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1. Introduction

Polynomial matrix and state-space models provide alternative and complementary parametric

representations for multivariable linear systems, with transfer function models providing an easy-

to-work-with link between the two [1,18,22,23]. Similarly, frequency response models and Markov

parameter models provide additional, albeit nonparametric, representations for the same systems

[16,24].

The subject of realization theory then, is to transform one type of model into another [1,10,19].

For example, the transformation from a state-space model (Ã, B̃, C̃, D̃) to a polynomial matrix model

(E, F) is given by E(ρ) = det
[
ρI − Ã

]
I and F(ρ) = C̃adj

[
ρI − Ã

]
B̃ + D̃, and the transformation from

a Markov parameter model to a state-space model is well established by the Ho–Kalman algorithm

[1,7,9]. Furthermore, several of these transformations turn out to be operator-invariant. For instance,
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theMarkovparameters of the state-spacemodel (Ã, B̃, C̃, D̃) in thedifferentiation operatord/dt are the

same as the Markov parameters of the state-space model (Ã, B̃, C̃, D̃) in the forward shift operator q,

even though the input–output behavior will in general depend greatly on the operator involved. As we

show later, this “operator”-invariance property will hold for the transformations between polynomial

matrix models and Markov parameters, and vice versa. This allows us to define the transformations

with respect to an arbitrary operator ρ , which may aid in the analysis of MIMOmodels in nonclassical

operators (thosewhich are not polynomic in either d/dt or q) such as δ-domain [14] or fractional-order

models [24].

However, althoughmanyof these transformationsare theoreticallyunderstood, some, suchas trans-

formation from a state-space model to a polynomial matrix model, may not be easy to compute, and

numerical (rather than symbolic) algorithms are needed. To this end, [9] provides a robust numerical

link between theMarkov parameter and state-spacemodels in the form of the eigensystem realization

algorithm, which utilizes the singular value decomposition and Ho–Kalman algorithm to construct a

minimal state-space model from a sufficient number of Markov parameters. Similarly, other authors

have developed numerical approaches to realization theory, such as [21], although most of the avail-

able literature tends to fall into the broad class of system identification, that is, numerical algorithms

for transforming input/output data into a given model type [3,12,16,20].

The goal of the present paper is to develop the numerical and theoretical link between polynomial

matrix andMarkov parametermodels, so as to provide a complete picture of the interrelationships be-

tween different linear system representations. Furthermore, this work is important in several modern

control areas, such as adaptive control [6,8] and model predictive control [4,13,15], where the use of

polynomial matrix models is still preferred over state-space models and where system identification

may only yieldMarkov parameters of the system and not the polynomialmatrix systemdirectly [3,17].

The development of the numerical and theoretical link between polynomial matrix and Markov

parameter models is carried out entirely within the context of polynomial matrices without the use of

rational functions; consequently, rational transfer functions do not appear. This approach removes the

need to explicitly discuss poles and zeros, singularities, and cancellations, thus allowing us to focus

on the essential algebraic structure of the problem in terms of polynomial matrices. Furthermore, the

algorithmsthatwedevelopdonotdependonsymbolic computations, but ratherareentirelynumerical.

This approach circumvents possible ill-conditioning that can arise in symbolic computations that

depend on exact cancellation of the coefficients of operator powers.

The contents of the paper are as follows. First, we present the necessary preliminaries concerning

polynomial matrices. Next, after introducing the problem statement, we discuss the theoretical rela-

tionship between polynomial matrices and Markov parameters. Finally, we present several numerical

algorithms for transformingMarkov parameter models into polynomial matrix models and vice versa,

followed by numerical examples, and our conclusions.

2. Polynomial matrices

In this section,we introducepolynomialmatrices inanarbitraryoperatorρ , employing the standard

notation

ρ2y(t) = ρ [ρ [y(t)]] ,

and so on, where ρ [y(t)] represents the signal that results from ρ operating on the signal y. For

a complete treatment of matrices, polynomial matrices, and realization theory, refer to any of the

excellent books [2,5,11,23].

Remark 2.1. Alternatively, throughout the paper, one could view ρ as an indeterminate. However, in

this case, definitions such as that of a causal system (Definition 2.23) have no physical meaning.

We begin by introducing infinite polynomial matrices, or polynomial matrix expansions, since

polynomial matrices can be viewed as a special case of infinite polynomial matrices.
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Definition 2.2. Let G0, G1, G2, . . . ∈ R
p×m and

G(ρ) �
∞∑
i=0

Giρ
i. (1)

Then we denote G ∈ R
p×m∞ [ρ]. Furthermore, by convention, G(ρ) = 0p×m if and only if Gi = 0p×m

for all i � 0.

Definition 2.3. Let C0, C1, . . . , Cs ∈ R
p×m and

C(ρ) � C0 + C1ρ + · · · + Csρ
s. (2)

Then we denote C ∈ R
p×m[ρ]. Furthermore,

(i) We say that C(ρ) is diagonal ifm = p and C0, . . . , Cs are diagonal. If, in addition, there exists

η ∈ R[ρ] such that C(ρ) = η(ρ)Ip, then C(ρ) is quasi-scalar.
(ii) We say that Cj is the trailing coefficient of C(ρ) if Cj is nonzero and C0 = · · · = Cj−1 = 0p×m.

If, in addition, m = p and Cj is nonsingular, then we say that C(ρ) is regular. If, in addition,

Cj = Ip, then we say that C(ρ) is comonic.

Remark 2.4. Given F ∈ R
p×m[ρ] or F ∈ R

p×m∞ [ρ], we sometimes refer to Fi without explicitly

defining a form for F(ρ) such as (1) or (2). It should be clear that Fi refers to the ith coefficient matrix

of F(ρ), that is, the coefficient matrix which multiplies ρ i.

Next, note that for all C ∈ R
p×p[ρ], the determinant and adjugate of C(ρ) can be computed

with addition, subtraction, and multiplication operations. Hence det [C(ρ)] ∈ R[ρ] and adj [C(ρ)] ∈
R

p×p[ρ].
Definition 2.5. Let C ∈ R

p×p[ρ]. Then C(ρ) has full normal rank if det [C(ρ)] �= 0.

Fact 2.6. Let C, E ∈ R
p×p[ρ] and F(ρ) � C(ρ)E(ρ). Then F(ρ) has full normal rank if and only if C(ρ)

and E(ρ) have full normal rank.

Proof. det [F(ρ)] = det [C(ρ)] det [E(ρ)]. �

Fact 2.7. Let C ∈ R
p×p[ρ] have full normal rank and let G,H ∈ R

p×m∞ [ρ]. Then C(ρ)G(ρ) = 0p×m if

and only if G(ρ) = 0p×m. Furthermore, C(ρ)G(ρ) = C(ρ)H(ρ) if and only if G(ρ) = H(ρ).

Proof. First, note that det
[
C(ρ)

]
is nonzero since C(ρ) has full normal rank. Also, let αi be the trailing

coefficient of det
[
C(ρ)

]
.

Next, let C(ρ)G(ρ) = 0p×m. Then

F(ρ) � adj
[
C(ρ)

]
C(ρ)G(ρ) = det

[
C(ρ)

]
G(ρ) = 0p×m,

and hence Fi = αiG0 = 0p×m. However, since αi is nonzero, G0 = 0p×m. Furthermore, since G0 =
0p×m, it follows that Fi+1 = αiG1 = 0p×m, and therefore G1 = 0p×m. Hence, by induction we have

that Gi = 0p×m for all i � 0, that is, G(ρ) = 0p×m.

Third, let G(ρ) = 0p×m. Then C(ρ)G(ρ) = 0p×m follows immediately. Similarly, if G(ρ) = H(ρ),
then C(ρ)G(ρ) = C(ρ)H(ρ).

Finally, let C(ρ)G(ρ) = C(ρ)H(ρ). Then

C(ρ) [G(ρ) − H(ρ)] = 0p×m,

and hence, as we already showed, G(ρ) − H(ρ) = 0p×m, that is, G(ρ) = H(ρ). �
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Fact 2.8. If C ∈ R
p×p[ρ] is regular, then C(ρ) has full normal rank.

Proof. Let Cj be the trailing coefficient of C(ρ) and let C(ρ) � ρ jC′(ρ) where

C′(ρ) � Cj + Cj+1ρ + · · · + Cj+kρ
k.

Next, since C(ρ) is regular, Cj is nonsingular. Hence

det
[
C′(0)

]
= det

[
Cj

] �= 0,

and thus C′(ρ) has full normal rank.

Finally, since ρ j has full normal rank, from Fact 2.6, we have that C(ρ) has full normal rank. �

Fact 2.9. If C ∈ R
p×p[ρ] is nonzero and quasi-scalar, then C(ρ) has full normal rank.

Proof. Since C(ρ) is nonzero and quasi-scalar, C(ρ) is regular. Hence, from Fact 2.8, C(ρ) has full

normal rank. �

Definition 2.10. Let C ∈ R
p×p[ρ]. Then C(ρ) is unimodular if there exists E ∈ R

p×p[ρ] such that

E(ρ)C(ρ) = Ip.

Remark 2.11. Equivalently, from Definition 2.10, we have that C(ρ) is unimodular if and only if

det [C(ρ)] is a nonzero constant.

Definition 2.12. Let C, L ∈ R
p×p[ρ] and D ∈ R

p×m[ρ]. Then
(i) L(ρ) is a left factor of (C,D) if there exist E ∈ R

p×p[ρ] and F ∈ R
p×m[ρ] such that C(ρ) =

L(ρ)E(ρ) and D(ρ) = L(ρ)F(ρ).
(ii) L(ρ) is a greatest left factor of (C,D) if L(ρ) is a left factor of (C,D) and, for every left factor

L′(ρ) of (C,D), there exists U ∈ R
p×p[ρ] such that L(ρ) = L′(ρ)U(ρ).

(iii) L(ρ) is a greatest quasi-scalar factor of (C,D) if L(ρ) is a quasi-scalar left factor of (C,D) and,
for every quasi-scalar left factor L′(ρ) of (C,D), there exists η ∈ R[ρ] such that L(ρ) =
L′(ρ)η(ρ).

(iv) (C,D) is left coprime if every left factor of (C,D) is unimodular.

Analogous definitions apply for right factors, greatest right factors, and right coprime.

Note that, when referring to a pair (C,D), we drop the argument ρ , for conciseness. Also, note that

for every (C,D), there exist greatest left and right factors of (C,D) [22].

Fact 2.13. Let C ∈ R
p×p[ρ] and D ∈ R

p×p[ρ]. The zero polynomial is a left factor of (C,D) if and only if

C(ρ) and D(ρ) are both zero.

Proof. First, let L(ρ) = 0p×p be a left factor of (C,D). Then there exist C′ ∈ R
p×p[ρ] and D′ ∈

R
p×m[ρ] such that C(ρ) = L(ρ)C′(ρ) and D(ρ) = L(ρ)D′(ρ). However, since L(ρ)C′(ρ) = 0p×p and

L(ρ)D′(ρ) = 0p×m for every C′ ∈ R
p×p[ρ] and D′ ∈ R

p×m[ρ], it follows that C(ρ) and D(ρ) are both
zero.

Second, let C(ρ) and D(ρ) both be zero. Then for every C′ ∈ R
p×p[ρ] and D′ ∈ R

p×m[ρ], C(ρ) =[
0p×p

]
C′(ρ) and D(ρ) = [

0p×p

]
D′(ρ). Hence L(ρ) = 0p×p is a left factor of (C,D). �

Fact 2.14. Let C ∈ R
p×p[ρ] and D ∈ R

p×p[ρ], where C(ρ) and D(ρ) are not both zero. Then the greatest

comonic quasi-scalar factor of (C,D) is unique.
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Proof. First, since C(ρ) and D(ρ) are not both zero, then from Fact 2.13, the zero polynomial is not a

left factor of (C,D). Hence greatest quasi-scalar factors of (C,D) are nonzero.

Next, let L, L′ ∈ R
p×p[ρ] be greatest comonic quasi-scalar factors of (C,D). Then L(ρ) and L′(ρ)

are nonzero, and from Definition 2.12, there exist η, μ ∈ R[ρ] such that L(ρ) = L′(ρ)η(ρ) and

L′(ρ) = L(ρ)μ(ρ). Furthermore, η(ρ) and μ(ρ) are nonzero since L(ρ) and L′(ρ) are nonzero.

Third, note that L(ρ) = η(ρ)μ(ρ)L(ρ). Furthermore, since L(ρ) is nonzero and quasi-scalar, then

from Fact 2.9, L(ρ) has full normal rank, and from Fact 2.7, it follows that η(ρ)μ(ρ) = 1. Hence

η, μ ∈ R.

Finally, since L(ρ) and L′(ρ) are both comonic, it follows that η(ρ) = μ(ρ) = 1, that is, L(ρ) =
L′(ρ). Thus the greatest comonic quasi-scalar factor of (C,D) is unique. �

Definition 2.15. Let C ∈ R
p×p[ρ] and D ∈ R

p×m[ρ]. Then the principal factor of (C,D) is Ip if

C(ρ) = 0p×p and D(ρ) = 0p×m. Otherwise, the principal factor of (C,D) is the greatest comonic

quasi-scalar factor of (C,D).

Definition 2.16. Let C ∈ R
p×p[ρ] and let D(ρ) ∈ R

p×p[ρ] be the principal factor of

(adj [C], det[C]Ip). Then E(ρ) is the minimal adjugate of C(ρ) if adj
[
C(ρ)

] = D(ρ)E(ρ), and β(ρ)
is theminimal determinant of C(ρ) if det

[
C(ρ)

]
Ip = D(ρ)β(ρ). Specifically, we write

adj
[
C(ρ)

] = D(ρ)madj
[
C(ρ)

]
,

det
[
C(ρ)

]
Ip = D(ρ)mdet

[
C(ρ)

]
.

Fact 2.17. Let C ∈ R
p×p[ρ]. Then the minimal adjugate and minimal determinant of C(ρ) are

unique.

Proof. Let D(ρ) be the principal factor of (adj [C], det[C]Ip) and suppose that E, F ∈ R
p×p[ρ] are

both minimal adjugates of C(ρ). Then adj
[
C(ρ)

] = D(ρ)E(ρ) = D(ρ)F(ρ). Furthermore, since

the principal factor D(ρ) is defined to be comonic, it is nonzero. Therefore, from Fact 2.9, D(ρ) has

full normal rank, and it follows from Fact 2.7 that E(ρ) = F(ρ), that is, the minimal adjugate is

unique.

Similarly, ifβ, γ ∈ R[ρ] are bothminimal determinants ofC(ρ), thendet
[
C(ρ)

]
Ip = D(ρ)β(ρ) =

D(ρ)γ (ρ), and from Fact 2.7, β(ρ) = γ (ρ), that is, the minimal determinant is unique. �

Remark 2.18. det
[
C(ρ)

] = mdet
[
C(ρ)

] = 0 if and only if C ∈ R
p×p[ρ] does not have full normal

rank.

Example 1. Let α, β, γ ∈ R[ρ] be nonzero, let αi be the trailing coefficient of α(ρ), and let (β, γ )
be left coprime, that is, β(ρ) and γ (ρ) have no common zeros. Finally, let

E(ρ) � α(ρ)

⎡
⎣ β(ρ) 0

0 γ (ρ)

⎤
⎦ .

Then

(1) The determinant of E(ρ) is given by

det [E(ρ)] = α2(ρ)β(ρ)γ (ρ).

(2) The adjugate of E(ρ) is given by

adj
[
E(ρ)

] = α(ρ)

⎡
⎣ γ (ρ) 0

0 β(ρ)

⎤
⎦ .
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(3) The principal factor of (adj [E], det[E]Ip) is given by[
1

αi

]
α(ρ)Ip.

(4) The minimal determinant of E(ρ) is given by

mdet [E(ρ)] = αiα(ρ)β(ρ)γ (ρ).

(5) The minimal adjugate of E(ρ) is given by

madj
[
E(ρ)

] = αi

⎡
⎢⎣ γ (ρ) 0

0 β(ρ)

⎤
⎥⎦ .

Definition 2.19. Let C, E ∈ R
p×p[ρ] and D, F ∈ R

p×m[ρ]. Then (E, F) is a multiple of (C,D) if

there exists L ∈ R
p×p[ρ] with full normal rank such that E(ρ) = L(ρ)C(ρ) and F(ρ) = L(ρ)D(ρ).

Furthermore,

(i) (E, F) is a comonic multiple of (C,D) if E(ρ) is comonic.

(ii) (E, F) is a quasi-scalar multiple of (C,D) if E(ρ) is quasi-scalar.

Remark 2.20. A quasi-scalar multiple is analogous to a transfer function representation of a MIMO

system since the system can be written as a rational polynomial matrix. For instance, if (αIp, F) is a

quasi-scalar multiple of (C,D), where α ∈ R[ρ] and

F(ρ) �

⎡
⎢⎢⎢⎢⎢⎢⎣

f1,1(ρ) · · · f1,m(ρ)

...
...

fp,1(ρ) · · · fp,m(ρ)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
p×m[ρ],

then a transfer function representation of the system (C,D) would be⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1,1(ρ)

α(ρ)
· · · f1,m(ρ)

α(ρ)

...
...

fp,1(ρ)

α(ρ)
· · · fp,m(ρ)

α(ρ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note however, that we have made no definition of the meaning 1/ρ , and one must be particularly

careful in defining rational functions of operators since in general, an operator is not a one-to-one

mapping.

Definition 2.21. Let C ∈ R
p×p[ρ] and D ∈ R

p×m[ρ]. Also, let s be the smallest nonnegative integer

such that C(ρ) is of the form (2). Then the degree of C(ρ) is s if C(ρ) is nonzero, and −∞ if C(ρ) is

zero. Finally, let s be the degree of C(ρ) and let t be the degree of D(ρ). Then the degree of (C,D) is

max(s, t).

Next we show that the minimal adjugate provides us with a quasi-scalar multiple (C.,D.) of

(C,D) with the lowest possible degree, where C.(ρ) is the minimal determinant of C(ρ).
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Proposition 2.22. Let C ∈ R
p×p[ρ] have full normal rank, D ∈ R

p×m[ρ], E(ρ) � madj
[
C(ρ)

]
,

β(ρ) � mdet
[
C(ρ)

]
, and βi be the trailing coefficient of β(ρ). Then

(C.,D.) � (EC/βi, ED/βi) = (β/βiIp, ED/βi)

is the unique comonic quasi-scalar multiple of (C,D) of the lowest degree.

Proof. First, since C(ρ) has full normal rank, β(ρ) �= 0. Hence, from Fact 2.9, β(ρ)Ip has full normal

rank. Furthermore, since β(ρ)Ip has full normal rank and E(ρ)C(ρ) = β(ρ)Ip, then from Fact 2.6,

E(ρ) also has full normal rank. Hence (EC, ED) = (βIp, ED) is a quasi-scalar multiple of (C,D).
Next, from Fact 2.17, the minimal adjugate is unique. Hence (FC, FD) is a quasi-scalar multiple

of (C,D) if and only if there exists a nonzero μ ∈ R[ρ] such that F(ρ) = μ(ρ)E(ρ). Further-
more, if the degree of μ(ρ) is greater than zero, the degree of (FC, FD) is greater than the degree

of (C.,D.). Hence (C.,D.) is the unique comonic quasi-scalar multiple of (C,D) of the lowest

degree. �

Definition 2.23. Let C ∈ R
p×p[ρ] and D ∈ R

p×m[ρ]. Also, assume there exists G ∈ R
p×m∞ [ρ] such

that

C(ρ)G(ρ) = D(ρ).

Then (C,D) is causal,G(ρ) is aMarkov parameter polynomial of (C,D), andGi is an ithMarkov parameter

of (C,D).

Remark 2.24. In Section 8, we show that this definition of Markov parameters is consistent with the

usual state-space definition of Markov parameters.

Remark 2.25. Whether or not a system

C(ρ)y(t) = D(ρ)u(t) (3)

is causal in the sense that y(t) is a function only of u(τ ) for τ � t, is dependent on the operator ρ . For

ρ � q−1, this sense of causality and Definition 2.23 are equivalent. However, for ρ � d/dt or ρ � q,

the two definitions are not equivalent. For these operators, one would say that a system (3) is causal

in the classical sense if there exists G ∈ R
p×m∞ [ρ] such that

C
(
1/ρ

)
G

(
ρ

) = D
(
1/ρ

)
.

Fact 2.26. Let C, E ∈ R
p×p[ρ] and D, F ∈ R

p×m[ρ]. Also, let (E, F) be a multiple of (C,D). Then (E, F)
is causal if and only if (C,D) is causal.

Proof. First, since (E, F) is a multiple of (C,D), there exists L ∈ R
p×p[ρ] with full normal rank such

that (E, F) = (LC, LD).

Next, let (E, F) be causal. Then there exists G ∈ R
p×m∞ [ρ] such that

E(ρ)G(ρ) = L(ρ)C(ρ)G(ρ) = L(ρ)D(ρ) = F(ρ).

Hence from Fact 2.7, C(ρ)G(ρ) = D(ρ), that is, (C,D) is causal.

Finally, let (C,D) be causal. Then there exists G′ ∈ R
p×m∞ [ρ] such that C(ρ)G′(ρ) = D(ρ).

Hence

L(ρ)C(ρ)G′(ρ) = E(ρ)G′(ρ) = F(ρ) = L(ρ)D(ρ),

and therefore, (E, F) is causal. �



790 M.S. Holzel, D.S. Bernstein / Linear Algebra and its Applications 437 (2012) 783–808

Fact 2.27. Let E ∈ R
p×p[ρ] be comonic, let F ∈ R

p×m[ρ], and let

E(ρ) = Ipρ
� + E�+1ρ

�+1 + · · · + Esρ
s,

F(ρ) = F0 + F1ρ + · · · + Fsρ
s,

where 0 � � � s. If (E, F) is causal, then F0 = · · · = F�−1 = 0p×m and the Markov parameter

polynomial of (E, F) is given later in Theorem 4.1.

Proof. Since (E, F) is causal, there existsG ∈ R
p×m∞ [ρ] such that E(ρ)G(ρ) = F(ρ). Hence, computing

the product E(ρ)G(ρ), it follows that F0 = · · · = F�−1 = 0p×m. �

Fact 2.28. Let C ∈ R
p×p[ρ] have full normal rank, let D ∈ R

p×m[ρ], and let (C,D) be left coprime and

causal. Then C0 is nonsingular.

Proof. First, from Proposition 2.22, there exists a comonic multiple (E, F) = (LC, LD) of (C,D). Fur-
thermore, from Fact 2.26, since (C,D) is causal, (E, F) is causal. Hence, letting E� denote the trailing

coefficient of E(ρ), from Fact 2.27 we have that F0 = · · · = F�−1 = 0p×m. Therefore ρ�Ip is a left

factor of (E, F).
Next, since (C,D) is left coprime, L(ρ) is a greatest left factor of (E, F). Hence there exists L′ ∈

R
p×p[ρ] such that L(ρ) = ρ�L′(ρ).

Finally, letting (E′, F ′) � (L′C, L′D), we have that E′
0 = Ip. Furthermore, since E′

0 = L′0C0 = Ip, it

follows that C0 is nonsingular. �

Fact 2.29. Let C ∈ R
p×p[ρ] have full normal rank and let C0 ∈ R

p×p be nonsingular. Also, let

β(ρ) � mdet [C(ρ)] = β0 + β1ρ + · · · + βsρ
s.

Then β0 is nonzero.

Proof. Let D(ρ) = μ(ρ)Ip denote the principal factor of (adj [C], det[C]Ip), where μ ∈ R[ρ]. Then
det [C(ρ)] = μ(ρ)β(ρ). Furthermore, since C0 is nonsingular, we have that

0 �= det [C0] = det [C(0)] = μ(0)β(0).

Hence β0 = β(0) is nonzero. �

3. Problem formulation

Consider the linear time-invariant system

A(ρ)y(t) = B(ρ)u(t), (4)

where ρ is an operator, A ∈ R
p×p[ρ] has full normal rank, B ∈ R

p×m[ρ], y ∈ R
p is the output,

u ∈ R
m is the input, (A, B) is left coprime and causal, and (4) holds for all t ∈ T . Also, let (A., B.) be

the unique comonic quasi-scalar multiple of (A, B) given by Proposition 2.22, and let

A(ρ) � A0 + A1ρ + · · · + Anρ
n,

B(ρ) � B0 + B1ρ + · · · + Bnρ
n,

A.(ρ) � Ip + a.
1 Ipρ + · · · + a.

n. Ipρ
n.

,

B.(ρ) � B.
0 + B.

1 ρ + · · · + B.
n.ρn.

,

where a.
1 , . . . , a.

n. ∈ R. This notation is assumed for the rest of the paper.
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Throughout the paper, we have two objectives in mind, namely

(1) Given a not necessarily coprimemultiple of (A, B), compute theMarkov parameters of (A, B).
(2) Given a sufficient number of the Markov parameters of (A, B), compute a multiple of (A, B).

We show how to obtain both of these objectives numerically.

Remark 3.1. The trailing coefficient of A.(ρ) is the identity as a result of Proposition 2.22, Fact 2.28,

and Fact 2.29.

Remark 3.2. Let (C,D) be a multiple of (A, B). Since A(ρ) has full normal rank, then from Fact 2.6,

C(ρ) also has full normal rank.

4. Markov parameters

In this section, we develop Markov parameters algebraically from polynomial matrices. Further-

more, we show that the Markov parameters of (A, B) and the Markov parameters of every multiple of

(A, B) are equal and unique.

Theorem 4.1. Let (E, F) be a comonic multiple of (A, B) given by

E(ρ) � Ipρ
� + E�+1ρ

�+1 + · · · + Esρ
s,

F(ρ) � F0 + F1ρ + · · · + Fsρ
s,

where 0 � � � s. Also, let H(ρ) � ∑∞
i=0 Hiρ

i, where, for all i � 0,

Hi � F�+i −
min(s−�,i)∑

j=1

E�+jHi−j, (5)

and Fj � 0p×m for j > s. Then H(ρ) is the Markov parameter polynomial of (A, B) and every multiple of

(A, B).

Proof. First, from Proposition 2.22, there exists a comonic multiple of (A, B). Furthermore, recalling

that (A, B) is causal, Fact 2.26 implies that (E, F) is also causal. Hence, from Fact 2.27, F0 = · · · =
F�−1 = 0p×m.

Next, let G(ρ) � E(ρ)H(ρ). Then for i � 0, we have that

G�+i = Hi +
min(s−�,i)∑

j=1

E�+jHi−j. (6)

Hence from (5) and (6), it follows that

Gi =
⎧⎨
⎩
Fi, � � i � s,

0p×m, otherwise,

that is, G(ρ) = F(ρ). Therefore E(ρ)H(ρ) = F(ρ), and thus H(ρ) is a Markov parameter polynomial

of (E, F).
Next, since (E, F) is a multiple of (A, B), there exists L ∈ R

p×p[ρ] with full normal rank such that

E(ρ) = L(ρ)A(ρ) and F(ρ) = L(ρ)B(ρ). Hence

E(ρ)H(ρ) = L(ρ)A(ρ)H(ρ) = L(ρ)B(ρ) = F(ρ),
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and from Fact 2.7, A(ρ)H(ρ) = B(ρ). Thus H(ρ) is a Markov parameter polynomial of (A, B). Further-
more, if H′′ ∈ R

p×m[ρ] is also a Markov parameter polynomial of (A, B), then A(ρ)H′′(ρ) = B(ρ),
and hence A(ρ)H(ρ) = A(ρ)H′′(ρ). Thus from Fact 2.7, H′′(ρ) = H(ρ), and it follows that H(ρ) is

the unique Markov parameter polynomial of (A, B).
Finally, for every multiple (A′, B′) of (A, B), there exists M ∈ R

p×p[ρ] with full normal rank such

that A′(ρ) = M(ρ)A(ρ) and B′(ρ) = M(ρ)B(ρ). Hence A(ρ)H(ρ) = B(ρ) implies M(ρ)A(ρ) =
A′(ρ)H(ρ) = B′(ρ) = M(ρ)B(ρ), and it follows that H(ρ) is a Markov parameter polynomial of

(A′, B′). Furthermore, if H′′′ ∈ R
p×m[ρ] is also a Markov parameter polynomial of (A′, B′), then

A′(ρ)H′′′(ρ) = B′(ρ), and hence A′(ρ)H(ρ) = A′(ρ)H′′′(ρ). Thus from Fact 2.7, H′′′(ρ) = H(ρ), and
it follows that H(ρ) is the unique Markov parameter polynomial of (A′, B′). �

Theorem 4.2. Let C ∈ R
p×p[ρ] have full normal rank, let D ∈ R

p×m[ρ], and let H ∈ R
p×m∞ [ρ] be the

Markov parameter polynomial of (A, B) and (C,D), that is,

A(ρ)H(ρ) = B(ρ),

C(ρ)H(ρ) = D(ρ).

Then (C,D) is a multiple of (A, B).

Proof. Let CR ∈ R
p×p[ρ] be a greatest right factor of (A, C). Then there exist AL ∈ R

p×p[ρ] and

CL ∈ R
p×p[ρ], such that

A(ρ) = AL(ρ)CR(ρ),

C(ρ) = CL(ρ)CR(ρ).

Furthermore, since A(ρ) and C(ρ) have full normal rank, from Fact 2.6, we have that AL(ρ), CL(ρ), and
CR(ρ) have full normal rank.

Next, let E(ρ) � madj
[
AL(ρ)

]
and β(ρ) � mdet

[
AL(ρ)

]
. Since A(ρ) = AL(ρ)CR(ρ), then

E(ρ)A(ρ) = β(ρ)CR(ρ), and hence

CL(ρ)E(ρ)A(ρ) = CL(ρ)β(ρ)CR(ρ) = β(ρ)C(ρ).

Third, since C(ρ)H(ρ) = D(ρ), then

β(ρ)C(ρ)H(ρ) = β(ρ)D(ρ) = CL(ρ)E(ρ)A(ρ)H(ρ) = CL(ρ)E(ρ)B(ρ),

and hence (CLEA, CLEB) = (βC, βD).
Next, since (A, B) is left coprime and CL(ρ)E(ρ) has full normal rank, CL(ρ)E(ρ) is a greatest

left factor of (CLEA, CLEB). Furthermore, since β(ρ)Ip is also a left factor of (CLEA, CLEB), it follows

that there exists F ∈ R
p×p[ρ] such that CL(ρ)E(ρ) = β(ρ)F(ρ) and hence (βFA, βFB) = (βC,

βD).
Finally, since AL(ρ) has full normal rank, βIp has full normal rank. Thus from Fact 2.7, F(ρ)A(ρ) =

C(ρ) and F(ρ)B(ρ) = D(ρ). Furthermore, since CL(ρ)E(ρ) has full normal rank and CL(ρ)E(ρ) =
β(ρ)F(ρ), from Fact 2.6 it follows that F(ρ) has full normal rank. �

5. Numerical manipulation of polynomial matrices

In this section, we introduce notation and definitions that we use to numerically manipulate poly-

nomial matrices.

Definition 5.1. Let F ∈ R
p×m[ρ] have degree n and be given by

F(ρ) � F0 + F1ρ + · · · + Fnρ
n.
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Then for s � 0 and t � 0,

θ (F) �
[
F0 · · · Fn

]
∈ R

p×m(n+1),

θs (F) �
[
F0 · · · Fs

]
∈ R

p×m(s+1),

Ts (F) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 F1 · · · Fs

0p×m

. . .
. . .

...

...
. . .

. . . F1

0p×m · · · 0p×m F0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
p(s+1)×m(s+1),

Ts,t (F) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 F1 · · · Fs Fs+1 · · · Fs+t

0p×m

. . .
. . .

...
...

...

...
. . .

. . . F1 F2
...

0p×m · · · 0p×m F0 F1 · · · Ft

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
p(s+1)×m(s+t+1),

Ks,t

(
F
) �

⎡
⎢⎣ Ts,t

(
F
)

[
Im(s+1) 0m(s+1)×mt

]
⎤
⎥⎦ ∈ R

(p+m)(s+1)×m(s+t+1),

Ks,t

(
F
) �

[
0(m[s+1]+ps)×p I(m[s+1]+ps)

]
Ks,t(F) ∈ R

(m[s+1]+ps)×m(s+t+1),

where Fi = 0p×m for all i > n, and we drop the argument ρ for conciseness.

Remark 5.2. Note that θ (F) = θn (F) and Ks,t

(
F
)
is obtained by removing the first p rows of Ks,t

(
F
)
.

Fact 5.3. Let E ∈ R
p×m[ρ] be of degree n and let C ∈ R

m×l[ρ] be of degree s. Then the first n+ 1matrix

coefficients of the product D(ρ) � E(ρ)C(ρ) are given by

θn (D) = θ (E) Tn (C) ,

and all of the n + s + 1matrix coefficients of D(ρ) are given by

θ (D) = θ (E) Tn,s (C) .

Proof. For all i = 0, . . . , n + s, we have that

Di =
min(n,i)∑

j=max(0,i−s)

EjCi−j,

from which Fact 5.3 follows. �

Fact 5.4. Let E ∈ R
p×m[ρ] be of degree n, F ∈ R

m×l∞ [ρ], and t � 0. Then the first n + t + 1 matrix

coefficients of the product G(ρ) � E(ρ)F(ρ) are given by

θn+t (G) = θ (E) Tn,t (F) .
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Proof. For all i = 0, . . . , n + t, we have that

Gi =
min(n,i)∑

j=0

EjFi−j,

from which Fact 5.4 follows. �

Remark 5.5. Let D ∈ R
p×m[ρ] be given by

D(ρ) �
[
d1(ρ) · · · dm(ρ)

]
,

where d1, . . . , dm ∈ R
p×1[ρ]. Then

vec
[
D(ρ)

] �

⎡
⎢⎢⎢⎢⎢⎣

d1(ρ)

...

dm(ρ)

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

pm×1[ρ],

Is ⊗ D(ρ) �

⎡
⎢⎢⎢⎢⎢⎣
D(ρ)

. . .

D(ρ)

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

ps×ms[ρ].

Fact 5.6. Let C ∈ R
p×m[ρ] and D ∈ R

m×�[ρ]. Then
vec

[
C(ρ)D(ρ)

]
=

[
I� ⊗ C(ρ)

]
vec

[
D(ρ)

]
.

Proof. See [2]. �

6. Numerical algorithms for computing the Markov parameters

Here we demonstrate how to compute the Markov parameters of (A, B) from a multiple of (A, B)
numerically. Since Theorem 4.1 is constructive given a comonicmultiple of (A, B), first we present two

methods of computing a comonic multiple of (A, B) numerically.

Proposition 6.1. Let (C,D) be a multiple of (A, B). Then there exists a nonnegative t such that

rank

[ [
0p×pt Ip

]
Tt (C)

]
= rank

[
Tt (C)

]
. (7)

Furthermore, let U ∈ R
p×p(t+1) be a solution of[

0p×pt Ip

]
= UTt (C) , (8)

and let L ∈ R
p×p[ρ] be the polynomial matrix of degree t such that

θ (L) � U.

Then (E, F) = (LC, LD) is a comonic multiple of (A, B) and (C,D).
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Proof. From Proposition 2.22, there exists a comonic multiple (E′, F ′) = (L′C, L′D) of (A, B) and

(C,D). Hence, letting Eγ be the trailing coefficient of E′(ρ), we have that

θγ

(
E′) =

[
0p×pγ Ip

]
,

where, from Fact 5.3, it follows that

θγ

(
E′) =

[
0p×pγ Ip

]
= θγ

(
L′

)
Tγ (C) .

Thus there exists a nonnegative t such that (7) holds.

Finally, since there exists a nonnegative t such that (7) holds, there exists a U ∈ R
p×p(t+1) such

that (8) holds (θt(L
′) being one such U). Hence,

θ (L) Tt (C) = θt(E) =
[
0p×pt Ip

]
,

that is, E(ρ) is comonic. Therefore (E, F) is a comonic multiple of (A, B) and (C,D). �

Algorithm 6.2. Let (C,D) be a given multiple of (A, B) of degree s. The following algorithm yields a

comonic multiple (E, F) = (LC, LD) of (A, B), as described in Proposition 6.1.

(1) t = −1.

(2) t = t + 1.

(3) u = rank
[
Tt (C)

]
.

(4) v = rank

[ [
0p×pt Ip

]
Tt (C)

]
.

(5) If u < v, go to Step 2. Otherwise, continue.

(6) θ (L) =
[
0p×pt Ip

]
T +
t (C), where (·)+ denotes the Moore–Penrose generalized inverse.

(7) θ (E) = θ (L) Tt,s (C).
(8) θ (F) = θ (L) Tt,s (D).

Next, we present an alternative method for computing a comonic multiple of (A, B). Specifically,
we show how to compute a comonic quasi-scalar multiple of (A, B) from an arbitrary multiple (C,D)
of (A, B).

Proposition 6.3. Let (C,D) be a multiple of (A, B) of degree s and let

L(ρ) � Im ⊗ CT (ρ),

M(ρ) � vec
[
D(ρ)

]T
.

Then there exists a nonnegative t such that

nullity
(
WT

t

)
� 1, (9)

where

Wt �

⎡
⎢⎣ Tt,s (M)

Tt,s (L)

⎤
⎥⎦ .
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Furthermore, let U ∈ R
(pm+1)(t+1) be a nonzero vector in the nullspace of WT

t , and let γ ′ ∈ R[ρ] and
F ′ ∈ R

p×m[ρ] be the polynomial matrices of degree t such that

θ
(
γ ′) � UT

⎡
⎢⎣ It+1

0pm(t+1)×t+1

⎤
⎥⎦ ,

θ

(
vec

[
F ′]T)

� −UT

⎡
⎢⎣ 0t+1×pm(t+1)

Ipm(t+1)

⎤
⎥⎦ .

Then γ ′(ρ) is nonzero. Finally, let γi be the trailing coefficient of γ ′(ρ), and let γ (ρ) � γ ′(ρ)/γi and

F(ρ) � F ′(ρ)/γi. Then (γ Ip, F) is a comonic quasi-scalar multiple of (A, B).

Proof. First, letting E(ρ) � madj [C(ρ)] and β(ρ) � mdet [C(ρ)], it follows that

C(ρ)E(ρ)D(ρ) = β(ρ)D(ρ).

Hence, from Fact 5.6, we have that[
Im ⊗ C(ρ)

]
vec

[
E(ρ)D(ρ)

] = β(ρ)vec
[
D(ρ)

]
,

where β(ρ) is nonzero since C(ρ) has full normal rank. Thus, letting η denote the degree of (βIp, ED),
from Fact 5.3 we have that

θ
(
vec

[
ED

]T)
Tη,s

(
L
) = θ

(
β

)
Tη,s

(
M

)
.

Thus there exists a nonnegative t such that (9) holds.

Next, since there exists a nonnegative t such that (9) holds, there exists a nonzeroU ∈ R
(pm+1)(t+1)

in the nullspace of WT
t . Furthermore, from the definition of γ ′(ρ) and F ′(ρ), it follows that

θ
(
vec

[
F ′]T)

Tt,s
(
L
) = θ

(
γ ′)Tt,s(M)

,

and hence from Fact 5.3, we have that C(ρ)F ′(ρ) = γ ′(ρ)D(ρ).
Next, suppose that γ ′(ρ) is zero. Then C(ρ)F ′(ρ) = 0p×m and therefore, since C(ρ) has full normal

rank, from Fact 2.7, F ′(ρ) = 0p×m. However this contradicts the fact that U is nonzero. Hence γ ′(ρ)
is nonzero.

Finally, letting H ∈ R
p×m[ρ] denote the Markov parameter polynomial of (A, B) and (C,D), it

follows that

C(ρ)H(ρ) = D(ρ),

C(ρ)γ (ρ)H(ρ) = γ (ρ)D(ρ) = C(ρ)F(ρ).

Therefore from Fact 2.7, γ (ρ)H(ρ) = F(ρ). Furthermore, since γ (ρ)Ip is comonic and quasi-scalar,

from Fact 2.9, γ (ρ) has full normal rank. Therefore, from Theorem 4.2, (γ Ip, F) is a comonic quasi-

scalar multiple of (A, B). �

Algorithm 6.4. Let (C,D) be a given multiple of (A, B) of degree s. The following algorithm yields a

comonic quasi-scalar multiple (γ Ip, F) of (A, B), as described in Proposition 6.3.

(1) t = −1.

(2) L(ρ) = Im ⊗ CT (ρ).

(3) M(ρ) = vec
[
D(ρ)

]T
.
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(4) t = t + 1.

(5) Compute the singular value decomposition of

Wt =
⎡
⎣ Tt,s (M)

Tt,s (L)

⎤
⎦ .

(6) If nullity
(
WT

t

)
= 0, go to Step 4. Otherwise, continue.

(7) Choose a nonzero vector U ∈ R
(pm+1)(t+1) in the nullspace of WT

t , and scale U such that the

first nonzero component is 1.

(8) θ (γ ) = UT

⎡
⎣ It+1

0pm(t+1)×t+1

⎤
⎦.

(9) θ
(
vec [F]T

)
= −UT

⎡
⎣ 0t+1×pm(t+1)

Ipm(t+1)

⎤
⎦.

Remark 6.5. Proposition 6.1 and 6.3 provide two alternative ways of obtaining a comonic multiple of

(A, B) numerically, with the main difference being that Proposition 6.1 provides a comonic multiple

of both (A, B) and (C,D), while Proposition 6.3 provides a quasi-scalar comonic multiple that is only

guaranteed to be a multiple of (A, B). Typically, Proposition 6.1 will provide a comonic multiple of

lower degree than Proposition 6.3, due to the quasi-scalar requirement in Proposition 6.3, however

this is not always the case. One of the benefits of Proposition 6.3 is that quasi-scalar multiples exhibit

a direct link to transfer function, and thus state-space, models, as shown in Section 8, albeit at the

expense of increased computational complexity.

Now that we have shown how to compute a comonic multiple of (A, B) numerically, Theorem

4.1 can be used to compute the Markov parameters of (A, B) algebraically. Specifically, we have the

following Proposition:

Proposition 6.6. Let (C,D) be amultiple of (A, B) and let (E, F) be a comonicmultiple of (A, B) computed

using either Proposition 6.1 (Algorithm 6.2) or Proposition 6.3 (Algorithm 6.4). Then theMarkov parameters

of (A, B) are given by (5).

7. Numerical algorithms for computing a multiple of (A, B)

Here we present two methods of computing a multiple of (A, B) numerically from the Markov

parameters of (A, B).

Proposition 7.1. Let H ∈ R
p×m∞ [ρ] be the Markov parameter polynomial of (A, B) and let n̄ � n.. Then

for all nonnegative t,

rank
[
Kt,n.(H)

]
= rank

[
Kt,n̄(H)

]
, (10)

rank
[
Kt,n.(H)

]
= rank

[
Kt,n̄(H)

]
. (11)

Furthermore, there exists a nonnegative s � n. such that

rank
[
Ks,n.(H)

]
= rank

[
Ks,n.(H)

]
. (12)

Finally, letting (12) hold, letting E ∈ R
p×p[ρ] have full normal rank, letting F ∈ R

p×m[ρ], and[
θ (E) −θ (F)

]
Ks,n̄(H) = 0p×m(s+n̄+1), (13)

then (E, F) is a multiple of (A, B).
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Proof. First, since (A., B.) is a quasi-scalar multiple of (A, B), then

A.(ρ)H(ρ) = B.(ρ).

Furthermore, from (5), for all j � 1 we have that

a.
n.Hj + · · · + a.

1 Hn.+j−1 + Hn.+j = 0p×m,

where, since a.
1 , . . . , a.

n. ∈ R,

Hja
.
n. + · · · + Hn.+j−1a

.
1 + Hn.+j = 0p×m. (14)

Next, suppose that n̄ = n. + 1. Then from (14), the columns of Kt,n̄(H) beginning with Ht+n.+1

are in the column space of the previousmn. columns, specifically,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ht+1

...

H1

0m(t+1)×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
a.
n + · · · +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ht+n.

...

Hn.

0m(t+1)×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
a.
1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ht+n.+1

...

Hn.+1

0m(t+1)×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0(p+m)(t+1)×m.

Similarly, for all j � 1, the columns of Kt,n.+j(H) beginning with Ht+n.+j are in the column space of

the previousmn. columns. Hence, by induction, we have (10). Furthermore, (11) follows directly from

(10) since Kt,n̄(H) is obtained by removing the first p rows of Kt,n̄(H).

Next, since (A., B.) is a comonic quasi-scalar multiple of (A, B), from Fact 5.4, we have that

θ
(
A.)

Tn.,n.

(
H

) = θ2n.

(
B.) =

[
θ
(
B.

)
0p×mn.

]
,

and hence[
θ
(
A.

) −θ
(
B.

) ]
Kn.,n.

(
H

) = 0p×m(2n.+1),

where, since A.(ρ) is comonic with A.
0 = Ip, we have (12).

Finally, let E(ρ) have full normal rank and let (13) hold. Then from (10), for all j � 1, we have that[
θ (E) −θ (F)

]
Ks,n̄+j(H) = 0p×m(s+n̄+j+1),

and hence

θ
(
E
)
Ts,n̄+j

(
H

) =
[
θ
(
F
)
0p×m(n̄+j)

]
.

Therefore, from Fact 5.4, E(ρ)H(ρ) = F(ρ), and from Theorem 4.2, (E, F) is a multiple of (A, B). �

Algorithm 7.2. Let n̄ be a known upper bound for n., that is, n̄ � n.. Also, let H(ρ) be the Markov

parameter polynomial of (A, B), and let H0, . . . ,H2n̄+1 be given. Then following algorithm yields a

comonic multiple (E, F) of (A, B), as described in Proposition 7.1.

(1) s = 0.

(2) s = s + 1.

(3) u = rank
[
Ks,n̄(H)

]
.

(4) v = rank
[
Ks,n̄(H)

]
.

(5) If u < v, go to Step 2. Otherwise, continue.

(6) W = θs+n̄(H)K +
s,n̄(H), where (·)+ denotes the Moore–Penrose generalized inverse.
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(7) θ (E) =
⎡
⎣ Ip −W

⎡
⎣ Ips

0m(s+1)×ps

⎤
⎦

⎤
⎦.

(8) θ (F) = W

⎡
⎣ 0ps×m(s+1)

Im(s+1)

⎤
⎦.

Next, we present an alternative method for computing a comonic multiple of (A, B). Specifically,
we show how to compute a comonic quasi-scalar multiple of (A, B) from the Markov parameters of

(A, B).

Proposition7.3. LetH ∈ R
p×m∞ [ρ]be theMarkovparameter polynomial of (A, B), n̄ � n., andH.(ρ) �

vec
[
H(ρ)

]T
. Then for all nonnegative t,

rank
[
Kt,n.(H.)

]
= rank

[
Kt,n̄(H

.)
]
. (15)

Furthermore, there exists a nonnegative s � n. such that

nullity
[
KT

s,n.(H.)
]

� 1. (16)

Finally, letting γ ∈ R[ρ] be nonzero, D ∈ R
1×pm[ρ], and[

θ
(
γ

) −θ
(
D

) ]
Ks,n̄(H

.) = 01×pm(s+n̄+1), (17)

F(ρ) � unvec
[
DT (ρ)

]
,

then (γ Ip, F) is a quasi-scalar multiple of (A, B).

Proof. First, since (A., B.) is a quasi-scalar multiple of (A, B), then

A.(ρ)H(ρ) = B.(ρ).

Hence letting B
.
(ρ) � vec [B(ρ)]T , from Fact 5.6, we have that

a.(ρ)H.(ρ) = B
.
(ρ).

Therefore, from (5), for all j � 1 we have that

a.
n.H

.
j + · · · + a.

1 H.
n.+j−1 + H.

n.+j = 01×pm,

where, since a.
1 , . . . , a.

n. ∈ R,

H.
j a.

n. + · · · + H.
n.+j−1a

.
1 + H.

n.+j = 01×pm.

Thus (15) follows directly from the proof of Proposition 7.1.

Next, since (A., B.) is a comonic quasi-scalar multiple of (A, B), from Fact 5.4, we have that

θ
(
a.)

Tn.,n.

(
H.) = θ2n.

(
B

.
)

=
[
θ

(
B

.
)

01×pmn.

]
,

and hence[
θ
(
a.

) −θ
(
B

.
) ]

Kn.,n.

(
H.) = 01×pm(2n.+1),

where, since a.(ρ) is comonic with a.
0 = 1, we have (16).
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Finally, let γ (ρ) be nonzero and let (17) hold. Then from (15), for all j � 1, we have that[
θ
(
γ

) −θ
(
D

) ]
Ks,n̄+j(H

.) = 01×pm(s+n̄+j+1),

and hence

θ
(
γ

)
Ts,n̄+j

(
H.) =

[
θ
(
D

)
01×pm(n̄+j)

]
.

Therefore, from Fact 5.4, γ (ρ)H.(ρ) = D(ρ), and from Fact 5.6,

γ (ρ)H(ρ) = F(ρ).

Furthermore, sinceγ (ρ) is nonzero and quasi-scalar, fromFact 2.9,γ (ρ)Ip has full normal rank. Hence,

from Theorem 4.2, (γ Ip, F) is a multiple of (A, B). �

Algorithm 7.4. Let n̄ be a known upper bound for n., that is, n̄ � n.. Also, let H(ρ) be the Markov

parameter polynomial of (A, B), and let H0, . . . ,H2n̄+1 be given. Finally, for all i = 0, . . . , 2n̄ + 1,

let H.
i � vec

[
Hi

]T
. Then the following algorithm yields a quasi-scalar comonic multiple (γ Ip, F) of

(A, B), as described in Proposition 7.3.

(1) s = 0.

(2) s = s + 1.

(3) Compute the singular value decomposition of Ks,n̄(H
.).

(4) If nullity
(
KT

s,n̄(H
.)

)
= 0, go to Step 2. Otherwise, continue.

(5) Choose a nonzero vector U ∈ R
1×(pm+1)(s+1) in the left nullspace of Ks,n̄(H

.).

(6) θ (γ ) = U

⎡
⎣ Is+1

0pm(s+1)×(s+1)

⎤
⎦.

(7) θ (D) = −U

⎡
⎣ 0(s+1)×pm(s+1)

Ipm(s+1)

⎤
⎦.

(8) F(ρ) = unvec
[
DT (ρ)

]
.

Remark 7.5. As in the previous section, Proposition 7.1 and 7.3 provide two alternativeways of obtain-

ing a comonic multiple of (A, B) numerically from the Markov parameters, with the main difference

being that Proposition 7.1 provides a comonic multiple, while Proposition 7.3 provides a quasi-scalar

comonic multiple. Proposition 7.1 will always provide a comonic multiple of degree less than or equal

to Proposition 7.3, due to the quasi-scalar requirement in Proposition 7.3. However, one of the bene-

fits of Proposition 7.3 is that quasi-scalar multiples exhibit a direct link to transfer function, and thus

state-space, models, as we demonstrate in the following section, albeit at the expense of increased

computational complexity.

Remark 7.6. In both Algorithm 7.2 and Algorithm 7.4, it is required that an upper bound n̄ for n. is

known. However, in practice, this may be difficult or impossible to ascertain. In this case, we would

advise the reader to take an initial guess of for the upper bound, say n1, and run the algorithms as

proposed. If in Algorithms 7.2 and 7.4, the rank conditions are not satisfied for s � n1, then increase

n1, provide more Markov parameters, and run the algorithms again.

8. Connection with state-space models

Here we consider the connection between polynomial matrix models, state-space models, and

Markov parameters. Specifically, we review the well-knownmethod of obtaining a polynomial matrix
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model from a state-space model, and then show that, using the Markov parameters of the state-space

model, we can obtain the same polynomial matrix model using the algorithms in the present paper,

particularly Proposition 7.1. Furthermore, we show that all of the same rank properties presented in

Proposition 7.1 still hold when theMarkov parameters are generated from a state-spacemodel, where

n. is replaced by the order of the state-space model which generates the Markov parameters.

Proposition 8.1. Consider the state-space system

x(t) = ρÃx(t) + ρB̃u(t),

y(t) = C̃x(t) + D̃u(t),

where Ã ∈ R
n×n, B̃ ∈ R

n×m, C̃ ∈ R
p×n, and D̃ ∈ R

p×m, x ∈ R
n is the state, u ∈ R

m is the input, and

y ∈ R
p is the output. Also, let

A(ρ) � det
[
In − ρÃ

]
,

E(ρ) � adj
[
In − ρÃ

]
,

B(ρ) � ρC̃E(ρ)B̃ + A(ρ)D̃.

Then A(ρ)y(t) = B(ρ)u(t).

Proof

A(ρ)y(t) = C̃A(ρ)x(t) + A(ρ)D̃u(t) = C̃
[
E(ρ)ρB̃u(t)

]
+ A(ρ)D̃u(t) = B(ρ)u(t). �

Definition 8.2. Let Ã ∈ R
n×n, B̃ ∈ R

n×m, C̃ ∈ R
p×n, and D̃ ∈ R

p×m. Also, for i � 1, let

H0 � D̃, H1 � C̃B̃, H2 = C̃ÃB̃, · · · , Hi � C̃Ãi−1B̃.

Then Hj is the jthMarkov parameter of (Ã, B̃, C̃, D̃), and

H(ρ) �
∞∑
j=0

Hjρ
j

is theMarkov parameter polynomial of (Ã, B̃, C̃, D̃).

Proposition 8.3. Consider the controllable state-space model

x(t) = ρÃx(t) + ρB̃u(t),

y(t) = C̃x(t) + D̃u(t),

where Ã ∈ R
n×n, B̃ ∈ R

n×m, C̃ ∈ R
p×n, and D̃ ∈ R

p×m, x ∈ R
n is the state, u ∈ R

m is the input, and

y ∈ R
p is the output. Furthermore, let n̄ � n and let H ∈ R

p×m∞ [ρ] be the Markov parameter polynomial

of (Ã, B̃, C̃, D̃). Then for all nonnegative t,

rank
[
Kt,n(H)

]
= rank

[
Kt,n̄(H)

]
, (18)

rank
[
Kt,n(H)

]
= rank

[
Kt,n̄(H)

]
. (19)
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Furthermore, letting

A(ρ) � det
[
In − ρÃ

]
,

E(ρ) � adj
[
In − ρÃ

]
,

B(ρ) � ρC̃E(ρ)B̃ + A(ρ)D̃,

then [
θn

(
AIp

) −θn (B)
]
Kn,n̄ (H) = 0p×m(n+n̄+1), (20)

and there exists a nonnegative s � n such that

rank
[
Ks,n(H)

]
= rank

[
Ks,n(H)

]
. (21)

Proof. First, note that from Definition 5.1 and Definition 8.2, for all n̄ � n and t � 0, we have that

Kt,n̄(H) =
⎡
⎣ Tt(H) Ot

(
Ã, C̃

)
Cn̄

(
Ã, B̃

)
Im(t+1) 0m(t+1)×mn̄

⎤
⎦ ,

Ot

(
Ã, C̃

)
�

[ (
C̃Ãt

)T · · ·
(
C̃Ã

)T
C̃T

]T
,

Cn̄
(
Ã, B̃

)
�

[
B̃ ÃB̃ · · · Ãn̄−1B̃

]
,

where On

(
Ã, C̃

)
is the reordered observability matrix of (Ã, C̃), and Cn

(
Ã, B̃

)
is the controllability

matrix of (Ã, B̃). Furthermore, since (Ã, B̃, C̃, D̃) is controllable, then for all n̄ � n, Cn̄
(
Ã, B̃

)
has full

row rank. Hence for all n̄ � n, it follows that

rank
[
Ot

(
Ã, C̃

)
Cn

(
Ã, B̃

)]
= rank

[
Ot

(
Ã, C̃

)
Cn̄

(
Ã, B̃

)]
= rank

[
Ot

(
Ã, C̃

)]
� n,

that is, the finalm(n̄− n) columns ofKt,n̄(H) are in the column space of the previousmn columns and

therefore (18). Similarly, we have (19).

Next, note that

B(ρ)−A(ρ)H(ρ)=ρC̃E(ρ)B̃+A(ρ)D̃−A(ρ)

⎛
⎝D̃+

∞∑
i=1

C̃Ãi−1B̃ρ i

⎞
⎠ =ρC̃

⎛
⎝E(ρ)−A(ρ)

∞∑
i=0

Ãiρ i

⎞
⎠ B̃.

Furthermore, since

[
In − ρÃ

] ∞∑
i=0

Ãiρ i = In,

it follows that

[
In − ρÃ

] ⎛
⎝E(ρ) − A(ρ)

∞∑
i=0

Ãiρ i

⎞
⎠ = det

[
In − ρÃ

]
− A(ρ) = 0n×n,

where, since
[
In − ρÃ

]
is regular, from Fact 2.8,

[
In − ρÃ

]
has full row rank. Hence, from Fact 2.7,

E(ρ) − A(ρ)
∞∑
i=0

Ãiρ i = 0n×n,
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and therefore

B(ρ) − A(ρ)H(ρ) = ρC̃
(
0n×n

)
B̃ = 0p×m,

that is, A(ρ)H(ρ) = B(ρ).
Finally, note that A(ρ) has degree less than or equal n from the definition of the determinant, and

from the definition of the adjugate in terms of the cofactor matrix, it follows that E(ρ) has degree less

than or equal n − 1. Hence B(ρ) has degree less than or equal to n. Therefore, since (A, B) has degree
less than or equal n, and A(ρ)H(ρ) = B(ρ), we have (20). Furthermore, since

A(0) = det
[
In − 0 × Ã

]
= 1 = A0,

we have (21). �

9. Numerical examples

In the following, we illustrate Algorithm 6.2, Algorithm 6.4, Proposition 6.6, Algorithm 7.2, and

Algorithm 7.4 with a low-degree example for conciseness. Let

A(ρ) �

⎡
⎢⎣ (2 + ρ) (3 + ρ)

(5 + ρ) (7 + ρ)

⎤
⎥⎦ , (22)

B(ρ) �
⎡
⎣ (1 + ρ) (2 + ρ) (3 + ρ)

(4 + ρ) (5 + ρ) (6 + ρ)

⎤
⎦ , (23)

N(ρ) �

⎡
⎢⎣ (1 + ρ) (2 + ρ)

(3 + ρ) (6 + ρ)

⎤
⎥⎦ , (24)

and (C,D) � (NA,NB). Then (C,D) is a multiple of (A, B), and

C(ρ) =
⎡
⎢⎣ 12 + 10ρ + 2ρ2 17 + 13ρ + 2ρ2

36 + 16ρ + 2ρ2 51 + 19ρ + 2ρ2

⎤
⎥⎦ , (25)

D(ρ) =
⎡
⎢⎣ 9 + 8ρ + 2ρ2 12 + 10ρ + 2ρ2 15 + 12ρ + 2ρ2

27 + 14ρ + 2ρ2 36 + 16ρ + 2ρ2 45 + 18ρ + 2ρ2

⎤
⎥⎦ . (26)

Furthermore,

θ(C) =
⎡
⎣ 12 17 10 13 2 2

36 51 16 19 2 2

⎤
⎦ ,

θ(D) =
⎡
⎣ 9 12 15 8 10 12 2 2 2

27 36 45 14 16 18 2 2 2

⎤
⎦ ,

where we insert vertical lines in θ(·) to separate coefficients.
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Example2. LetC(ρ)andD(ρ)begivenby (25) and (26), respectively. The followingexample illustrates

Algorithm 6.2.

First, the following table displays the normalized singular values (σ̄i � σi/σmax) of Tt(C) and

It(C) �
⎡
⎣

[
0p×pt Ip

]
Tt(C)

⎤
⎦

for t = 0 and t = 1. Since the ranks both equal 3 for t = 1, we move to Step 6.

σ̄ [Tt(C)] σ̄ [It(C)]

t σ̄2 σ̄3 σ̄4 σ̄2 σ̄3 σ̄4

0 6.2×10−17 0.015

1 0.65 3.7×10−4 2.0×10−21 0.65 1.2×10−2 1.6×10−17

Next, from Step 6, we have that

θ(L) =
⎡
⎣ −25.5 8.5 1 3

18 −6 −0.7 −2.1

⎤
⎦ ,

and from Step 7 and 8, we have that

θ(E) =
⎡
⎣ ε1 ε1 1 ε1 24 36 8 8

ε2 ε2 ε3 1 −16.6 −25 −5.6 −5.6

⎤
⎦ ,

θ(F) =
⎡
⎣ ε2 ε1 ε1 5 1 −3 16 24 32 8 8 8

ε4 ε2 ε2 −3 ε3 3 −11 −16.6 −22.2 −5.6 −5.6 −5.6

⎤
⎦ ,

where

ε1 � 1.1369 × 10−13,

ε2 � −5.6843 × 10−14,

ε3 � 9.9476 × 10−14,

ε4 � −2.8422 × 10−14.

Therefore, we can see that the multiple (E, F) = (LC, LD) = (LNA, LNB) is comonic.

Example3. LetC(ρ)andD(ρ)begivenby (25) and (26), respectively. The followingexample illustrates

Algorithm 6.4.

First, we begin by constructing L(ρ) = I3 ⊗ CT (ρ) andM(ρ) = vec [D(ρ)]T . Then, examining the

following table, which displays the inverse condition number of Wt for t = 0 and t = 1, we see that

nullity
(
WT

t

)
> 0 for t = 1.

t σmin

[
WT

t

]
/σmax

[
WT

t

]
0 8.8×10−4

1 8.9×10−17
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Hence, proceeding to Steps 7–10 with t = 1, we find that

θ(γ ) =
[
1 −1

]
,

θ(F) =
⎡
⎣ 5 1 −3 −1 −1 −1

−3 5 × 10−14 3 −9 × 10−14 −5 × 10−15 −4 × 10−14

⎤
⎦ .

Next, we would like to verify that (γ I2, F) is indeed a multiple of (A, B). To accomplish this, note

that if H ∈ R
2×3∞ [ρ] is the Markov parameter polynomial of (A, B), we should have that

A(ρ)H(ρ) = B(ρ),

γ (ρ)H(ρ) = F(ρ),

and therefore

γ (ρ)A(ρ)H(ρ) = A(ρ)γ (ρ)H(ρ) = A(ρ)F(ρ) = γ (ρ)B(ρ).

Thus, tocompare theaccuracyofourcomputedquasi-scalar comonicmultiple, letε1(ρ) � A(ρ)F(ρ)−
γ (ρ)B(ρ) and ε2(ρ) � A(ρ)F(ρ). Then one type of percent error metric is∥∥θ(ε1)

∥∥
F∥∥θ(ε2)

∥∥
F

= 1.018 × 10−14,

where ‖ · ‖F denotes the Frobenius norm of (·), and this type of percent error is meant to give us some

indication of how far the product γ (ρ)B(ρ) is from A(ρ)F(ρ). Since this number is small, numerically

we have that A(ρ)F(ρ) = γ (ρ)B(ρ).
Finally, since A(ρ)F(ρ) = γ (ρ)B(ρ), we have that

γ (ρ)B(ρ) = A(ρ)F(ρ) = A(ρ)γ (ρ)H(ρ),

and hence from Fact 2.7, it follows that γ (ρ)H(ρ) = F(ρ). Furthermore, since γ (ρ) is nonzero and

quasi-scalar, from Fact 2.9, γ (ρ)I2 has full normal rank. Hence from Theorem 4.2, (γ I2, F) is a comonic

quasi-scalar multiple of (A, B).

Remark 9.1. The comonic multiple of (A, B) generated in Example 2 has a higher degree, 3, than the

quasi-scalar comonic multiple of (A, B) generated in Example 3, which has a degree of 1. While this

may seem counterintuitive since the constraint of generating a quasi-scalar comonicmultiple appears

to be more restrictive, the reason lies in how the multiple is generated. Specifically, in Algorithm 6.2

(Proposition 6.1 and Example 2), we search for a comonic multiple of (C,D). Hence the degree of

the multiple generated by Algorithm 6.2 will always be greater than or equal to the degree of (C,D).
However, in Algorithm 6.4 (Proposition 6.3 and Example 3), we search for a quasi-scalar multiple of

(A, B) directly, that is, the quasi-scalar comonic multiple (γ, F) of (A, B) is in general not a multiple

of (C,D).

Example4. LetC(ρ)andD(ρ)begivenby (25) and (26), respectively. The followingexample illustrates

Proposition 6.6.

First, we compute the Markov parameters of (A, B) using the multiples of (A, B) generated in Ex-

amples 2 and 3. For both multiples we find that

H0 =
⎡
⎣ 5 1 −3

−3 0 3

⎤
⎦ ,

H1 =
⎡
⎣ 4 0 −4

−3 0 3

⎤
⎦ ,

and Hi = H1 for every i � 1.
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Next, computing the error ε(ρ) � A(ρ)H(ρ) − B(ρ), we find that

‖θ9(ε)‖F

‖θ(B)‖F

= 1.191 × 10−13.

Hence numerically, we find that A(ρ)H(ρ) = B(ρ), that is, the Markov parameters are indeed the

Markov parameters of (A, B).

Example5. LetC(ρ)andD(ρ)begivenby (25) and (26), respectively. The followingexample illustrates

Algorithm 7.2.

First, assume that n̄ = 4 is an upper bound for n.. Then, since n̄ = 4, we use the first 9 Markov

parameters from Example 4.

Next, the following table displays the third through eighth normalized singular values (σ̄i �
σi/σmax) of Ks,n̄(H) and Ks,n̄(H) for s = 0 and s = 1. Since the ranks are equal for s = 1, we

proceed to Step 6.

σ̄
[
Ks+n̄(H)

]
σ̄

[
Ks+n̄(H)

]
s σ̄3 σ̄4 · · · σ̄7 σ̄8 σ̄3 σ̄4 σ̄5 σ̄6 σ̄7 σ̄8

0 1 0.04 0.04 8×10−16

1 0.05 0.05 · · · 0.04 8×10−16 0.05 0.05 0.03 0.03 0.03 3 × 10−15

Next, from Steps 6–8, we have that

θ(E) =
⎡
⎣ 1 0 −4/13 12/13

0 1 +3/13 −9/13

⎤
⎦ ,

θ(F) =
⎡
⎣ +5 +1 −3 −4/13 −4/13 −4/13

−3 −5 × 10−16 +3 +3/13 +3/13 +3/13

⎤
⎦ .

Furthermore, letting

L(ρ) � I2 +
⎡
⎣ 12/13 16/13

12/13 16/13

⎤
⎦ ρ,

it follows that (E, F) = (LA, LB). Hence (E, F) is a comonic multiple of (A, B).

Example6. LetC(ρ)andD(ρ)begivenby (25) and (26), respectively. The followingexample illustrates

Algorithm 7.4.

First, assume that n̄ = 4 is an upper bound for n.. Then, since n̄ = 4, we use the first 9 Markov

parameters from Example 4. Furthermore, for every i ∈ [0, 8], we construct H.
i = vec [Hi]

T , that is,

H.
0 =

[
5 −3 1 0 −3 3

]
,

H.
1 =

[
4 −3 0 0 −4 3

]
,

and so on.

Next, examining the following table, which displays the inverse condition number of Ks,n̄(H
.) for

s = 0 and s = 1, we see that nullity
[
KT

s,n̄(H
.)

]
> 0 for s = 1.
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s σmin

[
Ks,n̄(H

.)
]
/σmax

[
Ks,n̄(H

.)
]

0 0.042

1 2.9×10−15

Hence, proceeding to Steps 5–8 with s = 1, we find that

θ(γ ) =
[
1 −1

]
,

θ(F) =
⎡
⎣ 5 1 −3 −1 −1 −1

−3 5 × 10−16 3 3 × 10−13 8 × 10−17 −3 × 10−13

⎤
⎦ ,

which is similar to the quasi-scalar comonic multiple (γ I2, F) generated in Example 3 up to rounding

errors.

Finally, as in Example 3, we should find that A(ρ)F(ρ) = γ (ρ)B(ρ). Thus, letting ε1(ρ) �
A(ρ)F(ρ) − γ (ρ)B(ρ) and ε2(ρ) � A(ρ)F(ρ), we find that

‖θ (ε1)‖F

‖θ (ε2)‖F

= 2.041 × 10−14,

and hence, numerically we have that A(ρ)F(ρ) = γ (ρ)B(ρ). Furthermore, as in Example 3, we find

that this implies that (γ I2, F) is a comonic quasi-scalar multiple of (A, B).

Remark 9.2. As evidenced by the previous examples, all of the proposed algorithms require, at some

point, one to determine the rank of a matrix, which is always a very delicate task, even for these

small examples. Furthermore, we do not suggest rigid guidelines for choosing tolerances for rank

conditions, since presumably these choices would be motivated by the problem at hand, specifically

the conditioning of the problem. For instance, suppose that a row or column of the Markov parameter

polynomial was significantly smaller than the others. Then the results would be influenced by the

practitioner’s determination whether the row or column in question is due to round-off errors or not.

Remark 9.3. In the examples presented here, access to the original system allows us to ascertain the

accuracy of the computed object. However, this is not possible for the practitioner, who may need to

develop reliability tests. These should be motivated by how the end object is to be used. For instance,

if the practitioner has access to the Markov parameters of a system, and computes a multiple of (A, B)
from the Markov parameters, one could save the final x Markov parameters, that is, not include them

in the algorithms, then check how small A(ρ)H(ρ) − B(ρ) is using the saved Markov parameters.

However, if one is interested in the accuracy of the spectral content of the system (A, B), then some

other test may be required.

10. Conclusions

We have considered polynomial matrix representations of MIMO linear systems and their con-

nection to Markov parameters. Specifically, we have developed theory and numerical algorithms for

transforming polynomial matrix models into Markov parameter models, and vice verse. We have also

provided numerical examples to illustrate the given algorithms.

Acknowledgements

The Ph.D of the first author was funded by the NASA Aeronautics Scholarship Program, through

which this effort wasmade possible. Furthermore, wewould like to thank the reviewers for suggesting

shorter alternative proofs to some of the facts in the paper.



808 M.S. Holzel, D.S. Bernstein / Linear Algebra and its Applications 437 (2012) 783–808

References

[1] P.J. Antsaklis, A.N. Michel, Linear Systems, Birkhauser, Boston, 2006.

[2] D.S. Bernstein, Matrix Mathematics, second ed., Princeton University Press, Princeton, NJ, 2009.
[3] G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and Control, fourth ed., Wiley, 2008.

[4] E.F. Camacho, C. Bordons, Model Predictive Control, Springer-Verlag, London, 2004.
[5] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, SIAM, 2009.

[6] G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control, Dover, Mineola, New York, 2009.
[7] B.L. Ho, R.E. Kalman, Effective construction of linear state-variable models from input/output functions, Regelungstechnik 14

(12) (1966) 545–592.

[8] P. Ioannou, B. Fidan, Adaptive Control Tutorial, SIAM, Philadelphia, 2006.
[9] J.N. Juang, Applied System Identification, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[10] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[11] P. Lancaster, M. Tismenetsky, The Theory of Matrices, second ed., Academic Press, 1985.

[12] L. Ljung, System Identification: Theory for the User, Prentice-Hall, Upper Saddle River, NJ, 1999.
[13] J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, Englewood Cliffs, NJ, 2002.

[14] R.H. Middleton, G.C. Goodwin, Digital Control and Estimation: A Unified Approach, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[15] J.E. Normay-Rico, E.F. Camacho, Control of Dead-Time Processes, Springer-Verlag, London, 2007.
[16] R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach, Wiley-IEEE Press, 2005.

[17] E. Reynders, R. Pintelon, G. De Roeck, Consistent impulse–response estimation and system realization from noisy data, IEEE
Trans. Signal Process. 56 (2008) 2696–2705.

[18] W.J. Rugh, Linear System Theory, Prentice-Hall, Englewood Cliffs, NJ, 1996.
[19] W.J. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach, The Johns Hopkins University Press, 1981.

[20] T. Soderstrom, P. Stoica, System Identification, Prentice-Hall, Upper Saddle River, NJ, 1988.
[21] Z. Szabo, P.S.C. Heuberger, J. Bokora, P.M.J. Van den Hof, Extended Ho–Kalman algorithm for systems represented in generalized

orthonormal bases, Automatica 36 (2000) 1809–1818.

[22] A.I.G. Vardulakis, Linear Multivariable Control: Algebraic Analysis and Synthesis Methods, Wiley, 1991.
[23] W.A. Wolovich, Linear Multivariable Systems, Springer-Verlag, New York, NY, 1974.

[24] D. Xue, Y. Chen, D.P. Atherton, Linear Feedback Control: Analysis and Design with Matlab, SIAM, 2007.


	From polynomial matrices to Markov parameters and back: Theory and numerical algorithms
	1 Introduction
	2 Polynomial matrices
	3 Problem formulation
	4 Markov parameters
	5 Numerical manipulation of polynomial matrices
	6 Numerical algorithms for computing the Markov parameters
	7 Numerical algorithms for computing a multiple of (A,B)
	8 Connection with state-space models
	9 Numerical examples
	10 Conclusions
	Acknowledgements
	References


