x… t† ˆ Ax… t† ‡Bu… t† ‡d …1†
y… t† ˆ Cx… t† …2†
z… t† ˆ Ex… t† …3†

where x… t† 2 <nx ;u… t† 2 <nu ;d 2 <nx , y… t† 2 <ny and
z… t† 2 <nz .

Theorem 1: Assume there ex ists Ks 2 <nu£ny such that
A s 7 A ‡BKsC is asymptotically stable and assume
there ex ists ¿s 2 <nu such that B¿s ˆ d. Let R 2 <nx £nx

be positive semide� nite and assume …A s ;R† is control-
lable. Let P 2 <nx £nx be the positive-de� nite solution to
the Lyapunov equation 0 ˆ A T

s P ‡PA s ‡R, and assume
there ex ists M 2 <nu£nz such that BTP ˆ M E. Finally,
let G 2 <nu£nu and L 2 <ny£ny be positive de� nite, and
let ¶ > 0. Then (2.1)–(2.3) with the control law

u… t† ˆ K… t†y… t† ‡¿… t† …4†
where

_K… t† ˆ ¡GM z… t†yT… t†L …5†
_¿… t† ˆ ¡¶M z… t† …6†

yields Rx… t† ! 0 as t ! 1.

Proof: De� ne

K̂… t† 7 K… t† ¡ Ks

¿̂… t† 7 ¿… t† ‡¿s

so that (5) and (6) imply

_̂K… t† ˆ ¡GM z… t†yT… t†L …7†
_̂
¿… t† ˆ ¡¶M z… t† …8†
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Then the closed-loop system consists of (7) and (8) and

_x… t† ˆ …A s ‡BK̂… t†C†x… t† ‡ B¿̂… t† …9†

Next, consider the positive-de� nite Lyapunov candi-
date

V…x ;K̂ ; ¿̂† ˆ x TPx ‡ tr G¡1K̂L¡1K̂ T ‡ tr ¿̂¶¡1¿̂T

The derivative of V along trajectories of the closed-loop
system is given by

_V…x ; K̂ ; ¿̂† ˆ x T…A T
s P ‡PA s†x ‡2x TPBK̂Cx

‡ 2x TPB¿̂ ‡ 2 tr G¡1K̂L¡1 _̂K T

‡ 2 tr ¿̂¶¡1 _̂
¿T

ˆ ¡x TRx ‡ 2 tr K̂…L¡1 _̂K TG¡1 ‡ Cxx TPB†

‡ 2 tr ¿̂…¶¡1 _̂
¿T ‡ x TPB†

ˆ ¡x TRx ‡ 2 tr K̂…L¡1 _̂K TG¡1 ‡ Cxx TE TM T†

‡ 2 tr ¿…¶¡1 _̂
¿T ‡ x TE TM T†

ˆ ¡x TRx ‡ 2 tr K̂…L¡1 _̂K TG¡1 ‡ yzTM T†

‡ 2 tr ¿…¶¡1 _̂
¿T ‡ zTM T†

ˆ ¡x TRx

It now follows from Theorem 4.4 in Khalil (1996) that,
for every initial condition x…0†, K̂…0† and ¿̂…0†, the
states of the closed-loop system are bounded, and
x T…t†Rx… t† ! 0 as t ! 1. Since R is positive semi-
de� nite, it follows that Rx… t† ! 0 as t ! 1. &

Theorem 1 requires that there exist Ks and ¿s such
that A s ˆ A ‡BKsC is asymptotically stable and
B¿s ˆ d . However, the control law (4)–(6) does not
require explicit knowledge of Ks ;¿s and d . On the
other hand, implementation of (5) and (6) requires
that there exist a known matrix M such that
BTP ˆ M E . This condition and the Lyapunov equation
0 ˆ A T

s P ‡PA s ‡R are K YP conditions that are
equivalent to the assumption that …A s ;B ;M E† is the
realization of a positive real transfer function.

Note that (6) is an integrator state which serves to
reject the constant disturbance d .

Next, we specialise Theorem 1 to the full-state feed-
back case. In this case C ˆ E ˆ I so that the assump-
tions of Theorem 1 are satis� ed with M ˆ BTP.

Corollary 1: Assume there ex ists Ks 2 <nu£nx such that
A s 7 A ‡BKs is asymptotically stable and assume there
ex ists ¿s 2 <nu such that B¿s ˆ d. Let R 2 <nx £nx be
positive semide� nite and assume …A s ;R† is controllable.
Let P 2 <nx £nx be the positive-de� nite solution to the
Lyapunov equation 0 ˆ A T

s P ‡ PA s ‡R. Finally, let

G 2 <nu£nu and L 2 <nx £nx be positive de� nite, and let
¶ > 0. Then (1) with the control law

u… t† ˆ K… t†x… t† ‡¿… t† …10†

where
_K… t† ˆ ¡GBTPx… t†x T… t†L …11†
_¿… t† ˆ ¡BTPx… t†¶ …12†

yields Rx… t† ! 0 as t ! 1.

3. State feedback for uncertain systems

Consider the linear system (1) with

A ˆ A 0

a

µ ¶
B ˆ 0…nx ¡1†£1

b

µ ¶
d ˆ 0…nx ¡1†£1

d0

µ ¶

…13†

where x… t† 2 <nx , u… t† 2 <, d 2 <nx , A 0 2 <…nx ¡1†£nx ,
a 2 <1£nx , b, d0 2 < and b 6ˆ 0. De� ne

B0 7
0…nx ¡1†£1

sign b

µ ¶

Corollary 2: Assume there ex ists Ks 2 <1£nx such that
A s 7 A ‡BKs is asymptotically stable. Let R 2 <nx £nx

be positive semide� nite and assume …A s ;R† is controll-
able. Let P 2 <nx £nx be the positive-de� nite solution to
the Lyapunov equation 0 ˆ AT

s P ‡PA s ‡R. Finally, let
G > 0 and ¶ > 0 and let L 2 <nx £nx be positive de� nite.
Then (1) with the control law

u… t† ˆ K… t†x… t† ‡¿… t† …14†
where

_K… t† ˆ ¡GBT
0 Px… t†x T… t†L …15†

_¿… t† ˆ ¡BT
0 Px… t†¶ …16†

yields Rx… t† ! 0 as t ! 1.

Proof: F irst, note that because of the structure of B
and d , it follows that ¿s ˆ d0=b satis� es B¿s ˆ d .
Second, since L and ¶ are arbitrary, L in (11) and ¶ in
(12) can be replaced by jbj¡1L and jbj¡1¶, respectively.
Thus, (11) and (12) imply (15) and (16). &

Note that (15) and (16) require the solution P of the
Lyapunov equation 0 ˆ A T

s P ‡ PA s ‡R . Since b 6ˆ 0,
let Ks ˆ …1=b†…as ¡ a†, where as 2 <1£nx . It thus follows
that

A s ˆ A ‡BKs ˆ A0

a

µ ¶
‡ 0

b

µ ¶
1
b
…as ¡ a† ˆ A 0

as

µ ¶

Since as can be chosen to stabilize A s without knowledge
of either a or b, it follows that P can be determined
without knowledge of either a or b. However, sign b
must be known in order to implement (15) and (16).
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To illustrate Corollary 2, consider the case nx ˆ 1
and let as < 0 and R ˆ ¡2as. Then P ˆ 1, and (15)
and (16) are given by

_K… t† ˆ ¡…sign b†¶1x 2… t† …17†
_¿… t† ˆ ¡…sign b†¶2x… t† …18†

where ¶1 7 L=G and ¶2 7 ¶. Note that (17) and (18)
yield x… t† ! 0 as t ! 1 for all ¶1 ;¶2 > 0.

Next, consider the case nx ˆ 2, and let A 0 ˆ ‰ 0 1 Š,
p > 0, as1 < 0, as2 < ¡p and

R ˆ ¡2pas1 0

0 ¡2p ¡ 2as2

µ ¶

Then

P ˆ ¡pas2 ¡ as1 p

p 1

µ ¶

satis� es 0 ˆ A T
s P ‡PA s ‡R and (15) and (16) are given

by

_K1…t† ˆ ¡…sign b†‰¶1px 2
1… t† ‡…¶1 ‡¶12p†x 1… t†x 2… t†

‡¶12x
2
2… t†Š …19†

_K2…t† ˆ ¡…sign b†‰¶12px2
1… t† ‡…¶12 ‡¶2p†x 1… t†x2… t†

‡¶2x 2
2… t†Š …20†

_¿…t† ˆ ¡…sign b†¶3‰ px1… t† ‡ x 2… t†Š …21†
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Figure 1. Adaptive control of a non-linear oscillator with hardening spring: (a) K1 (solid), K2 (dashed), (b) ¿, (c) u, (d ) rdes (solid),
r (dashed).
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where
¶1 ¶12

¶12 ¶2

" #
7…1=G†L

is positive de� nite and ¶3 7¶ > 0. Note that (19)–(21)
yield x… t† ! 0 as t ! 1 for all p ;¶1 ;¶2 ;¶3 > 0 and
for all ¶12 such that ¶2

12 < ¶1¶2. Setting ¶12 ˆ 0
for simplicity yields

_K1… t† ˆ ¡…sign b†¶1‰ px2
1… t† ‡x 1… t†x 2… t†Š …22†

_K2… t† ˆ ¡…sign b†¶2‰x2
2… t† ‡ px1… t†x 2…t†Š …23†

_¿… t† ˆ ¡…sign b†¶3‰ px1… t† ‡x 2… t†Š …24†

Corollary 2 can be applied to the following step
command problem. Consider the nth-order linear system

r…n†… t† ¡ anr…n¡1†… t† ¡ ¢ ¢ ¢ ¡ a2 _r… t† ¡ a1r… t† ˆ bu… t† …25†

with the requirement that r… t† approach rdes without
knowledge of a ˆ ‰ a1 ¢ ¢ ¢ an Š and b, except the sign
of b. De� ning the error signal x 1… t† 7 r… t† ¡ rdes and
the state x ˆ ‰x 1 _x 1 ¢ ¢ ¢ x…n¡1†

1 ŠT , (25) becomes

_x… t† ˆ Ax… t† ‡Bu… t† ‡
0…n¡1†£1

d0

" #
…26†

where

A ˆ
A0

a

" #

and d0 ˆ ¡a1rdes, where A 0 ˆ ‰0…nx ¡1†£1 Inx ¡1Š,
a ˆ ‰a1 ¢ ¢ ¢ anŠ, and Inx ¡1 is the …nx ¡ 1† £ …nx ¡ 1†
identity matrix. Thus (26) has the form (1) and (13).
Note that d0 is unknown since a1 is unknown.

Thus the controller (14)–(16) can be used for this
problem.

4. Non-linear sti� ness

Consider an oscillator with non-linear sti� ness
modelled by

�r… t† ‡c _r… t† ‡ f …r… t†† ˆ bu… t† …27†
where f : < ! <. The control objective is to require r… t†
to approach rdes without knowledge of c; f … ¢†, and b,
except the sign of b which is taken to be positive. If
c > 0 and rf …r† > 0 for all r 2 <, then (27) is a stable
oscillator. However, we do not invoke these assump-
tions. De� ning the error signal x 1… t† 7 r… t† ¡ rdes and
the state x 7 ‰x 1 _x 1ŠT , equation (27) becomes

_x… t† ˆ 0 1

¡f̂ …x 1… t†† ¡c

µ ¶
x… t† ‡ 0

b

µ ¶
u… t† ‡ 0

d0

µ ¶
…28†

where f̂…x 1†x 1 ˆ f…x 1 ‡ rdes† ¡ f…rdes† and d0 ˆ ¡f…rdes†.
Equation (28) is of the form (26) with a1 replaced by the
unknown state-dependent coe� cient ¡f̂ …x 1† and
a2 ˆ ¡c. The controller (14) with (22)–(24) is applied
to this problem.

F irst we let f … ¢† be a hardening spring modelled by

f …r† ˆ k1r ‡k3r3 …29†
where k1 > 0 and k3 > 0. In this case f̂… ¢† and d0 are
given by

f̂ …x 1† ˆ k1 ‡k3…x 2
1 ‡3rdesx 1 ‡3r2

des†

d0 ˆ ¡k1rdes ¡ k3r3
des

We apply controller (14) with (22)–(24) and k1 ˆ 1,
c ˆ 0:2, k 3 ˆ 1, b ˆ 3, and rdes ˆ 0:5. Let r…0† ˆ ¡1,
_r…0† ˆ 0, K1…0† ˆ 0, K2…0† ˆ 0, ¿…0† ˆ 0 and choose
adaptation weights p ˆ 1, ¶1 ˆ 1, ¶2 ˆ 1, ¶3 ˆ 50.
F urthermore, at t ˆ 20, k3 is changed from 1 to 4, and
rdes is changed from 0:5 to 3.

Next, we let f … ¢† be the deadzone function shown
in � gure 2. We apply controller (14) with (22)–(24)
and with e1 ˆ ¡0:5, e2 ˆ 0:5, c ˆ 1, b ˆ 5, and
rdes ˆ 0. Let r…0† ˆ 0:1, _r…0† ˆ 0:2, K1…0† ˆ 0,
K2…0† ˆ 0, ¿…0† ˆ 0 and choose adaptation weights
p ˆ 1, ¶1 ˆ 10, ¶2 ˆ 10, ¶3 ˆ 10. Initially, the adapta-
tion is stopped. As can be seen from � gure 3, r… t†
approaches 0:3 due to the deadzone. At t ˆ 10, the
adaptation is started, and, as can be seen from � gure 3,
r… t† approaches 0.

Next, we let f … ¢† be the relay function shown in
� gure 4. We apply controller (14) with (22)–(24) and
with c ˆ 1, b ˆ 5, and rdes ˆ 0. Let r…0† ˆ 0:6,
_r…0† ˆ 0:9, K1…0† ˆ 0, K2…0† ˆ 0, ¿…0† ˆ 0 and choose
adaptation weights p ˆ 1, ¶1 ˆ 100, ¶2 ˆ 100,
¶3 ˆ 100. Initially, the adaptation is stopped. As can
be seen from the dashed line in � gure 5, the phase plot
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shows a limit cycle. At t ˆ 30, the adaptation is started,
and, as can be seen from the solid line in � gure 5, r… t†
and _r… t† approach 0.

F inally, we let f … ¢† be the backlash/hysteresis
function shown in � gure 6. We apply controller (14)
with (22)–(24) and with h ˆ 1, c ˆ 1, b ˆ 5 and
rdes ˆ 0. Let r…0† ˆ 0:6, _r…0† ˆ 0:9, K1…0† ˆ 0,
K2…0† ˆ 0, ¿…0† ˆ 0 and choose adaptation weights
p ˆ 1, ¶1 ˆ 100, ¶2 ˆ 100, ¶3 ˆ 100. Initially, the
adaptation is stopped. As can be seen from the dashed
line in � gure 7, the phase plot shows a limit cycle. At
t ˆ 30, the adaptation is started and, as can be seen
from the solid line in � gure 7, r… t† and _r… t† approach 0.

As can be seen from � gures 1, 3, 5 and 7, r… t†
tracks rdes, that is, the controller (14) with (22)–

(24) is able to compensate for the non-linear sti� ness
in (27).

5. Non-linear damping

Consider an oscillator with position-dependent
damping modelled by

�r… t† ‡g…r… t†† _r… t† ‡ kr… t† ˆ bu… t† …30†

where g: < ! <. The control objective is to require r… t†
to approach rdes without knowledge of g… ¢† ;k and b,
except the sign of b, which is taken to be positive.
De� ning the error signal x 1…t† 7 r… t† ¡ rdes and the
state x 7 ‰x 1 _x 1ŠT , equation (30) becomes
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Figure 3. Adaptive control of a non-linear oscillator with deadzone in sti� ness: (a) K1 (solid), K2 (dashed), (b) ¿, (c) u, (d ) r.
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_x… t† ˆ
0 1

¡k ¡g…x 1… t† ‡ rdes†

" #
x… t†

‡
0

b

" #
u… t† ‡

0

¡krdes

" #
…31†

Equation (31) has the form (26) with a1 ˆ ¡k , a2

replaced by the unknown state-dependent coe� cient
¡g…x 1 ‡ rdes†, and d0 replaced by the unknown constant
¡krdes. The controller (14) with (22)–(24) is applied to
this problem.

As a special case, consider the Van der Pol equation
modelled by

g…r† ˆ "…1 ¡ r2† …32†

with k ˆ 1 and b ˆ 1. We apply controller (14) with
(22)–(24) and with " ˆ 0:4 and rdes ˆ 0. Let r…0† ˆ 1,
_r…0† ˆ 0, K1…0† ˆ 0, K2…0† ˆ 0, ¿…0† ˆ 0 and choose
adaptation weights p ˆ 1, ¶1 ˆ 1, ¶2 ˆ 1, ¶3 ˆ 1.
Initially, the adaptation is stopped. As can be seen
from the dashed line in � gure 8, the phase plot shows
a limit cycle. At t ˆ 20, the adaptation is started and, as
can be seen from the solid line in � gure 8, r… t† and _r… t†
approach 0.

Next, we consider a time-varying command rdes… t†
and de� ne the error signal x 1… t† 7 r… t† ¡ rdes… t† and the
state x 7 ‰x 1 _x 1ŠT . Then equation (30) becomes
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_x… t† ˆ
0 1

¡…k ‡ ĝ…x 1… t†† _rdes… t†† ¡g…x 1… t† ‡ rdes… t††

" #
x… t†

‡
0

b

" #
u… t† ‡

0

d0… t†

" #
…33†

where ĝ…x1†x 1 ˆ g…x 1 ‡ rdes† ¡ g…rdes† with d0… t† ˆ
¡�rdes… t† ¡ g…rdes… t†† _rdes… t† ¡ krdes… t†. Equation (33) has
the form (26) with a1 and a2 replaced by unknown
state-dependent, time-varying coe� cients and with
time-varying d0… t†. The controller (14) with (22)–(24) is
applied to this problem.

As a special case, consider the Van der Pol equation
(32) with the time-varying command sin !t and k ˆ 1
and b ˆ 1. Then ĝ… ¢† and d0 are given by

ĝ…x 1… t†† ˆ ¡"…x 1… t† ‡2 sin !t†

d0… t† ˆ !2 sin !t ¡ "! cos3 !t ¡ k sin !t

We apply controller (14) with (22)–(24) and with " ˆ 0:8
and ! ˆ 1. Let r…0† ˆ ¡5, _r…0† ˆ 0, K1…0† ˆ 0,
K2…0† ˆ 0, ¿…0† ˆ 0 and choose adaptation weights
p ˆ 1, ¶1 ˆ 100, ¶2 ˆ 100, ¶3 ˆ 100. Initially, the adap-
tation is stopped. As can be seen from the dashed line in
� gure 9, the phase plot shows the Van der Pol limit
cycle. At t ˆ 20, the adaptation is started and, as can
be seen from the solid line in � gure 9, the phase plot
shows a change from the Van der Pol limit cycle to a
circle.

6. Stick-slip friction

The equations of motion for the mass-spring system
shown in � gure 10 are given by

m �r… t† ‡ kr… t† ˆ k±… t† ‡kL ¡ Ff… t† …34†
k±… t† ˆ kr… t† ¡ kL ‡u… t† …35†

where m, k > 0, L is the distance between the mass and
the massless bar when the spring is relaxed and the stick-
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slip frictional force Ff… t† is given by (Canudas de Wit
et al. 1993)

Ff… t† ˆ …1 ¡ µ… t††Fs… t† ‡µ… t†Fd… t† …36†

The stick friction Fs… t† is given by

Fs… t† ˆ sat…¬0 ‡¬1† …k s²… t† ‡ ds _r… t†† …37†

and the dynamic friction Fd… t† is given by

Fd… t† ˆ ¬0 sgn … _r… t†† ‡¬2 _r… t† …38†

where ¬0, ¬1, ¬2, k s, ds > 0

½µ _µ… t† ˆ ¡µ… t† ‡1 ¡ e¡… _r…t†= _r…0††2

…39†

and

_²… t† ˆ …1 ¡ µ… t†† _x… t† ¡ µ… t† 1
½r

²…t† …40†

where ½µ, ½r > 0. The sat function is de� ned by

sat¬…²† ˆ
¬ if ² ¶ ¬

² if j²j < ¬

¡¬ if ² µ ¬

8
><
>:

…41†

As can be seen in � gure 11, the magnitude of stick
friction, which a� ects the initial movement of the
mass, is greater than the magnitude of the slip friction,
which is the frictional force when the mass is moving. By
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Figure 12. Adaptive control of a mass-spring system with stick-slip friction: (a) K1 (solid), K2 (dashed), (b) ¿, (c) u,
(d) command ˆ 1, r (solid), ± (dashed).
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de� ning the error signal x 1… t† 7 r… t† ¡ rdes and eliminat-
ing the internal physical variable ±… t†, (34) becomes

_x 2… t† ˆ �x 1… t† ˆ 1
m

u… t† ¡ 1
m

Ff… t† …42†

The controller (14) with (22)–(24) is applied to this prob-
lem.

F igure 12 shows the response of the mass-spring
system with stick-slip friction with m ˆ 1, k ˆ 100,
L ˆ 10, rdes ˆ 1, ¬0 ˆ 1, ¬1 ˆ 1:5, ¬2 ˆ 0:6, ½µ ˆ 0:01,
½r ˆ 0:001, k s ˆ 10 000, and ds ˆ 1100. Let r… t† ˆ 0,
_r…0† ˆ 0:04, K1…0† ˆ 0, K2…0† ˆ 0, ¿…0† ˆ 0 and choose
adaptation weights p ˆ 40, ¶1 ˆ 500, ¶2 ˆ 1, ¶3 ˆ 100.
As can be seen in � gure 12(d ), r… t† approaches the

commanded position. However, due to stick friction,
� gure 12(d ) shows overshoot at the beginning of con-
trol. A critical aspect is the distance between the mass
and the massless bar, which has increased due to the
control action.

7. Input non-linearity

Consider an oscillator with input non-linearity
modelled by the Hammerstein system

�r… t† ‡c _r… t† ‡kr… t† ˆ bf …u… t†† …43†
The control objective is to require r… t† to approach rdes

without knowledge of c, k , f … ¢† and b, except the sign of
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Figure 13. Adaptive control of a non-linear oscillator with deadzone in the input path: linear controller: (a) u, (b) r without
deadzone (dashed), with deadzone (solid); adaptive controller: (c) u, (d ) r.
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b which is taken to be positive. De� ning the error signal
x 1… t† 7 r… t† ¡ rdes, equation (7.1) becomes

_x… t† ˆ 0 1

¡k ¡c

µ ¶
x… t† ‡ 0

bf …u… t††

µ ¶
…44†

which has the form (26) with a1 ˆ ¡k and a2 ˆ ¡c and
with bu… t† replaced by bf …u… t††. The controller (14) with
(22)–(24) is applied to this problem.

F irst, we let f … ¢† be the deadzone non-linearity
shown in � gure 2. In this case, uf…u† > 0, and thus u
and f …u† have the same sign. We apply controller (14)
with (22)–(24) and with e1 ˆ ¡0:5, e2 ˆ 0:5, c ˆ ¡2,
k ˆ ¡1, b ˆ 1, rdes ˆ 0, r…0† ˆ ¡0:3, and _r…0† ˆ 0:5.
F or comparison, a stabilizing linear controller is

designed for the system (44) with f …u† ˆ u, which is
u… t† ˆ ¡2x 1… t† ¡ 4x 2… t†. This controller is applied to
the system (44) with the deadzone non-linearity f … ¢†. It
can be seen from the solid line in � gure 13(b) that r… t†
does not approach rdes when a linear controller is used.
However, by choosing adaptation weights p ˆ 1,
¶1 ˆ 103, ¶2 ˆ 103, ¶3 ˆ 103 and letting K1…0† ˆ 0,
K2…0† ˆ 0, and ¿…0† ˆ 0, � gure 13(d) shows that r… t†
approaches rdes when the adaptive controller is used.

Next, we let f… ¢† be the relay non-linearity shown in
� gure 4. Note that in this case u and f …u† do not always
have the same sign. We apply controller (14) with
(22)–(24) and with c ˆ ¡2, k ˆ ¡1, b ˆ 1, rdes ˆ 0,
r…0† ˆ ¡0:4, and _r…0† ˆ 0:5. F or comparison, a
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Figure 14. Adaptive control of a non-linear oscillator with relay in the input path: linear controller: (a) u, (b) r, without relay
(dashed), with relay (solid); adaptive controller: (c) u, (d) r.
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stabilizing linear controller is designed for the system
(44) with f …u† ˆ u, which is u… t† ˆ ¡2x 1… t† ¡ 4x2… t†.
This linear controller is applied to the system (44) with
relay f … ¢†. Choose adaptation weights p ˆ 1, ¶1 ˆ 103,
¶2 ˆ 103, ¶3 ˆ 103 and let K1…0† ˆ 0, K2…0† ˆ 0, and
¿…0† ˆ 0. As can be seen from the solid line in
� gure 14(b), r… t† does not approach rdes when the
linear controller is used. However, � gure 14(d ) shows
that r… t† approaches rdes when the adaptive controller is
used.

Next, we let f … ¢† be the backlash/hysteresis non-
linearity shown in � gure 6. Note that in this case u
and f …u† do not always have the same sign. We apply

controller (14) with (22)–(24) and with backlash/hyster-
esis with h ˆ 1, c ˆ ¡2, k ˆ ¡1, b ˆ 1, rdes ˆ 0,
r…0† ˆ ¡0:4, and _r…0† ˆ 0:5. For comparison, the
stabilizing linear controller u… t† ˆ ¡2x 1… t† ¡ 4x 2… t† is
designed for the system (44) with f…u† ˆ u. This linear
controller is applied to the system (44) with the back-
lash/hysteresis non-linearity f … ¢†. Choose adaptation
weights p ˆ 1, ¶1 ˆ 104, ¶2 ˆ 104, ¶3 ˆ 104 and let
K1…0† ˆ 0, K2…0† ˆ 0; and ¿…0† ˆ 0. As can be seen
from the solid line in � gure 15(b), r… t† does not approach
rdes when a linear controller is used. However,
� gure 15(d) shows that r… t† approaches rdes when the
adaptive controller is used.
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Figure 15. Adaptive control of a non-linear oscillator with backlash/hysteresis in the input path: linear controller: (a) u,
(b) r, without hysteresis (dashed), with hysteresis (solid); adaptive controller: (c) u, (d) r.
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F inally, we let f…x† ˆ sign…x†x 2. In this case,
uf …u† > 0, and thus u and f…u† have the same sign.
We apply controller (14) with (22)–(24) and
with c ˆ 0:1, k ˆ 5, b ˆ 1, rdes ˆ 1, r…0† ˆ 0 and
_r…0† ˆ 0. Choosing adaptation weights p ˆ 1,
¶1 ˆ 1, ¶2 ˆ 1, ¶3 ˆ 5 and let K1…0† ˆ 0,
K2…0† ˆ 0 and ¿…0† ˆ 0, � gure 16 shows the
response of the adaptive controller. For comparison,
� gure 16 shows also the response of the same
system with f …u† ˆ u. As can be seen from � gure 16(a),
u… t† has negative values from time to time when a linear
input is used. H owever, � gure 16(c) shows that u… t†
remains positive when the odd quadratic non-linearity
is present.

8. Conclusion

In this paper we applied a direct adaptive control law
derived for linear systems to non-linear oscillators pos-
sessing dynamic and input non-linearities. The adaptive
controller was shown to be e� ective in all cases consid-
ered for the problems of adaptive stabilization and com-
mand following. Finally, it was shown by Roup and
Bernstein (2000) that the controller given by Theorem
1 is guaranteed to stabilize a class of non-linear systems.
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Figure 16. Adaptive control of a non-linear oscillator with linear and odd quadratic input: (a) u, (b) r for linear input; (c) u, (d ) r
for odd quadratic input.
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