
Fixed-structure synthesis of induced-norm controllers
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This paper proposes a ® xed-structure technique for synthesizing controllers that are optimal with respect to various
operator norms. An optimal control problem is developed for each of these operator norms, and necessary conditions for
sub-optimal performance are derived. Mixed-norm optimal control problems are also formulated. A continuation algor-
ithm using quasi-Newton corrections is used to compute approximate solutions of the necessary conditions for a
sequence of problems whose solutions approach an optimal controller. Optimal controllers with respect to each of the
operator norms are synthesized for a 4th-order mass-spring-dashpot system.

1. Introduction

While the H2 system norm is a convenient and
widely used criterion for optimal controller design, it is
not an induced operator norm relating classes of input
and output signals. Therefore, the H2 norm may not be
an appropriate objective function for certain perform-
ance speci® cations and classes of disturbances. In
Wilson (1989), expressions were developed for convolu-
tion operator norms induced by various combinations of
input/output signal norms. An alternative characteriza-
tion of system input± output properties is the Hankel
operator, which provides a mapping from past inputs
to future outputs (Glover 1984).

One practical application of induced norms to the
design of control systems is the problem of actuator
saturation. The induced norm from L2 to L1 provides
a system gain between energy- and peak-excursion-type
signal norms. Hence, if a bound is known for the energy
of the disturbance applied to systems at rest (zero initial
conditions), this induced norm can be used to bound
state amplitude or actuator excursion (saturation).

Controller synthesis using induced norms for
systems as performance measures has been considered
in Beran (1996 a,b) utilizing a linear matrix inequality
(LMI) approach. The approach taken is that of de® ning
a feasibility problem, where a controller of ® xed-order
that yields a closed-loop system with an induced norm
bounded by a chosen value is computed based on the
solution to two coupled LMI problems. The numerical
technique used in computing a solution employs an

alternating projection/semide® nite programming
approach. As noted in Beran and Grigoriadis (1996),
this algorithm is not guaranteed to converge to a
solution, although numerical studies have shown the
algorithm to be e� ective on practical problems.

Unfortunately, the results of Beran (1996 a,b), while
allowing reduced-order control system design, do not
allow the designer complete freedom in choosing the
control architecture. An alternative approach to LMI-
based synthesis methods is provided by ® xed-structure
techniques. Such techniques have been considered in
Erwin et al. (1998) as a generic approach to practical
control system design. The approach is amenable to a
large class of practical control architectures, such as the
application and tuning SISO PID control loops to a
multivariable plant, as well as reduced-order controllers
for high-dimensional plants. The core of this approach
is a decentralized static output feedback framework for
problem de® nition. This framework can represent the
varied class of control architectures described above
within a uni® ed framework. The resulting problems
are then amenable to solution via a numerical solution
technique such as the continuation algorithm used in
Erwin et al. (1998).

In the present paper we use ® xed-structure tech-
niques for synthesizing controllers that are optimal
with respect to three induced norms applied to the
closed-loop system. After reviewing signal norms and
de® ning notation in } 2, we introduce di� erentiable
approximations for three operator norms in } 3.
Section 4 reviews the decentralized static output feed-
back framework, which is then used in } 5 to de® ne a
® xed-structure optimal control problem for each of the
norms as well as mixed-norm optimal control problems.
Section 6 presents a continuation algorithm using quasi-
Newton updates for computing approximate solutions
of the optimal control problems. Finally, } 7 presents
synthesis results for each of the operator norms using
a 4th-order model of a lightly damped mass-spring-
dashpot system.
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2. System norms

In this section we review the de® nitions of several
norms for linear, time-invariant systems. Throughout
this section let

G…s† ¹
A B

C 0

2
4

3
5 …1†

be an l £ m asymptotically stable rotational matrix
transfer function and let g : …¡1 ;1† ! R l£m be the
corresponding impulse response matrix given by

g…t† ˆ
0 ; t < 0

C eAt B t ¶ 0

(
…2†

We de® ne the r-norm of x 2 R n as

kxkr 7

Xn

iˆ1

jxijr
" #1=r

; 1 µ r < 1

max
1µiµn

jxij; r ˆ 1

8
>>>><
>>>>:

…3†

and the …p; r†-norm of a measurable function f : …a ;b† !
R n by

k f kp ;r 7

…b

a
k f …t†kp

r dt
1=p

; 1 µ p < 1

ess sup
a<t<b

k f kr ; p ˆ 1

8
>>><
>>>:

…4†

We also de® ne the space

Lp;r…a;b† 7 ff : …a;b† ! R m : f is measurable and

k f kp;r < 1g …5†

Next de® ne the convolution operator
G: Lp ;r…¡1 ;1† ! Lq;s…¡1 ;1† by

z…t† ˆ …Gw†…t† 7
…1

¡1
g…t ¡ ½†w…½† d½;

t 2 …¡1 ;1† …6†
and the Hankel operator GG : Lp;r…0 ;1† ! Lq ;s…0 ;1† by

z…t† ˆ …GGw†…t† 7
…1

0
g…t ‡ ½†w…¡½† dt ; t 2 …0;1†

where z…t† 2 R m and w…t† 2 R l . Induced norms for G

and GG can then be de® ned as

kG…s†k…q;s† ;…p;r† 7 sup
kwkp ;r ˆ1

kGwkq;s …7†

for the convolution operator and

kG…s†kH 7 sup
kwk2;2ˆ1

kGGwk2 ;2 …8†

for the Hankel operator.
It was shown in Wilson (1989) that

kG…s†k…1;2† ;…2;2† ˆ ¶
1=2
max

…1

¡1
g…t†gT…t† dt

ˆ ¶
1=2
max‰CQCTŠ …9†

kG…s†k…1 ;1† ;…2;2† ˆ d1=2
max

…1

¡1
g…t†gT…t† dt

ˆ d1=2
max‰CQCTŠ …10†

where ¶max denotes the largest eigenvalue, dmax denotes
the maximum diagonal entry, and Q satis® es the matrix
Lyapunov equation

0 ˆ AQ ‡QAT ‡ BBT …11†
Furthermore, in Glover (1984), it was shown that

kG…s†kH ˆ ¶max…PQ† …12†
where Q satis® es (11) and P satis® es the matrix
Lyapunov equation

0 ˆ ATP ‡PA ‡CTC …13†
Finally, recall that the H2 norm of G…s† is de® ned as

kG…s†k2
2 7

1
2º

…1

¡1
tr ‰G… |!†G¤…|!†Š d! ˆ tr CQCT …14†

where Q satis® es (11). Note that for multi-input, multi-
ouput systems, the H2 norm of a system is not de® ned as
an induced norm.

Remark 1: It follows from the Cauchy interlacing
theorem (Stewart and Sun 1990, p. 198) that

dmax…CQCT† µ ¶max…CQCT† µ tr CQCT …15†
Hence (Rotea 1993), for multi-input, multi-output
systems

kG…s†k…1;1† ;…2 ;2† µ kG…s†k…1 ;2† ;…2 ;2† µ kG…s†kj2 …16†

while, for single-input, single-ouput systems

kG…s†k…1;1† ;…2;2† ˆ kG…s†k…1;2† ;…2 ;2† ˆ kG…s†k2 …17†

3. Approximation of the convolution and Hankel

operator norms

Throughout this section let G…s† be an asymptoti-
cally stable rational matrix transfer function with reali-
zation (1) and impulse response matrix (2). To develop a
di� erentiable approximation to kG…s†k…1;2† ;…2 ;2†, note
that

tr CQCT ˆ
Xn

iˆ1

¶i …18†

where Q satis® es (11) and ¶i is the ith largest eigenvalue
of CQCT. Since ¶k

i is an eigenvalue of …CQCT†k , where
k > 0 2 R , it follows that
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tr ‰…CQCT†kŠ ˆ
Xn

iˆ1

¶k
i …19†

Thus

lim
k!1

…tr ‰…CQCT†k Š†1=k ˆ ¶max…CQCT† …20†

In addition, the sequence is monotonically decreasing.
De® ning

J 1 ;k…G† 7…tr ‰…CQCT†k Š†1:k …21†

where Q is the solution to (11), it follows that

lim
k!1

J 1;k…G† ˆ kG…s†k2
…1;2† ;…2;2† …22†

Next, to develop a di� erentiable approximation to
kG…s†k…1;1† ;…2 ;2† , note that

di‰…I ¯ CQCT†kŠ ˆ …di‰I ¯ CQCTŠ†k …23†
where ¯ denotes Hadamard (entry-by-entry) multiplica-
tion, di stands for the ith diagonal entry, and k > 0 2 R .
Hence it follows that

lim
k!1

…tr ‰…I ¯ CQCT†k Š†1=k ˆ dmax…CQCT† …24†

De® ning

J 2 ;k…G† 7…tr ‰…I ¯ CQCT†kŠ†1=k …25†

where Q satis® es (11), it follows that

lim
k!1

J 2;k…G† ˆ kG…s†k2
…1;1† ;…2;2† …26†

Finally, it can be seen that

lim
k!1

…tr ‰PQ†k Š†1=k ˆ ¶max…PQ† …27†

where Q satis® es (11), P satis® es (13) and k > 0 2 R .
De® ning

J 3 ;k…G† 7…tr ‰…PQ†kŠ†1=k …28†

where Q satis® es (11) and P is the solution of (13), it
follows that

lim
k!1

J 3;k…G† ˆ kG…s†k2
H …29†

4. The decentralized static output feedback framework

This section reviews the decentralized static output
feedback framework for ® xed-structure controller
synthesis. As demonstrated in Erwin et al. (1998), this
framework captures a large class of ® xed-structure
synthesis problems in a single format, thus permitting
the use of a single computational algorithm. In particu-
lar, a given ® xed-structure controller synthesis problem
is recast as a decentralized static output feedback syn-
thesis problem that yields the same closed-loop system.

For the …m ‡2†-vector-input, …m ‡2†-vector-output
decentralized system shown in ® gure 1, de® ne

u ˆ

u1

..

.

um

2
66664

3
77775; y ˆ

y1

..

.

ym

2
66664

3
77775 …30†

Here w and d represent exogenous inputs to the system,
and e and z represent performance signals. Let G…s† have
the realization

G…s† ¹

A Bu Bd Bw

Cy Dyu Dyd Dyw

Ce Deu Ded Dew

Cz Dzu Dzd Dzw

2
666664

3
777775

…31†- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -

-
-

-
-

-
-

-

-
-

-
-

-
-

-

which represents the linear, time-invariant dynamic
system

_x ˆ Ax ‡Buu ‡ Bd d ‡ Bww …32†

y ˆ Cyx ‡Dyuu ‡Dydd ‡Dyww …33†

e ˆ Cex ‡ Deuu ‡Ded d ‡Deww …34†

z ˆ Czx ‡ Dzuu ‡Dzd d ‡Dzww …35†

To represent decentralized static output feedback
control with possibly repeated gains, we consider

ui ˆ K 0
i yi ; i ˆ 1 ; . . . ;m …36†

where the matrices K 0
i are not necessarily distinct.

Reordering the variables in (36) if necessary, we can
rewrite (36) as
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Figure 1. Decentralized static output feedback framework.



u ˆ Ky …37†
where K is an element of the set

U 7 fK : K ˆ block-diag …I¿1
« K1 ; . . . ;I¿v

« Kv†g
…38†

v is the number of distinct gains Ki 2 R ri£ci , and ¿i is the
number of repetitions of gain Ki . Note that K1 ; . . . ;Kv
are not necessarily square matrices and thatPv

iˆ1 ¿i ˆ m .
For convenience, de® ne

L K 7 I ¡ DyuK …39†

Assuming that L K is non-singular, the closed-loop
dynamics are given by

_x ˆ ~Ax ‡ ~Bd d ‡ ~Bww …40†

e ˆ ~Ce ‡ ~Ded d ‡ ~Deww …41†

z ˆ ~Czx ‡ ~Dzd d ‡ ~Dzww …42†

where

~A 7A ‡BuKL ¡1
K Cy ; ~Bd 7Bd ‡BuKL ¡1

K Dyd

~Bw 7Bw ‡BuKL ¡1
K Dyw ; ~Cz 7Cz ‡DzuKL ¡1

K Cy

~Dzd 7Dzd ‡DzuKL ¡1
K Dyd ; ~Dzw 7Dzw ‡DzuKL ¡1

K Dyw

~Ce 7Ce ‡DeuKL ¡1
K Cy ; ~Ded 7Ded ‡DeuKL ¡1

K Dyd

~Dew 7Dew ‡DeuKL ¡1
K Dyw

The closed-loop transfer function ~Gzw…s† therefore has
the realization

~Gzw…s† ¹
~A ~Bw

~Cz ~Dzw

2
4

3
5 …43†

while the closed-loop transfer function ~Ged…s† has the
realization

~Ged…s† ¹
~A ~Bd

~Ce ~Ded

2
4

3
5 …44†

This paper will be concerned only with synthesis of
centralized, strictly proper dynamic compensators. The
equivalent decentralized static output feedback system
for this ® xed-structure control problem is given in
Appendix A.

5. Optimal control problems

In this section we consider optimal control problems
corresponding to each of the induced norms discussed in
} 2. The L2 ;2-to-L1 ;2-optimal control problem is

min
K2U

k ~Gzw…s†k…1;2† ;…2 ;2† …45†

the L2 ;2-to-L1;2-optimal control problem is

min
K2U

k ~Gzw…s†kjj…1;1† ;…2;2† …46†

and the Hankel-norm optimal control problem is

min
K2U

k ~Gzw…s†kH …47†

Given the realization (43) for ~Gzw…s†, assuming that
~A is asymptotically stable, and using the approximations
(21), (25) and (28), the optimal control problems (45),
(46) and (47) can be rewritten as

min
K2U

lim
k!1

…tr ‰… ~Cz ~Qzw ~CT
z †k Š†1=k …48†

min
K2U

lim
k!1

…tr‰…I ¯ ~Cz
~Qzw

~CT
z †k Š†1=k …49†

min
K2U

lim
k!1

…tr‰… ~Pzw ~Qzw†kŠ†1=k …50†

respectively, where k > 0 2 R , and the matrices ~Qzw and
~Pzw satisfy

0 ˆ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw ~BT

w …51†

0 ˆ ~AT ~Pzw ‡ ~Pzw ~A ‡ ~CT
z ~Cz …52†

respectively. Analogously, the ® xed-structure H2-
optimal problem is de® ned as

min
K2U

k ~Gzw…s†k2 …53†

Given the realization (43) for ~Gzw…s†, where ~A is asymp-
totically stable and the feedthrough term ~Dzw ˆ 0, it
follows from (14) that

k ~Gzw…s†kjj22 ˆ tr ~Cz
~Qzw

~CT
z …54†

where ~Qzw satis® es (51).
Next we consider several mixed-norm optimal con-

trol problems where the objective function is a convex
combination of one norm (H2 or induced) applied to the
system between input w and output z and another norm
applied to the system between d and e. This mixed norm
problem allows the synthesis of controllers satisfying
multiple objectives, such as providing H2 performance
while ensuring that actuator saturation constraints are
not exceeded. Speci® cally, we consider mixed-norm opti-
mal control problems involving the H2 norm and one of
the operator norms described in } 2. Speci® cally, we con-
sider the mixed H2=L2;2-to-L1;2 control problem

min
K2U

¬k ~Gzw…s†k2 ‡…1 ¡ ¬†k ~Ged…s†k…1;2† ;…2;2† …55†

the mixed H2=L2 ;2-to-L1 ;1 control problem

min
K2U

¬k ~Gzw…s†j2 ‡…1 ¡ ¬†k ~Ged…s†k…1;1† ;…2 ;2† …56†
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and, ® nally, the mixed H2/Hankel control problem

min
K2U

¬k ~Gzw…s†k2 ‡…1 ¡ ¬†k ~Ged…s†k…1;1† ;…2;2† …56†

and, ® nally, the mixed H2/Hankel control problem

min
K2U

¬k ~Gzw…s†k2 ‡…1 ¡ ¬†k ~Ged…s†kH …57†

In (57), the parameter ¬ 2 ‰0 ;1Š plays the role of a
weight in determining the relative importance of the
H2 and Hankel portion of the control problem.

Using (54) and (21), (25) or (28), the mixed-norm
optimal control problems (55), (56) or (57) can be
rewritten as

min
K2U

lim
k!1

¬ tr ~Cz
~Qzw

~CT
z ‡…1 ¡ ¬†…tr ‰ ~Ce

~Qed
~CT

e †k Š†1=k …58†

min
K2U

lim
k!1

¬ tr ~Cz ~Qzw ~CT
z

‡…1 ¡ ¬†…tr ‰…I ¯ ~Ce ~Qed ~CT
e †kŠ†1=k …59†

min
K2U

lim
k !1

¬ tr ~Cz
~Qzw

~CT
z ‡…1 ¡ ¬†…tr ‰… ~Ped

~Qed†k Š†1=k …60†

where k > 0 2 R , ~Qzw solves (51), and ~Qed and ~Ped
satisfy

0 ˆ ~Qed
~A ‡ ~Qed

~AT ‡ ~Bd ~BT
d …61†

0 ˆ ~AT ~Ped ‡ ~Ped ~A ‡ ~CT
e ~Ce …62†

Lagrangian functions and the resulting necessary
conditions for optimality for each of the optimal con-
trol problems discussed in this section are given in
Appendix B.

6. Algorithm description

To solve the non-linear optimization problems repre-
sented by (48)± (50) and (58)± (60), a continuation algor-
ithm employing a general-purpose BFGS quasi-Newton
correction (Dennis and Schnable 1983) is used. The line-
search portions of the quasi-Newton correction were
modi® ed to include a constraint-checking subroutine
that decreases the length of the search direction vector
to ensure that the closed-loop system remains stable.
Numerical experience indicates that this subroutine is
usually invoked during only the ® rst few iterations of
a synthesis procedure.

The use of a continuation strategy is suggested by
the relationship of the approximate cost functions (21),
(25) and (28) with the standard H2-optimal control
problem. For example, noting that the approximate
cost functions (21) and (25) reduce to the closed-loop
H2 norm for k ˆ 1 naturally suggests the exponent k be
used as a continuation parameter for convolution-norm
optimal control problems. The quasi-Newton corrector
is initialized with the H2- optimal controller for the

approximate cost function for k ˆ 2. The resulting
controller is then used to initialize the next problem,
where k ˆ 3, etc. The resulting sequence of optimization
problems, de® ned by an increasing sequence of values
of k, can be solved until no further decrease in
k ~Gzw…s†k…1;2† ;…2;2† or k ~Gzw…s†k…1;1† ;…2 ;2† is obtained by
increasing k.

Alternatively, a continuation can be performed
utilizing the weighting parameter ¬ in any mixed-norm
optimal control (45)± (47). To see this, we note that
the mixed norm problem reduces to the standard H2-
optimal control problem if the system matrices are
chosen such that d ˆ w and e ˆ z, with ¬ ˆ 1. The con-
tinuation parameter ¬ is then adjusted towards zero,
and the quasi-Newton correction is applied to the H2-
optimal controller. A second smaller value of ¬ is then
chosen, and the correction applied again, etc. As ¬ ! 0,
it can be seen from (58)± (60) that the resulting controller
approaches the optimal induced norm controller. This
continuation approach is particularly useful for
approaching the synthesis of purely Hankel-norm opti-
mal controllers (47), since the H2-optimal controller is
not a solution of the approximate Hankel-norm cost
function (28) for any value of the exponent k.

7. Numerical results

The example considered involves a lightly damped
single degree-of-freedom mass-spring-dashpot system,
as shown in ® gure 2. We let the velocity of the mass
be the measured signal, which is corrupted by an exo-
genous noise signal v. For performance, we wish to
bring the cart to rest without utilizing excessive control
e� ort. The equations describing this system are then
given by
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_x1

_x2

�x1

�x1

2
6666664

3
7777775

ˆ

0 0 1 0

0 0 0 1

¡…k1 ‡k2†=m1 k2=m1 ¡…c1 ‡c2†=m1 c2=m1

k2=m2 ¡k2=m2 c2=m2 ¡c2=m2

2
6666664

3
7777775

x1

x2

_x1

_x2

2
6666664

3
7777775

‡

0

0

0

1=m2

2
6666664

3
7777775

u ‡

0 0

0 0

1=m1 0

0 0

2
6666664

3
7777775

w

v

" #
…63†

y ˆ ‰1 0 0 0Š

x1

x2

_x1

_x2

2
6666664

3
7777775

‡‰0 1Š
w

v

" #
…64†

z ˆ
1 0 0 0

0 0 0 0

" #
x1

x2

_x1

_x2

2
6666664

3
7777775

‡
0

0:01

" #
u …65†

The numerical values used for controller synthesis are:
k1 ˆ k2 ˆ 4, m1 ˆ m2 ˆ 2 and c1 ˆ c2 ˆ 0:01.

7.1. L2;2-to-L1;2-optimal synthesis

Utilizing the exponent k as the continuation par-
ameter (as discussed in } 6), we begin with the H2-opti-
mal controller, yielding the optimal solution for (21)
with k ˆ 1. The continuation is then described by a
sequence of quasi-Newton corrections corresponding
to increasing values of k using the approximate cost
function J 1;k given by (21). As indicated by (9), one
would expect the maximum eignevalue of ~CT

z ~Q ~Cz to
decrease during this continuation. Figure 3 displays
the minimum and maximum eigenvalues of ~CT

z
~Q ~Cz ver-

sus the continuation parameter k for the resulting
closed-loop systems, showing that this is indeed the case.

Figure 4 presents a parametric tradeo� curve show-
ing the values of the k ~Gzw…s†k2

2 versus ~Gzw…s†k…1;2† ;…2;2† at
each value of the continuation parameter k, demonstrat-
ing the loss of H2 performance as the H2-optimal con-
troller evolves during the continuation process towards
the L2;2-to-L1 ;2-optimal controller.

7.2. L2;2-to-L1;1-optimal synthesis

As in } 7.1, beginning with the H2-optimal controller
…k ˆ 1†, a continuation using increasing values of k was
formulated as described in } 6, this time with the quasi-
Newton corrections aimed at the approximate cost func-
tion J 2 ;k given by (25). Again, as indicated by (10), we
expect the maximum diagonal element of ~CT

z
~Q ~Cz to

decrease during the continuation on k, and ® gure 5
demonstrates that this is indeed the case. Figure 6

shows the gain in L2 ;2-to-L1;1 performance at the
expense of H2 performance as the controller evolves
from the original H2-optimal during the continuation
on the exponent k.

7.3. Hankel-norm optimal synthesis

For Hankel-operator norm synthesis, a mixed-norm
optimization problem was used to obtain the optimal
Hankel-norm controller as discussed in } 6. De® ning
the system matrices such that d ˆ w and e ˆ z, a con-
tinuation employing the weighting parameter ¬ was
employed as described in } 6, with the H2-optimal con-
troller providing the initial solution for ¬ ˆ 1. The
continuation is then described by a sequence of quasi-
Newton corrections for a decreasing sequence of values
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of the continuation parameter ¬ using the mixed-norm
cost function (60). Figure 7 presents the parametric
tradeo� curve showing the values of k ~Gzw…s†k2

2 versus
k ~Gzw…s†kH for each value of the continuation parameter
¬. The exponent k ˆ 10 was held constant for all values
of ¬.

7.4. Mixed-norm optimal control

As a ® nal example, we now consider synthesis of
controllers that are optimal with respect to a mixed
H2=L2 ;2-to-L1;1 performance measure. Assume the
actuator for the mass-spring-dashpot example described
above saturates at juj ˆ 1, and furthermore suppose the
measurement noise signal v satis® es kvk2 ;2 µ 1. De® ning
the system matrices such that e ˆ u and d ˆ v, the prob-

lem then is to determine a controller which minimizes
k ~Gzw…s†k2 subject to k ~Ged…s†kj…1;1† ;…2 ;2† < 1. Note that
the H2-optimal controller in this case yields
k ~Gzw…s†k2 ˆ 0:5900, while k ~Ged…s†k…1;1† ;…2 ;2† ˆ 3:9287,
and thus is not a feasible solution to the problem. We
also note that the open-loop value of kGzw…s†k2 ˆ
2:7386.

Mixed-norm controllers were synthesized for 20
values of the weighting variable ¬ 2 …0 ;1†. Figure 8
shows the resulting tradeo� curve between k ~Gzw…s†k2
and k ~Ged…s†k…1;1† ;…2 ;2† as ¬ moves from 1 ¡ 1¡12 to
1 £ 10¡12. At ¬ ˆ 0:94544, k ~Ged…s†k…1;1† ;…2 ;2† ˆ 0:8367,
and therefore the design speci® cation is met. This design
yields k ~Gzw…s†k2 ˆ 0:5948. A triangle pulse disturbance
was input to the system as the measurement noise signal

Fixed-structure synthesis of induced-norm controllers 1443

k 

d m
in

 [
   

   
   

   
   

 ] ,
 d

m
ax

 [
   

   
   

   
   

 ]
 

C
z Q

 C
zT

 
~ 

~ 
~ 

C
z Q

 C
zT

 
~ 

~ 
~ 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5. Minimum and maximum values of the diagonal
elements of ~GT

z
~Q ~Cz versus k for L2;2-to-L1;1-optimal

synthesis.

G z w (s) 
~ 

2 

G
 z 

w
 (s

) 
~  

(  
   

,  
   

), 
( 2

, 2
) 

0.55 0.6 0.65 0.7 0.75 0.8 0.85

0.58

0.585

0.59

Figure 6. k ~Gzw…s†k…1;1†;…2;2† versus k ~Gzw…s†k2
2 for L2;2-to-

L1;1-optimal synthesis.

G z w (s) 
~ 

2 

G
 z 

w
 (s

) 
~  

H
 

0 1 2 3 4 5 6 7 8 9

0.7

0.75

0.8

0.85

Figure 7. k ~Gzw…s†kH versus k ~Gzw…s†k2
2 for Hankel-norm

optimal syntheis.

0.59 0.595 0.6 0.605 0.61 0.615 0.62 0.625 0.63
0

0.5

1

1.5

2

2.5

3

3.5

4

Gz w (s) 
~ 

2 

  (
   

   
,  

   
 ),

 (2
, 2

) 
G

e 
d 

(s
)  

~
 

Figure 8. k ~Ged…s†k…1;1†;…2;2† versus ~Gzw…s†k2 for mixed-norm
optimal control.



v. The maximum amplitude of the pulse is
���
6

p
and its

duration is 0.25, and therefore kvk2 ;2 ˆ 1.
Figure 9 shows the resulting unsaturated actuator

signals for both the H2-optimal controller and the
mixed H2=L2;2-to-L1;1 optimal controller for
¬ ˆ 0:945 44. We see that the H2-optimal controller vio-
lates the actuator saturation constraint of u µ 1 for this
particular disturbance, while the mixed-norm optimal
controller keeps the control signal within the saturation
limit. To examine the loss of H2 performance incurred
by the mixed-norm controller, ® gure 10 presents the
closed-loop frequency response plots from the exogen-
ous plant disturbance w to the performance variable x1.
As shown in the plot, very little performance in terms of
frequency response was sacri® ced in order to satisfy the
actuator constraint.

8. Discussion

In this paper we have presented di� erentiable
approximations for two convolution operator norms
and the Hankel operator norm for linear time-invariant
dynamic systems. Using these approximations we
de® ned optimal control problems for each of the system
norms, and also introduced several mixed-norm optimal
control problems. The decentralized static output feed-
back controller synthesis framework for ® xed-structure
synthesis was used to formulate Lagrangian functions
for the optimal control problems. Necessary conditions
for optimality were derived, and a continuation algor-
ithm employing quasi-Newton updates was used to
compute approximate solutions to these equations for
a 2nd-order mass-spring-dashpot example. The results
of a mixed H2=L2;2-to-L1;1 optimal control problem
for this example demonstrated the applicability of

these operator norms to the problem of actuator satura-
tion.

Numerical experience with LMI-based approaches
to the L2 ;2-to-L1;2-optimal synthesis problem (Beran
1996 a,b) yielded optimal closed-loop systems with the
minimum and maximum eigenvalues of ~CT

z
~Q ~Cz of equal

values. Although the authors know of no theoretical
results that proves this is always the case, ® gure 3
shows the values approaching a ® xed bias with respect
to each other, potentially indicating that a local mini-
mum has been reached and is being tracked during the
continuation. This could be an indication that the inte-
ger values of k chosen for the continuation represented
too coarse a grid, for example. In addition, the con-
tinuation algorithm approach utilized here does not pro-
vide any a priori bounds on how many continuation
steps must be used to obtain the true optimal controller
using this approach, although in practice the algorithm
will iterate until a performance level is obtained.

In view of this, this paper’ s introduction of the dif-
ferentiable approximations to the various induced
system norms allows many numerical algorithms that
rely on di� erentiable objective functions to be applied
to the problem solution while keeping the decentralized
static output feedback problem formulation intact.
Probability-one homotopy algorithms (Ge et al. 1994,
Collins et al. 1997), for example, have demonstrated
excellent numerical robustness when employed to solve
such non-convex optimal-control problems. The decen-
tralized static output feedback problem formulation
provides a convenient interface between speci® c ® xed-
structure problems and more generic numerical solution
algorithms.
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An interesting future line of inquiry would be a com-
parison of the computational burden, accuracy, and
numerical stability of these various algorithms (includ-
ing the alternating LMI approach) on benchmark prob-
lems. Some reports on the required computational
burden for the continuation algorithm used in this
work can be found in Erwin et al. (1998). Recent
research into the use of randomized algorithms
(Vidyasagar 1997, 1998) for attacking non-convex opti-
mization problems have produced some promising
initial results, and could also be amenable to the sol-
ution of the induced-norm problem.
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Appendix A. Decentralized static output feedback

realization of centralized, strictly proper

dynamic compensation problem

Consider a plant of the form

_xp ˆ Axp ‡ Bû ‡ F1w …66†

ŷ ˆ Cxp ‡ Dû ‡ F2w …67†

z ˆ E1xp ‡E2û ‡E0w …68†

in feedback with an ncth-order strictly proper compen-
sator having the realization

_xc ˆ Acxc ‡Bcŷ …69†

û ˆ Ccxc …70†

A realization for the closed-loop system consisting of
(66)± (68), (69), and (70) is given by

~G…s† ¹

A BCc F1

BcC Ac ‡BcDCc BcF2

0 0 0

E1 E2Cc E0

2
6666664

3
7777775

…71†

- - - - - - - - - - - - - - - - -

This system can be written as decentralized static output
feedback with m ˆ v ˆ 3, ¿1 ˆ ¿2 ˆ ¿3 ˆ 1, G…s† given
by

G…s† ¹

A 0 0 0 B F1

0 0 I I 0 0

0 I 0 0 0 0

C 0 0 0 D F2

0 I 0 0 0 0

0 0 0 0 0 0

E1 0 0 0 E2 E0

2
6666666666666664

3
7777777777777775

…72†

- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -

-
-

-
-

-
-

-
-

-
-

-
-

-

and K denoting the block-diagonal matrix

K ˆ block-diag…Ac ;Bc ;Cc† …73†
This yields

L K ˆ

I 0 0

0 I ¡DCc

0 0 I

2
6664

3
7775 …74†

which is non-singular.

Appendix B

Note that a matrix K 2 U as given by (38) can be
written as

K ˆ
Xv

iˆ1

X¿i

jˆ1

QLijKiQRij …75†

where QLij and QRij are de® nd as

QLij 7

0r1¿1£ri

0r2¿2£ri

..

.

0ri¡1¿iˆ1£ri

0ri…j¡1†£ri

Iri

0ri…¿i-j†£ri

0riˆ1¿i‡1£ri

..

.

0rv¿v£ri

2
6666666666666666666666666666664

3
7777777777777777777777777777775

QRij 7

0c1¿1£ci

0c2¿2£ci

..

.

0ci¡1¿i¡1£ci

0ci…j¡1†£ci

Ici

0ci…¿i ¡j†£ci

0ci‡1¿i‡1£ci

..

.

0cv¿v£ci

2
6666666666666666666666666666664

3
7777777777777777777777777777775

T

…76†

B.1. H2 norm kG…s†k2

The partial derivatives of
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L… ~Pzw ; ~Qzw ;Ki† ˆ tr ~Cz
~Qzw

~CT
z

‡ tr ~Pzw‰ ~A ~Qzw ‡Qzw ~AT ‡ ~Bw ~BT
wŠ …77†

are

@L
@ ~Pzw

ˆ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw

~BT
w …78†

@L
@ ~Qzw

ˆ ~AT ~Pzw ‡ ~Pzw ~A ‡ ~CT
z ~Cz …79†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡ DT

yuL ¡T
K KT†

£ ‰DT
zu

~Cz
~QzwCy ‡ BT

u ~Pzw ~BwDT
yw

‡BT
u ~Pzw ~QzwCT

y ŠL ¡T
K QT

Rij …80†

B.2. Convolution operator norm kG…s†k…1 ;2† ;…2 ;2†
The partial derivatives of

L… ~Pzw ; ~Qzw ;Ki† ˆ …tr ‰… ~Cz
~Qzw

~CT
z †k Š†1=k

‡ tr ~Pzw‰ ~A ~Qzw ‡ ~Qzw ~AT ‡ ~Bw ~BT
wŠ …81†

are

@L
@ ~Pzw

ˆ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw ~BT

w …82†

@L
@ ~Qzw

ˆ ~AT ~Pzw ‡ ~Pzw ~A ‡…tr ‰… ~Cz ~Qzw ~CT
z †k Š†1=k¡1

£ ~CT
z … ~Cz ~Qzw ~CT

z †k¡1 ~Cz …83†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡DT

yuL ¡T
K KT†fBT

u ~Pzw ~BwDT
yw

‡BT
u ~Pzw

~QzwCT
y ‡…tr ‰… ~Cz

~Qzw
~CT

z †kŠ†1=k¡1

£ DT
zu… ~Cz ~Qzw ~CT

z †k¡1 ~Cz ~QzwCT
y gL ¡T

K QT
Rij …84†

B.3. Convolution operator norm kG…s†k…1 ;1† ;…2 ;2†
The partial derivatives of

L… ~Pzw ; ~Qzw ;Ki† ˆ …tr ‰…I ¯ ~Cz ~Qzw ~CT
z †kŠ†1=k

‡ tr ~Pzw‰ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw

~BT
wŠ …85†

are

@L
@ ~Pzw

ˆ ~A ~Qzw ‡ ~Qzw ~AT ‡ ~Bw ~BT
w …86†

@L
@ ~Qzw

ˆ ~AT ~Pzw ‡ ~Pzw
~A ‡…tr ‰…I ¯ ~Cz

~Qzw
~CT

z †k Š†1=k¡1

£ ~CT
z …I ¯ ~Cz

~Qzw
~CT

z †k¡1 ~Cz …87†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡DT

yuL ¡T
K KT†fBT

u ~Pzw ~Bw ~DT
yw

‡BT
u ~Pzw ~QzwCT

y ‡…tr ‰…I ¯ ~Cz ~Qzw ~CT
z †kŠ†1=k¡1

£ DT
zu…I ¯ ~Cz

~Qzw
~CT

z †k¡1 ~Cz
~QzwCT

y gL ¡T
K QT

Rij …88†

B.4. Hankel operator norm kG…s†kH

The partial derivatives of

L… -
P;

-
Q ; ~Pzw ; ~Qzw ;Ki† ˆ …tr ‰… ~Pzw

~Qzw†k Š†1=k

‡ tr
-

P‰ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw

~BT
wŠ

‡ tr
-

Q‰ ~AT ~Pzw ‡ ~Pzw ~A ‡ ~CT
z ~CzŠ

…89†

are

@L
@

-
P

ˆ ~A ~Qzw ‡ ~Qzw ~AT ‡ ~Bw ~BT
w …90†

@L
@Q

ˆ ~AT ~Pzw ‡ ~Pzw
~A ‡ ~CT

z
~Cz …91†

@L
@ ~Pzw

ˆ ~A
-

Q ‡ -
Q ~AT…tr ‰… ~Pzw ~Qzw†k Š†1=k¡1

£ … ~Qzw ~Pzw†k¡1 ~Qzw …92†
@L

@ ~Qzw

ˆ ~AT -
P ‡ -

P ~A ‡…tr ‰… ~Pzw ~Qzw†k Š†1=k¡1

£ ~Pzw… ~Qzw ~Pzw†k¡1 …93†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡DT

yuL ¡T
K KT†‰BT

u
-

P ~BwDT
yw

‡DT
zu ~Cz

-
QCT

y ‡BT
u

-
P ~QzwCT

y ‡BT
u ~Pzw

-
QCT

y ŠL ¡T
K QT

Rij

…94†

B.5. Mixed H2=L2 ;2-to-L1;2 control

The partial derivatives of
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L… ~Pzw ; ~Qzw ; ~Ped ; ~Qed ;Ki† ˆ ¬ tr‰ ~Cz
~Qzw

~CT
z Š

‡…1 ¡ ¬†…tr ‰… ~Ce
~Qed

~CT
e †kŠ†1=k

‡tr ~Pzw‰ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw ~BT

wŠ

‡tr ~Ped‰ ~A ~Ped ‡ ~Ped
~A ‡ ~Bd ~BT

d Š …95†

are

@L
@ ~Pzw

ˆ ~A ~Qzw ‡ ~Qzw ~AT ‡ ~Bw ~BT
w …96†

@L
@ ~Qzw

ˆ ~AT ~Pzw ‡ ~Pzw
~A ‡¬ ~CT

z
~Cz …97†

@L
@ ~Ped

ˆ ~A ~Qed ‡ ~Qed
~AT ‡ ~Bd ~BT

d …98†

@L
@ ~Qed

ˆ ~AT ~Ped ‡ ~Ped ~A ‡…1 ¡ ¬†…tr ‰… ~Ce ~Qed ~CT
e †kŠ†1=k¡1

£ ~CT
e … ~Ce ~Qed ~CT

e †k¡1 ~Ce …99†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡DT

yuL ¡T
K KT†f¬DT

zu ~Cz ~QzwCT
y

‡BT
u ~Pzw ~BwDT

yw ‡BT
u ~Pzw

~QzwCT
y ‡BT

u ~Ped ~BdDT
yd

‡BT
u ~Ped ~Qed CT

y ‡…1 ¡ ¬†…tr ‰… ~Ce ~Qed ~CT
e †k Š†1=k¡1

£ DT
eu… ~Ce

~Qed
~CT

e †k¡1 ~Ce
~QedCT

y gL ¡T
K Q¡T

Rij …100†

B.6. Mixed H2=L2 ;2-to-L1;1 control

The partial derivatives of

L… ~Pzw ; ~Qzw ; ~Ped ; ~Qed ;Ki† ˆ ¬ tr‰ ~Cz
~Qzw

~CT
z Š ‡…1 ¡ ¬†

£…tr‰I ¯ ~Ce
~Qed

~CT
e †kŠ†1=k

‡ tr ~Pzw‰ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw

~BT
wŠ

‡ tr ~Ped‰ ~A ~Ped ‡ ~Ped
~A ‡ ~Bd

~BT
d Š

…101†

are

@L
@ ~Pzw

ˆ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw ~BT

w …102†

@L
@ ~Qzw

ˆ ~AT ~Pzw ‡ ~Pzw ~A ‡¬ ~CT
z ~Cz …103†

@L
@ ~Ped

ˆ ~A ~Qed ‡ ~Qed
~AT ‡ ~Bd ~BT

d …104†

@L
@ ~Qed

ˆ ~AT ~Ped ‡ ~Ped ~A ‡…1 ¡ ¬†

£ …tr ‰…I ¯ ~Ce ~Qed ~CT
e †kŠ†1=k¡1

£ ~CT
e …I ¯ ~Ce

~Qed
~CT

e †k¡1 ~Ce …105†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡DT

yuL ¡T
K KT†f¬DT

zu ~Cz ~QzwCT
y

‡BT
u ~Pzw ~BwDT

yw ‡BT
u ~Pzw ~QzwCT

y ‡BT
u ~Ped ~BdDT

yd

‡BT
u ~Ped ~Qed CT

y ‡…1 ¡ ¬†…tr ‰…I ¯ ~Ce ~Qed ~CT
e †k Š†1=k¡1

£ DT
eu…I ¯ ~Ce ~Qed ~CT

e †k¡1 ~Ce ~Qed CT
y gL ¡T

K QT
Rij …106†

B.7. Mixed H2/Hankel control

The partial derivatives of

L… ~Pzw ; ~Qzw ; ~Ped ; ~Qed ;
-

Ped ;
-

Qed ;Ki†

ˆ ¬ tr… ~Cz
~Qzw

~CT
z † ‡…1 ¡ ¬†…tr ‰… ~Ped

~Qed†kŠ†1=k

‡tr ~Pzw… ~A ~Qzw ‡ ~Qzw ~AT ‡ ~Bw ~BT
w†

‡tr
-

Ped‰ ~A ~Qed ‡ ~Qed ~AT ‡ ~Bd ~BT
d Š

‡tr
-

Qed‰ ~AT ~Ped ‡ ~Ped
~A ‡ ~CT

e
~CeŠ …107†

are

@L
@ ~Pzw

ˆ ~A ~Qzw ‡ ~Qzw
~AT ‡ ~Bw ~BT

w …108†

@L
@ ~Qzw

ˆ ~AT ~Pzw
~A ‡¬ ~CT

z
~Cz …109†

@L
@

-
Qed

ˆ ~AT ~Ped ‡ ~Ped ~A ‡ ~CT
e ~Ce …110†

@L
@

-
Ped

ˆ ~A ~Qed ‡ ~Qed
~AT ‡ ~Bd ~BT

d …111†

@L
@ ~Ped

ˆ ~A
-

Qed ‡ -
Qed ~AT ‡…1 ¡ ¬†…tr ‰ ~Ped ~Qed†k Š†1=k¡1

£ … ~Qed ~Ped†k¡1 ~Qed …112†

@L
@ ~Qed

ˆ ~AT -
Ped ‡ -

Ped ~A ‡…1 ¡ ¬†…tr ‰… ~Ped ~Qed†k Š†1=k¡1

£ ~Ped… ~Qed
~Ped†k¡1 …113†
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@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡DT

yuL ¡T
K KT†f¬DT

zu ~Cz ~QzwCT
y

‡BT
u ~Pzw ~BwDT

yw ‡BT
u ~Pzw ~QzwCT

y ‡BT
u

-
Ped ~BdDT

yd

‡DT
eu

~Ce
-

Qed CT
y ‡BT

u
-

Ped
~Qed CT

y

‡BT
u ~Ped

-
Qed CT

y gL ¡T
K QT

Rij …114†
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