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[. INTRODUCTION

Input and state estimation techniques for tracking
maneuvering targets can be classified into two categories
[1]. The first is to treat the acceleration input as the state of
a random process, such as white noise, a Markov process,
or a semi-Markov jump process. The constant-acceleration
(CA) model and constant-turn model [2] are the basic
maneuvering models. A classic example is the Singer
tracking model [3-5], which models the target
acceleration as a first-order, zero-mean Markov process.
The current statistical model [6] assumes that the
acceleration is unknown but that the change in
acceleration is limited. The jerk-tracking model [7, 8]
assumes that the acceleration derivative is an independent
process of higher order. The above models work well for
estimating the acceleration input when the acceleration is
nonzero but are inefficient when the velocity is constant.
In order to improve the estimation accuracy, the
interacting multiple model (IMM) approach [9-13]
combines multiple tracking models under switching. This
approach requires a sufficient number of models to
adequately describe the target maneuvering dynamics.
However, the computational complexity increases with the
number of models. Extensions of IMM are introduced in
[14]. The variable-structure multiple-model (VSMM)
method is presented in [15]. In contrast to IMM, which
contains a fixed model set, VSMM adjusts the model set in
real time to reduce the computational complexity.

An alternative approach is to treat the acceleration
as an unknown deterministic signal that can be estimated.
In [16], the Kalman filter is combined with a least-squares
input estimator to estimate the state and acceleration
input. The approach of [17] extends this method and
presents a multiple-model-based recursive algorithm. An
improved estimation method that incorporates a maneuver
detection window is given in [18]. This method does not
require multiple models and has lower computational cost.
In [19], a Kalman-filter—based input estimation method
is developed. The acceleration component is added to the
state vector, and the Kalman filter is used to optimize the
augmented state vector. However, this method is efficient
only for constant acceleration. The technique given in [20]
provides a linear minimum-variance unbiased estimate of
the state and unknown input. In [21], a recursive three-step
filter is presented where the estimates of the state and input
are interconnected. However, global optimality of this filter
cannot be guaranteed. An estimator that allows recovery of
both the state and unknown input after a delay is presented
in [22]. This approach can be used for left-invertible
systems without invariant zeros. The technique in [23]
estimates the state with input reconstruction based on a
reduced-order delayed-state observer. In [24], an unknown
input observer is developed for linear time-invariant
systems. Compared with previous estimators, this
estimator can be used for nonminimum-phase systems.

In the present paper, we consider input estimation
using a retrospective cost technique. Retrospective cost
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optimization was developed for adaptive control in

[25, 26] and applied to input and state estimation in [27].
This method optimizes a retrospective cost function to
drive the output of the feedback system (that is, the output
error) to zero and estimates the input along with the states
of the system. This technique is used with the Kalman
filter in [28] to estimate the state of a nonminimum-phase
system with uncertain harmonic inputs and in [29] to
estimate the acceleration of an aircraft.

In this paper, we combine retrospective-cost—input
estimation with the Kalman filter (KF/RCIE) to estimate
the acceleration of a maneuvering target. RCIE optimizes
the retrospective performance to estimate the acceleration,
which is then used by the Kalman filter along with
measurements to estimate the state. KF/RCIE is different
from other estimation methods in several ways. In
particular, the traditional Kalman filter treats the unknown
acceleration input as a random process. Conventional
input and state estimators require knowledge of the
distribution of the input in [30-35]. However, KF/RCIE
requires no prior information about the input.

We investigate the performance of KF/RCIE by
simulation examples and laboratory experiments. The
tracking system includes an Optitrack camera system and
a rate table. The Optitrack camera system captures the 3D
position of a rigid body by using markers and cameras.
The paper is organized as follows. In Section II, KF/RCIE
is formulated, and RCIE is developed in Section III. In
Section IV, the maneuvering target tracking problem is
addressed. KF/RCIE is used for maneuvering target
tracking with noise measurements, and rate-table target
tracking experiments are considered in Section V. Finally,
conclusions are drawn in Section VI.

[I. PROBLEM FORMULATION

Consider the linear time-invariant system

x(k) = Ax(k — )+ Butk — D+ wk — 1), (1)

y(k) = Cx(k) + v(k), 2

where x(k) € R is the state, u(k) € R’ is the input,
w(k) € R is the process noise with covariance
Q(k) € RE*k | y(k) € R is the measured output, and
v(k) € R¥ is the measurement noise with covariance
R(k) € Rb*ly The matrices A € Rk, B € RE*h | and
C e R« are assumed to be known.

The Kalman filter consists of two steps. The forecast
step is given by

x¢(k) = Axga(k — 1) + Bu(k — 1), 3)

Pi(k) = APg(k — DA" + Q(k — 1), “

where x¢(k) € R is the forecast state, x4,(k) € R'is the
data assimilation state, Pi(k) € Rx*k is the forecast error
covariance, and Pg,(k) € Rx*" is the data assimilation
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error covariance. The data assimilation step is given by

Kaa(k) = Pr(k)CTSg,' (), ®)
Paa(k) = Pr(k) = Pi(k)CT S,/ (k)C Prck),  (6)

Xaa(k) = x¢(k) + Kaa(k) [y(k) — Cxs (k)] N

where Kg,(k) € RE*! is the state estimator gain and
Saa(k) 2 CP(k)CT + R(K).

If the input u(k) is unknown, (3) cannot be
implemented. In this case, the effect of u(k) may be
included in the process noise w(k) by a suitable choice of
Q(k). Alternatively, it may be more desirable to estimate
the unknown input and replace u(k) in (3) by an estimated
input i (k). In this case, (3) is replaced by

xp(k) = Axga(k — 1) + Bii(k — 1). ®)

In order to estimate u(k), we construct an adaptive input
estimator of the form

2(k) = A%k — 1) + Bk — 1), )
Y(k) = Cx(k), (10)
z(k) = y(k) — 3(k), (1)

where £(k) € R is the estimated state, $(k) € R" is the
estimated output, and z(k) € R is the output error. The

estimated input 7 (k) is the output of the input estimation
subsystem of order n, given by

(k) = > Pi(kyia(k — i) + i Qi(k)z(k —i),  (12)
i=1 i=1

where P;(k) € Rl“*and Q,(k) € Rl«*= are the input
estimator coefficient matrices. We rewrite (12) as

i(k) = ©k)0(k), (13)
where the regressor matrix ®(k) is defined by
ak — 17"
ik —ne)
k) 2| k=1 | @I, eR>  (14)
7(k — ne)

and the estimator coefficient vector 6 (k) is defined by

0(k) 2 vec [Pl(k) coe Py (k) Q1K) - Qne(k)] eRY,
(15)
where Iy 2 I>ne + 1,1;n., ® is the Kronecker product, and

vec is the column-stacking operator. Fig. 1 shows the
structure of KF/RCIE.
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Fig. 1. KF/RCIE estimator.

[ll.  INPUT ESTIMATION USING RETROSPECTIVE
COST

A. Retrospective Performance

We define the retrospective performance variable as

£(k) 2 2(k) + Pr(k)d — u(k),

where # € R” is determined by optimization below and
®s(k) € R=*P and us(k) € R- are filtered versions of ®(k)
and u(k), respectively, defined by

16)

®c(k) = Gr, (2)D(k), (17)

ur(k) = Gy, @u(k), (18)

where z represents the forward shift operator. The filter
Gy, (z) € R=*k has the form

Gy, (z) = D, ' (2)N,(2), (19)

where N,(z) 2 Mz + Moz"2 + . + M, and

Dy(z) £ 2" + NyZ""' + Nyz" 2 + - - + N,,, with
M; € R=¥le and N; € R=*= and ny > 1 is the order of G, .

B. Markov Parameters

The filter Gy, is based on the Markov parameters of the
input-to-performance transfer function
G.,(z) = C(zI — A)~'B. For all complex numbers z
whose absolute value is greater than the spectral radius of
A, it follows that

o0

H;
Gu(z) = )
=

(20)
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where, for all i > 1, the ith Markov parameter of G, is
defined by

H 2 CA-'B. (1)

In this paper, Gy, is chosen to be the Markov-parameter—
based finite-impulse-response filter of order n; given by

nf

G,(@ =Y .

i=0

(22)

C. Retrospective Cost Function

Using the retrospective performance variable Z(k), we
define the retrospective cost

k
T, 0) 2 3" ATETOR2G) + (D)D) Rer(D)0]
i=1

+ 256 — 9(0))TR9(§ —6(0)), (23)

where R, € R: and Ry € R are positive definite,

Ry € Rl is positive semidefinite, and A € (0, 1] is the
forgetting factor. The following result is based on standard
RLS theory [36].

PROPOSITION 1 Let P(0) = R, '. Then, for all k > 1, the
retrospective cost function (23) has the unique global
minimizer 6(k) given by the RLS update
0(k) = 0(k — 1) — P(k — D®F (k)T (k)[De(k)O(k — 1)
+ (R + R~ Re(zi(k) — us(k))], (24)

where

P(k) = %P(k—l) — %P(k—l)fbg(k)l"_l(k)(bf(k)P(k—l)
(25)
and

T(k)2 AR.+ R)™ + &e(k)Pk — DOT (k).  (26)

IV.  MANEUVERING TARGET TRACKING
A. Maneuvering Target Tracking Model

Consider the discrete-time maneuvering planar target
kinematics model

x(k) = Ax(k — 1)+ Bu(k — 1) + w(k — 1), 27)

y(k) = Cx(k) 4 v(k),

where x(k) € R* is the state, u(k) € R? is the input
acceleration, w(k) € R* is the process noise signal with
positive-semidefinite covariance Q(k) € R**4, y(k) € R?
is the position measurement, and v(k) € R? is the
measurement noise signal with positive-semidefinite
covariance R(k) € R>*2. In (27), the state vector x(k) is

x(k) = [x1(k) x2(0) x30k) x4(0) ],

where x (k) and x3(k) are the planar coordinates of the
maneuvering target; x(k) and x4(k) are the velocity
components of the maneuvering target; the input vector

(28)

(29)
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u(k) is
(k) = [ (k) ux (k) |,

where u; (k) and u, (k) are the acceleration components of
the maneuvering target; and

(30)

1700 T2/2 0 1 o]"
A0 1 00 Al T 0 Al0 O
A=loorr|B= o mp| %o 1]

0001 0o T 00

(31

where T is the sample time.

B. Simulation Example

Based on (1) and (2), we use KF/RCIE to track a
simulated maneuvering target and compare the
performance with the CA model-based Kalman filter
(CAKF) [1], IMM estimator [11], and window-based least
squares estimator (WLSE) [16]. Both the CA model and
the CAKEF filter are sixth order, and both consider the
input acceleration as a component of the augmented state
vector. Suppose that the initial position and velocity of the
maneuvering target are x(0) = [—100 m, 10 m/s, —30 m, 5
m/s]T. For all estimators, we set the initial state estimates
to be zero and start the estimators at k = 25. In accordance
with (31), position measurement x; (k) and x3(k) are
assumed to be available. The position of the target is
sampled with 7= 1 s, and the covariance of the
measurement noise v(k) is R(k) = 1001,.

We test 50 sets of maneuvering target data with
random measurement noise. The acceleration inputs in the
x direction and y direction are

0 k < 300,
(0.01k — 3) 800 > k > 300,
ui(k)={ 24 1300 > k > 800,  (32)
24 — (0.01k — 13> 1700 > k > 1300,
0 k > 1700.
0 k < 300,
ur(k) = { (15—0.05k) sin(0.004k + 1.2) 1700 > k > 300,
0 k > 1700.
(33)

8
For RCIE, let G¢, (z) 2 > H;z7', where H; 2 CA-'B
i—0

is the ith Markov parameter, the estimator order is n, = 8§,
the performance weighting is R, = 0.5, the input
weighting is Ry = 1, the parameter weighting is Ry = 0.1,
and the forgetting factor is A = 1. For the Kalman filter,
the forecast error covariance is P¢(0) = 1014, and the
process noise covariance is Q(k) = 1. For CAKEF, the
forecast error covariance is Pca(0) = 10I, and the process
noise covariance is Qca (k) = Is. For WLSE, the tracking
window size is s,, = 5, the forecast error covariance is
Pwse(0) = 1014, and the process noise covariance is
Owisg(k) = I4. For the IMM estimator, the constant
velocity (CV) model and CA model are used. The process
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Fig. 2. Actual input, estimated input, and RMS error of the state and
input estimates. The error plots show RMS values averaged over 50
simulation runs using the KF/RCIE, WLSE, CAKF, and IMM estimators.
Estimation begins at k = 25. The RMS errors of the KF/RCIE state and
input estimates are lower than those of the other estimators.

covariance of the CV model and CA model in the IMM
estimator are the same as Q(k) and Qca (k), respectively;
the forecast error covariance of the CV model and CA
model in the IMM estimator are the same as P¢(0) and
Pca(0), respectively; the initial model probability of the
CV model and CA model are pucy = 0.5 and pca = 0.5,
respectively; and the mode transition probability is
o 0.97 0.03
—10.03 097 |°

Fig. 2(a) shows the actual input, the estimated input,
and the root-mean-square (RMS) error of the input. Note
that the unknown acceleration is considered a separate
input vector in KF/RCIE and WLSE. However, in CAKF
and IMM, the unknown acceleration is considered as a
component of the augmented state vector. Fig. 2(b) shows
the RMS errors of the state estimate. The error plots show
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Fig. 3. Rate table with target. The rate table provides a specified
angular velocity. The target consists of two Optitrack markers placed on
the circumference of the rate table.

Optitrack Camera

\%ow

=

Host Computer

Fig. 4. Tracking system. The tracking system includes two Optitrack
cameras, a target, a rate table, and a host computer. The Optitrack
cameras measure the position of the target and transfer the data to the
host computer.

Markers (Target)

Rate Table

the RMS values averaged over 50 simulation runs. It can
be seen from Fig. 2a that KF/RCIE has the best input
estimation performance among these estimators. In Figs.
2a and 2b, KF/RCIE produces the least RMS values of
position, velocity, and acceleration.

V. RATE TABLE EXPERIMENT

The tracking system consists of an Optitrack camera
system, Optitrack markers, a host computer, and a rate
table. The Optitrack camera system, which includes
several cameras, provides real-time position and
orientation of a rigid body with two attached Optitrack
markers. A target consists of two markers; the average
position between the markers (Fig. 3) provides the target
position. The Optitrack software uses reflected light to
determine the position and orientation of the target. The
rate table is normally used for testing and calibrating
gyroscopic instruments.

A. Experimental Setup

The tracking system is shown in Fig. 4. Two cameras
are placed so that the target motion can be observed by the
Optitrack system. We calibrate the system and set the
ground plane prior to the experiment using the Optitrack

HAN ET AL.: MANEUVERING TARGET TRACKING USING RETROSPECTIVE-COST INPUT ESTIMATION
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Fig. 5. Transformed reference frame. Using the position of the target,
the radius of the rate table, and the angular velocity of the rate table. The
rate table reference frame is transformed to the Optitrack system
reference frame.

Estimated
Target Position

Optitrack
>
Rate Table Pcameraisistan

Estimated
Target Acceleration

Fig. 6. Real-time Simulink model. This model includes the rate table
block, Optitrack camera system block, and KF/RCIE estimator block.
The input of the estimator is the position error.

calibration tools. Two Optitrack markers are placed on the
circumference of the rate table, and the distance from the
center to the circumference is the radius r = 14.98 cm.
The camera system offers position information from the
markers to the host computer.

By transforming the rate table reference frame to the
Optitrack reference frame (Fig. 5), the velocity and
acceleration in the latter frame have the form

x,(k) = or sin(wkT), (34)

x4(k) = wr cos(wkT), (35)
a, (k) = —’r sin(wkT), (36)
ay(k) = wr cos(wkT), 37)

where x,(k) and x4(k) are the velocity components in the x
and y directions, respectively; a.(k) and a,(k) are the
acceleration components in the x and y directions,
respectively; w is the angular velocity of the rate table; T is
the sample time; and r is the radius of the rate table.

This experiment is carried out using the real-time
Simulink environment. We integrate the Optitrack camera
system, KF/RCIE, and data storage as individual blocks,
respectively. The real-time Simulink model structure is
shown in Fig. 6.
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B. Tracking System Example

EXAMPLE 5.1 In this experiment, the target starts at [0.29
m, 0.26 m]T. For all estimators, we set the initial state
estimates to be zero. The position of the target is sampled
with 7= 0.1 s. The angular velocity is w = 200°/s. Since
the positions of the center of the circle and the target are
available and r, w, and T are known, (34)—(37) are used to
compute the velocity and acceleration in the x and y
directions, respectively. Since the acceleration of the target
on the rate table is not zero, a nonmaneuvering target
tracking model (e.g., CV model) will perform poorly in
providing the state and input estimates. In the following
experiments, we compare KF/RCIE with CAKF and
WLSE.

12
For RCIE, let Gy (z) = Y. Hyz™', where
i=0

H; £ CA-!B is the ith Markov parameter, the estimator
order is n, = 12, the performance weighting is R, = 0.01,
the input weighting is Ry = 1071, the parameter
weighting is Ry = 0.1, and the forgetting factor is 1 = 1.
For the Kalman filter, the forecast error covariance is P¢(0)
= 1014, the process noise covariance is Q(k) = 0.0011y,
and the measurement noise covariance is R(k) = 10731,.
For CAKEF, the forecast error covariance is Pca(0) = 101,
the process noise covariance is Qca (k) = 0.001/s, and the
measurement noise covariance is Rca (k) = 10731,. For
WLSE, the tracking window size is s,, = 5, the forecast
error covariance is Py sg(0) = 101, the process noise
covariance is Qwr sg(k) = 0.00174, and the measurement
noise covariance is Rwrsg(k) = 10731,.

Figs. 7(a) and 7(b) show the actual input and state as
well as the RMS error of KF/RCIE, WLSE, and CAKF.
The error plots show the RMS values averaged over 10
experimental tests. At the beginning, the RMS errors of
the KF/RCIE state estimate are approximately equivalent
to those of the other estimators. After a few steps,
however, the RMS errors of the KF/RCIE state and input
estimates decrease to approximately one order of
magnitude lower than those of WLSE. The RMS errors of
the KF/RCIE state and input estimates become lower than
those of CAKF by 5%.

EXAMPLE 5.2 In this experiment, we degrade the
accuracy of the position measurement by adding
zero-mean white noise with covariance R(k) = 0.0011/; to
the position measurement. The resulting signal-to-noise
ratio (SNR) is 10. The target starts at [0.29 m, 0.26 m]".
For all estimators, we set the initial state estimates to be
zero. The position of the target is sampled with 7= 0.1 s.
The angular velocity is @ = 200°/s. Since the actual state
and input without additional white noise is available, we
can compare estimates with the actual values.

12

For RCIE, let Gt (z) = . Hiz™', where H;=CA~'B
i=0

is the ith Markov parameter, the estimator order is n,

2500
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(a) Actual input, estimated input, and input RMS error
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rms Y velocity error (m/s)
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Time Step k

(b) State RMS error

Fig. 7. Actual input, estimated input, and RMS error of the state and
input estimates for the tracking system with angular velocity @ = 200°/s.
The error plots show RMS values averaged over 10 experimental tests
using KF/RCIE, WLSE, and CAKF. Estimation begins at k = 15. At the
beginning, the RMS errors of the KF/RCIE state estimate and those of
CAKEF and WLSE are approximately the same. After a few steps,
however, the RMS errors of the KF/RCIE state and input estimates are
approximately one order of magnitude lower than those of WLSE.
Overall, KF/RCIE has the best performance among these estimators.

12, the performance weighting is R, = 0.01, the input
weighting is Ry = 107!, the parameter weighting is Ry =
0.1, and the forgetting factor is A = 1. For the Kalman
filter, the forecast error covariance is P¢(0) = 1014, the
process noise covariance is Q(k) = 10714, and the
measurement noise covariance is R(k) = 0.0011/,. For
CAKE, the forecast error covariance is Pca (0) = 101, the
process noise covariance is Qca (k) = 10714, and the
measurement noise covariance is Rca(k) = 0.0011,. For
WLSE, the tracking window size is s,, = 5, the forecast
error covariance is Py sg(0) = 101y, the process noise
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Fig. 8. Actual input, estimated input, and RMS error of the state and
input estimates for the tracking system with white measurement noise
with SNR = 10. The error plots show RMS values averaged over 10
experimental tests using KF/RCIE, WLSE, and CAKF. Estimation
begins at k = 15. In the presence of white measurement noise, the RMS
errors of the KF/RCIE state estimate are slightly larger than those of the
other estimators at the beginning. After a few steps, however, the RMS
errors of the KF/RCIE state and input estimates are lower than those of
CAKF and WLSE.

covariance is Qwisg(k) = 107314, and the measurement
noise covariance is Ry sg(k) = 0.00111,.

Figs. 8(a) and 8(b) display the actual input, the
estimated input, and the RMS error of KF/RCIE, WLSE,
and CAKEF. The error plots show the RMS values averaged
over 10 runs. At the beginning, the RMS errors of the
KF/RCIE state estimate are slightly higher than those of
the other estimators. After a few steps, however, the RMS
errors of the KF/RCIE state and input estimates become
lower than those of CAKF and WLSE by 5% and 15%,
respectively.
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VI.  CONCLUSIONS

We considered maneuvering target tracking with
unknown acceleration, and we formulated the KF/RCIE.
We used KF/RCIE to track a maneuvering target with
unknown acceleration, and we compared KF/RCIE with
CAKF, WLSE, and IMM in simulation. We then applied
KF/RCIE to maneuvering target tracking with
measurement noise. Simulation results showed that
KF/RCIE yielded more accurate state and acceleration
estimates than CAKF, WLSE, and IMM.

For experimentation, we used a tracking system
consisting of a rate table and Optitrack camera system. We
installed the target on the circumference of the rate table
and obtained the true velocity and acceleration by
transforming the rate table frame to the Optitrack camera
system frame. We then used KF/RCIE with the camera
data to estimate the target acceleration along with the
target position and velocity. Compared with CAKF and
WLSE, KF/RCIE provided more accurate state estimates
in the presence of noise added to the data.
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