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R. SCOTT ERWIN{* and DENNIS S. BERNSTEIN{

This paper considers the ®xed-structure, discrete-time mixed H2=H1 controller synthesis problem in the delta operator
(di� erence operator) framework. The di� erential operator and shift operator versions of the problem are reviewed for
comparison, and necessary conditions are derived for all three formulations. A quasi-Newton/continuation algorithm is
then used to obtain approximate solutions to these equations. Controllers are synthesized for two numerical examples,
and the performance of the algorithm on the di� erential, di� erence and shift operator versions of the problems is
compared.

1. Introduction

Control design problems encountered in practice

may involve highly coupled multivariable systems with

complex dynamics and as a result are modelled by high-

dimensional di� erential equations. While standard opti-

mal control techniques are inherently multivariable,

these techniques su� er from the disadvantage that the
resulting control equations are the same order (or sub-

stantially higher) than those of the system model. This

fact often leads to implementation problems in high-

bandwidth applications where small sample periods

limit the amount of computation that can be performed

in real time.

One approach to control design for such problems is
through the use of model reduction techniques, that is,

algorithms for producing a lower-dimensional approxi-

mation of a high-dimensional linear system. Although

these strategies can yield acceptable results, they su� er

in general from a lack of guarantees about the properties

of the closed-loop system; that is, the feedback loop

containing the reduced-order controller and the high-
dimensional system model. Furthermore, extensions to

more specialized controller architectures, such as decen-

tralized controller synthesis, are not available.

As an alternative strategy for addressing control

problems subject to architecture constraints, ®xed-struc-

ture technique have been proposed. These techniques

provide a direct method for synthesizing high-perform-
ance, robust controllers for complex, multivariable

systems subject to constraints on signal ¯ow and con-

troller complexity. Fixed-structure methods allow the

designer to specify the architecture of the controller

while addressing performance objectives and robustness
constraints.

Fixed-structure techniques have been applied to both
the reduced-order H2-optimal control and mixed

H2=H1 control problems. Initial work on the continu-
ous-time (s-domain) mixed H2=H1 control problem
(Bernstein and Haddad 1989, Khargonekar and

Rotea 1991) utilized a Riccati equation approach that
includes a bound on the H2 performance while enforcing

an H1 constraint. More recent research has considered
the use of continuation techniques to eliminate the
bound on the closed-loop H2 norm (Haddad and

Bernstein 1990, Luke et al. 1994), or has utilized non-
Riccati methods for enforcing H1 norm constraints
(Walker 1994). Discrete-time extensions of these prob-

lems have also been proposed in Jacques (1995) and
Davis et al. (1996) utilizing the standard shift operator

(q-domain) framework.
Fixed-structure design problems are, in general, non-

convex optimization problems. In addition, the funda-
mental problem of determining the existence or unique-
ness of stabilizing controllers of a given order or

structure is still open (Syrmos et al. 1997). Speci®c
®xed-structure problems have been shown to be NP-

hard (Toker and OÈ zbay 1995), indicating that there
may be no algorithm that computes the solution to the
problem such that the time required scales in a poly-

nomial fashion with the dimension of the problem.
Bypassing the question of existence and uniqueness,

there has been progress on characterizing and comput-

ing optimal ®xed-structure controllers using iterative
computational algorithms. One such approach is to

apply bilinear or alternative linear matrix inequality
algorithms (LMI’s) (Goh et al. 1994, Iwasaka and
Skelton 1995, Grigoriadis and Skelton 1996). This tech-

nique involves computing the solution to an LMI, the
inverse of which is the solution to a second LMI.

Another approach is to obtain ®rst order necessary con-
ditions for optimality. These conditions involve non-
linear algebraic equations, which in general have no

analytic solution. Various algorithms have been devel-
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oped for these equations, including homotopic or con-
tinuation algorithms (Hyland and Richter 1990,
Mercadal 1991, Ge et al. 1994, Collins Jr. et al. 1995,
1997) and gradient-based algorithms (Dennis Jr. and
Schnabel 1983, Ly et al. 1985, Toivonen and MaÈ kilaÈ
1985, MaÈ kilaÈ and Toivonen 1987, Harn and Kosut
1993).

In the present paper we are concerned with ®xed-
structure control for discrete-time systems. For dis-
crete-time systems, it has been shown that the standard
shift operator formulation can lead to numerical ill-con-
ditioning when high sampling rates are used (Middleton
and Goodwin 1990, Goodwin et al. 1992, Gevers and Li
1993) in conjunction with ®nite precision arithmetic. An
alternative, but equivalent, formulation of discrete-time
systems is based on the delta (di� erence) operator which
has been shown to be less sensitive to numerical round-
o� errors than the shift operator (Middleton and
Goodwin 1990). In particular, Middleton and
Goodwin (1990) has shown that shift operator represen-
tations of discrete-time systems become numerically ill-
conditioned at much lower sampling frequencies than
the equivalent di� erence operator representation of the
same system.

The standard LQR/LQG and H1 optimal control
problems have been formulated within the di� erence
operator framework in Middleton and Goodwin
(1990). These controllers can be computed from the sol-
utions to standard Riccati equations, for which stable,
e� cient numerical algorithms already exist. The purpose
of the present work is to formulate the ®xed-structure
H2-optimal and mixed H2=H1 controller synthesis
problems within a di� erence operator framework in
order to determine whether the di� erence operator
o� ers signi®cant advantages over the shift operator for
®xed-structure controller synthesis problems. Our
results show that this is indeed the case, and we show
by example that numerical algorithms may fail to ®nd a
solution to the ®xed-structure problem when posed in
the standard shift operator framework while succeeding
in the di� erence operator framework.

The paper is organized as follows. Section 2 provides
a brief review of di� erence operator theory and de®ni-
tions. Based on standard results for shift operator
systems, } 3 provides state-space techniques for calculat-
ing the H2 norm and H1 norm of di� erence operator
systems. The decentralized static output feedback frame-
work for ®xed-structure controller synthesis is summar-
ized, and together with the results of }} 3 and 4 is used to
pose the ®xed-structure H2 and mixed H2=H1 optimal
control problems for di� erence operator systems. The
di� erential operator and shift operator versions of the
problems are stated to provide a uni®ed framework for
comparison. Necessary conditions for these problems
based on Lagrangian techniques are then derived. To

compute approximate solutions to these equations, a
hybrid quasi-Newton/continuation algorithm is utilized,
which is brie¯y described in } 7. Finally, H2-optimal syn-
thesis results for a 10th-order model of a lightly damped
¯exible beam and mixed H2=H1 synthesis results for a
4th-order airplane longitudinal dynamics model are pre-
sented in }} 8 and 9, respectively. A comparison of the
performance of the quasi-Newton/continuation algor-
ithm on di� erential operator, shift operator and di� er-
ence operator formulations of all problems is provided.
The paper concludes with a discussion of the results in
} 10.

2. Preliminaries

Let f : ‰0; 1† ! n be di� erentiable, and assume
f …0† ˆ 0. The Laplace transform of f …t†, denoted by
f…s† or L‰ f …t†Š, is de®ned as

f…s† ˆ L‰ f …t†Š 7

…1

0

f …t† e¡st dt …1†

where s 2 and satis®es

L
d

dt
f …t†

µ ¶
ˆ s f…s† …2†

Let fg…k†g1
kˆ0 » n, and assume g…0† ˆ 0. The q-

transform (or Z-transform) of this sequence, denoted
by g…q† or Q‰fg…k†gŠ, is de®ned by

g…q† ˆ Q‰fg…k†gŠ 7
X1

kˆ0

g…k†q¡k …3†

where q 2 and satis®es

Q‰fg…k ‡ 1†gŠ ˆ q g…q† …4†

Alternatively, a sequence fl…k†g1
kˆ0 » n can also be

transformed by the ¯-transform (Middleton and
Goodwin 1990), which is denoted l…¯† or D‰fl…k†gŠ and
is de®ned by

l…¯† ˆ D‰fl…k†gŠ 7 h
X1

kˆ0

l…k†…1 ‡ h¯†¡k …5†

where h > 0 is the sample period and ¯ 2 . The delta
transform of a sequence satis®es

D‰h¡1fl…k ‡ 1† ¡ l…k†gŠ ˆ ¯ l…¯† …6†

In this paper, we consider linear continuous-time
systems of the form

_xx…t† ˆ Ax…t† ‡ Bu…t† …7†

y…t† ˆ Cx…t† ‡ Du…t† …8†
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and linear discrete-time systems of the form

x…k ‡ 1† ˆ Ax…k† ‡ Bu…k† …9†

y…k† ˆ Cx…k† ‡ Du…k† …10†

or

x…k ‡ 1† ˆ x…k† ‡ h‰Ax…k† ‡ Bu…k†Š …11†

y…k† ˆ Cx…k† ‡ Du…k† …12†

Assuming x…0† ˆ 0 and taking the Laplace transform of
(7) and (8), the q-transform of (9) and (10) and the ¯-
transform of (11) and (12) yields

±x…±† ˆ Ax…±† ‡ Bu…±†

y…±† ˆ Cx…±† ‡ Du…±†

)
…13†

where ± denotes either s, q or ¯, where x…±†, y…±† and
u…±† are the transforms of the corresponding functions
or sequences. The transfer function G…±† relating u to y,
that is, y…±† ˆ G…±†u…±†, is then given by

G…±† ˆ C…±I ¡ A†¡1B ‡ D …14†

For convenience we denote (14) by G…±† ¹ …A; B; C; D†.

De®nition 1: Two discrete-time transfer functions are
equivalent if identical inputs produce identical outputs.

Proposition 1: If ĜG…q† is a q-domain transfer function,
then ĜG…q† is equivalent to the ¯-domain transfer function
·GG…¯† given by

·GG…¯† 7 ĜG…1 ‡ h¯† …15†

If ·GG…¯† is a ¯-domain transfer function, then ·GG…¯† is
equivalent to the q-domain transfer function ĜG…q† de®ned
by

ĜG…q† 7 ·GG
q ¡ 1

h

³ ´
…16†

Furthermore, if ĜG…q† ¹ …ÂA; B̂B; ĈC; D̂D† is a q-domain trans-
fer function, and ·GG…¯† ¹ … ·AA; ·BB; ·CC; ·DD† is an equivalent ¯-
domain transfer function, then

·AA ˆ h¡1…ÂA ¡ I†; ·BB ˆ h¡1B̂B; ·CC ˆ ĈC; ·DD ˆ D̂D …17†

Proof: See Middleton and Goodwin (1990, p. 46). &

For the following de®nitions, let spec …A† denote the
set of eigenvalues A.

De®nition 2: A square matrix A is ±-stable if, for all
¶ 2 spec …A†

Re ¶ < 0;

j¶j < 1;

h

2
j¶j2 ‡ Re ¶ < 0;

± ˆ s

± ˆ q

± ˆ ¯

Furthermore, a transfer function G…±† is ±-stable if there

exists a realization (A; B; C; D) of G…±† such that A is ±-
stable.

Lemma 1: Let G…±† ¹ …A; B; C; D† and assume A is ±-
stable. Then there exists a unique, positive-semide®nite
matrix P such that

0 ˆ ATP ‡ PA ‡ CTC;

0 ˆ ATPA ¡ P ‡ CTC;

0 ˆ ATP ‡ PA ‡ hATPA ‡ CTC;

± ˆ s

± ˆ q

± ˆ ¯

…18†
…19†
…20†

In particular, P is given by

P ˆ
…1

0

eAT½ CTC eA½ d½; ± ˆ s …21†

P ˆ
X1

kˆ0

…AT†kCTCAk ± ˆ q …22†

P ˆ h
X1

kˆ0

…I ‡ hAT†kCTC…I ‡ hA†k; ± ˆ ¯ …23†

3. The H2-norm in the ¯-domain

The H2 norm of a transfer function G…±† ¹
…A; B; C; D†, where A is ±-stable, is de®ned by

kG…±†k2
7

1

2p|

…

Re …s†ˆ0

tr ‰G¤…s†G…s†Š ds

" #1=2

;

± ˆ 5; D ˆ 0 …24†

7
1

2º|

‡

jqjˆ1

tr ‰G¤…q†G…q†Š 1

q
dq

" #1=2

;

± ˆ q …25†

7
1

2º|

‡

j1‡h¯jˆ1

tr ‰G¤…¯†G…¯†Š 1

1 ‡ h¯
d¯

" #1=2

;

± ˆ ¯ …26†

Lemma 2: If ĜG…q† and ·GG…¯† are equivalent ±-stable
transfer functions, then

k ·GG…¯†k2 ˆ
1���
h

p kĜG…q†k2 …27†

Proof: The proof is immediate from the change of vari-

ables q ˆ 1 ‡ h¯ in (25). &

Proposition 2: Let G…±† ¹ …A; B; C; D† and assume A
is ±-stable. Then
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kG…±†k2
2 ˆ tr ‰BTPBŠ; ± ˆ s; D ˆ 0 …28†

ˆ tr ‰BTPB ‡ DTDŠ; ± ˆ q …29†

ˆ tr BTPB ‡ 1

h
DTD

µ ¶
; ± ˆ ¯ …30†

where P satis®es (18), (19) or (20).

Proof: See Appendix A. &

4. The H1-norm in the ¯-domain

The H1 norm of a matrix transfer function
G…±† ¹ …A; B; C; D†, where A is ±-stable, is de®ned as

kG…±†k1 7 sup
¡1<!<1

¼maxG…|!†; ± ˆ s …31†

7 max
¡p<³<p

¼maxG…e|³†; ± ˆ q …32†

7 max
¡º<³¿º

¼maxG…h¡1…e|³ ¡ 1††; ± ˆ ¯ …33†

If ĜG…q† is a q-stable transfer function and ·GG…±† is the
equivalent ¯-domain transfer function, then

k ·GG…¯†k1 ˆ kĜG…q†k1 …34†

Proposition 3: Let G…±† ¹ …A; B; C; D†, where A is ±-
stable, and de®ne

R 7 I ¡ ®¡2DTD; S 7 ®¡1CTD …35†

Suppose there exists a positive-semide®nite solution P to
the algebraic Riccati equation

0 ˆ ATP ‡ PA ‡ ®¡1CTC

‡ ®¡1…BTP ‡ ST†TR¡1…BTP ‡ ST†; ± ˆ s …36†

0 ˆ ATPA ¡ P ‡ ®¡1CTC

‡ ®¡1…BTPA ‡ ST†T…R ¡ ®¡1BTPB†¡1

£ …BTPA ‡ ST†; ± ˆ q …37†

0 ˆ ATP ‡ PA ‡ hATPA ‡ CTC

‡ ®¡1…BTP…I ‡ hA†ST†T

£ …R ¡ ®¡1hBTPB†¡1

£ …BTP…I ‡ h ·AA† ‡ ST†; ± ˆ ¯ …38†

such that

R > 0; ± ˆ s …39†

R > ®¡1BTPB; ± ˆ q …40†

R > ®¡1hBTPB; ± ˆ ¯ …41†

Then kG…±†k1 < ®.

Proof: The proofs for ± ˆ s and ± ˆ q can be found
in Zhou (1996). The proof of the result for ± ˆ ¯ is
analogous to the proof for the case ± ˆ q. &

The Riccati equations (36)±(38) are equivalent, but
not identical, to those given in Ridgely et al. (1992 a) and
Davis et al. (1996). Letting G…±† ¹ …A; B; C; D†, the
results of Ridgely et al. (1992 a) and Davis et al.
(1996) use ®¡1G…±† ¹ …A; B; ®¡1C; ®¡1D† or (A; ®¡1B;
C; ®¡1D). For large values of ®, these realizations are
approximately uncontrollable or unobservable, which
causes numerical problems when solving the associated
Riccati equation. The scaling used in Proposition 3 uti-
lizes ®¡1G…±† ¹ …A; ®¡1=2B; ®¡1=2C; ®¡1D†, which pro-
vides improved numerical conditioning.

5. Decentralized static output feedback

This section reviews the decentralized static output
feedback problem formulation for ®xed-structure con-
troller synthesis. As shown in Erwin et al. (1998), this
formulation captures a large class of centralized and
decentralized controller architectures within a common
framework so that a common numerical algorithm can
be used. Specialization of this formulation to full- and
reduced-order, strictly proper, centralized dynamic com-
pensation is given in Appendix B.

Consider the (m ‡ 2)-vector-input, (m ‡ 2)-vector-
output decentralized system shown in ®gure 1, where e
and d are used to account for model uncertainty, w is the
exogenous disturbance input, z is the performance vari-
able, and the signals yi and ui, i ˆ 1; . . . ; m, are meas-
urement and control signals, respectively. Furthermore,
de®ne

u ˆ
u1

..

.

um

2

64

3

75; y ˆ
y1

..

.

ym

2

64

3

75 …42†
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and let G…±† have the realization

G…±† ¹

A Bu Bd Bw

Cy Dyu Dyd Dyw

Ce Deu Ded Dew

Cz Dzu Dzd Dzw

2

6666664

3

7777775
…43†- - - - - - - - - - - -

- - - - - - - - - - - -

-
-

-
-

-
-

-

-
-

-
-

-
-

-

which represents the linear, time-invariant or shift-
invariant dynamic system

±x ˆ Ax ‡ Buu ‡ Bdd ‡ Bww …44†

y ˆ Cyx ‡ Dyuu ‡ Dydd ‡ Dyww …45†

e ˆ Cex ‡ Deuu ‡ Dedd ‡ Deww …46†

z ˆ Czx ‡ Dzuu ‡ Dzdd ‡ Dzww …47†

where x, u, d, w, y, e and z are the transforms of the
corresponding functions or sequences and where the
dependence on ± has been suppressed.

To represent decentralized static output feedback
control with possibly repeated gains, let

ui ˆ K 0
i yi; i ˆ 1; . . . ; m …48†

where the matrices K 0
i are not necessarily distinct.

Reordering the variables in (48) if necessary, (48) can
be rewritten as

u ˆ Ky …49†

where K has the form

K 7 block-diag …I¿1
« K1; . . . ; I¿v

« Kv† …50†

where v is the number of distinct gains Ki 2 ri£ci and ¿i

is the number of repetitions of gain Ki. Note that
K1; . . . ; Kv are not necessarily square matrices, and
that

Pv
iˆ1 ¿i ˆ m. We de®ne U to be the set of all

matrices K that have the structure (50).
For convenience, de®ne the algebraic return di� er-

ence

LK 7 I ¡ DyuK …51†

Assuming that LK is non-singular, the closed-loop
dynamics, model error, and performance variable are
given by

±x ˆ ~AAx ‡ ~BBdd ‡ ~BBww …52†

e ˆ ~CCex ‡ ~DDedd ‡ ~DDeww …53†

z ˆ ~CCzx ‡ ~DDzdd ‡ ~DDzww …54†

where

~AA 7 A ‡ BuKL¡1
K Cy; ~BBd 7 Bd ‡ BuKL¡1

K Dyd

~BBw 7 Bw ‡ BuKL¡1
K Dyw

~CCz 7 Cz ‡ DzuKL¡1
K Cy

~DDzd 7 Dzd ‡ DzuKL¡1
K Dyd ; ~DDzw 7 Dzw ‡ DzuKL¡1

K Dyw

~CCe 7 Ce ‡ DeuKL¡1
K Cy; ~DDed 7 Ded ‡ DeuKL¡1

K Dyd

~DDew 7 Dew ‡ DeuKL¡1
K Dyw

The closed-loop transfer function ~GGzw…±† from w to z
therefore has a realization

~GGzw…±† ¹
~AA ~BBw

~CCz
~DDzw

2

4

3

5 …55†

while the closed-loop transfer function ~GGed…±† from d to
e has a realization

~GGed…±† ¹
~AA ~BBd

~CCe
~DDed

2

4

3

5 …56†

6. H2 and H2=H1 control

The ®xed-structure H2-optimal control problem is
de®ned as

min
K 2 U±

k ~GGzw…±†k2
2 …57†

while the ®xed-structure mixed H2=H1 problem is
de®ned as

min
K 2 U ±

k ~GGzw…±†k2
2 subject to k ~GGed …±†k1 < ® …58†

where ® > 0 and U± is the set of all K 2 U such that ~AA is

±-stable. If K 2 U± , then we can evaluate k ~GGzw…±†k2 by
using Proposition 2 with (A; B; C; D) replaced by
( ~AA; ~BBw; ~CCz; ~DDzw). Necessary conditions for optimality
are given in Appendix C, where P ˆ ~PPzw denotes the
solution to (18), (19) or (20) with these substitutions.

To enforce the H1 norm constraint (58), we utilize
Proposition 3 with (A; B; C; D) replaced by ( ~AA; ~BBd ;
~CCe; ~DDed), where ~RR and ~SS are de®ned by (35) with these
substitutions. The resulting necessary conditions are
given in Appendix C, where P ˆ ~PPed denotes the sol-
ution to (36) and (39), (37) and (40), or (38) and (41)
with these substitutions. The Lagrangian functions used
to generate these necessary conditions include an auxili-
ary cost J aux de®ned by

J aux 7 tr ~BBT
d

~PPed
~BBd ; ± ˆ s …59†

7 tr ‰ ~BBT
d

~PPed
~BBd ‡ ~DDT

ed
~DDed Š; ± ˆ q …60†

7 tr ~BBT
d

~PPed
~BBd ‡

1

h
~DDT

ed
~DDed

µ ¶
; ± ˆ ¯ …61†
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The auxiliary cost J aux and the H2 cost k ~GGzw…±†k2 are
weighted by the continuation parameter » 2 …0; 1† in the
convex combination

J » 7 »k ~GGzw…±†k2 ‡ …1 ¡ »†J aux

so that, as » ! 1, the e� ect of J aux becomes negligible.
As discussed in Haddad and Bernstein (1990) and
Ridgely et al. (1992 a, b), the use of this auxiliary term
avoids a degenerate Lyapunov equation in the resulting
necessary conditions. It is shown in Ridgely et al.
(1992 b), however, that the minimizer of (6) is often
located at the boundary of the region where the H1
bound holds. In this case the gradient of the perform-
ance at the minimizer may point outward from this
region for all values of the convexifying parameter.
This di� culty is avoided in Ridgely et al. (1992 a)
where the Lagrangian was modi®ed to include the sol-
ution of a Lyapunov equation having the property that
its solution becomes unbounded when the H1 bound is
approached. Although this modi®cation could be
included in a delta-domain formulation of the problem
as well, this numerical di� culty did not arise in the
course of this investigation.

7. Algorithm description

To compute solutions of the ®xed-structure control
problems, a general-purpose BFGS quasi-Newton
algorithm (Dennis Jr. and Schnabel 1983) is used in
conjunction with a continuation technique. For open-
loop-stable plants we initialize the algorithm by using
a su� ciently low-authority compensator along with an
appropriate model-reduction technique (Collins Jr. et al.
1996). A series of intermediate problems are solved
sequentially to produce the structured, high-authority
controller.

The computational procedure is given by the follow-
ing two-step continuation algorithm. Let ·DDzu represent
the control e� ort weighting matrix for the desired
high-authority controller problem. Then:

(1) Step 1:

(1) (a) Choose a scalar ­ > 1 such that the optimal
controller for the low-authority H2 problem
using Dzu ˆ ­ ·DDzu yields a closed-loop system
that satis®es the H1 constraint (36), (37) or
(38). This low-authority, full-order controller
also has the advantage that it can often be
truncated to obtain a reduced-order control-
ler without violating either closed-loop stab-
ility or the H1 constraint.

(1) (b) De®ne a series of intermediate problems,
indexed by the decreasing sequence f¬ig

r
iˆ1,

where ¬1 ˆ 1 and ¬r ˆ 1=­ . Each intermedi-
ate problem then utilizes Dzu ˆ ¬i­ ·DDzu and
provides an increase in the control authority

from the low-authority level used to generate

the initializing controller (¬1 ˆ 1) to the
desired high-authority values (¬r ˆ 1=­ ).

(1) (c) Sequentially solve each of these intermediate
problems using the quasi-Newton algorithm,
with the solution of each intermediate prob-
lem providing the initializing compensator
for the next intermediate problem, and so
on. The continuation parameter » is held at
a constant value »1 º 0:9 for all of these
intermediate problems.

(2) Step 2:

(1) (a) De®ne a second set of intermediate problems
by the increasing sequence f»igl

iˆ1, where »l

can be chosen arbitrarily close to 1, implying
that the optimality conditions approach
those of (58). The problems de®ned by this
sequence approach the H2=H1 control prob-
lem (58).

(1) (b) As in (3) above, this second sequence of
intermediate problems is solved by sequen-
tial application of the quasi-Newton algor-
ithm. The solution of the ®nal intermediate
problem is then the solution of a high-
authority, near-optimal mixed H2=H1 con-
trol problem.

Note that for ®xed-structure H2 synthesis, the two-step
continuation algorithm terminates after Step 1(c).

The line search portions of the quasi-Newton algor-
ithm involve a modi®cation of the standard Armijo-type
search to include a constraint-checking subroutine. This
subroutine decreases the step length along the search
direction to ensure that the next iterate satis®es the
problem constraints, that is, (i) that ~AA is ±-stable, imply-
ing (18), (19) or (20) has a solution, and (ii) the corre-
sponding Riccati equation (36), (37) or (38) has a
solution. This modi®cation ensures that the cost func-
tion remains de®ned at every point the linear-search
process.

8. H2-optimal control example

The 10th-order continuous-time beam example of
Hyland and Richter (1990) is considered for s-domain
H2-optimal controller synthesis. A zero-order-hold
model of this plant is used for both q-domain and ¯-
domain synthesis. To ensure that the highest frequency
mode of the plant (approximately 160 Hz) is below the
Nyquist frequency, a sampling frequency of 400Hz was
chosen. This sampling frequency corresponds to a sam-
pling period of h ˆ 2:5 £ 10¡3 s. Both full- and reduced-
order, strictly proper, centralized dynamic compensators
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were synthesized within the decentralized static output
feedback framework as shown in Appendix B.

8.1. Full-order H2-optimal control

To compare the q-domain and ¯-domain formula-
tions for H2-optimal controller synthesis, full-order
H2-optimal controllers were synthesized in the q-domain
and ¯-domain using both standard Riccati equation
techniques and the quasi-Newton/continuation algor-
ithm technique. Controllers obtained via the ±-domain
Riccati equation approach are called ±-domain Riccati
solutions, while controllers obtained via the ±-domain
quasi-Newton/continuation algorithm are called ±-
domain ®xed-structure solutions.

Figure 2 compares the H2-optimal costs for the q-
domain ®xed-structure solution and the q-domain
Riccati solution, normalized by the cost of the q-domain
Riccati solution. Note that as the controller authority
increases with decreasing values of ¬i, the q-domain
®xed-structure solution diverges from the q-domain
Riccati solution. Note that we cannot conclude that
the numerical conditioning of the problem is the cause
of this behaviour, since the BFGS optimization algor-
ithm is only guaranteed to converge to a local minimum.

Figure 3 presents the H2-optimal cost for the ¯-
domain Riccati solution and the ¯-domain ®xed-
structure solution, normalized by the q-domain Riccati
solution cost. Note that the ¯-domain ®xed-structure
solution coincides with the ¯-domain Riccati solution
for each value of the continuation parameter ¬i, both
of which yield a (marginally) lower cost than the q-
domain Riccati solution.

Thus, we have solved identical problems in the q-
and ¯-domains, using identical algorithms and initializ-
ing controllers, obtaining poor performance (i.e. diver-

gence from the global minimizer) in the q-domain and
good performance (i.e. convergence to the global mini-
mizer) in the ¯-domain. We thus conclude that the
numerical conditioning of the problem is the cause of
the divergence of the ®xed-structure solution from the
Riccati solution in the q-domain.

The total number of iterations required by the quasi-
Newton algorithm summed over the 10 intermediate
problems was 3572 for q-domain synthesis and 1207
for ¯-domain synthesis.

The optimality of the ¯-domain ®xed-structure sol-
utions obtained for each value of ¬i was tested by trans-
forming them to q-domain realization via (17) and then
using the resulting realizations as initializing controllers
for the quasi-Newton algorithm in the q-domain formu-
lation of the problem. For each of the 10 intermediate
problems, the code was unable to further optimize these
initial controllers since they satis®ed the small gradient
norm condition for termination. However, using the sol-
utions synthesized in the q-domain as initial controllers
for ¯-domain synthesis, the algorithm was able to
further reduce the cost for the intermediate problems
for each of the last several values of ¬i, indicating that
the q-domain ®xed-structure solutions were suboptimal.

8.2. Reduced-order H2-optimal control

The quasi-Newton/continuation algorithm was used
to solve a reduced-order discrete-time H2-optimal con-
trol problem in the q-domain and the ¯-domain. The
10th-order ¯exible beam model was again used, with
the compensator order set to nc ˆ 6. Since no Riccati
solution is available for the reduced-order problem, the
H2-optimal cost of the ¯-domain Riccati solution for the
full-order problem was used to normalize all costs. For
the results of this section, the continuation algorithm
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Figure 2. Normalized H2 cost for full-order q-domain Ric-
cati and ®xed-structure solutions versus continuation
parameter ¬.

Figure 3. Normalized H2 cost for full-order ¯-domain and q-
domain Riccati solutions and ¯-domain ®xed-structure
solution.



utilized 20 intermediate problems to generate high-
authority controllers from the low-authority initializing
controllers.

Figure 4 presents the normalized H2-optimal costs
for the reduced-order q-domain and ¯-domain ®xed-
structure solutions. Note that as the continuation algor-
ithm increases the authority by means of the decreasing
sequence f¬ig, the q-domain ®xed-structure solution
begins to diverge at 1=¬i ˆ 3:5, then recovers and con-
tinues to track the `true’ solution. As expected, at high
authority levels the ®xed-structure solutions from both
domains yield higher H2 costs than the full-order sol-
ution.

The total number of iterations performed by the
quasi-Newton algorithm summed over the 20 intermedi-
ate problems of the continuous algorithm was 1791 for
the q-domain formulation, and 1433 for the ¯-domain
formulation. In both formulations, the quasi-Newton
algorithm produced a solution that satis®es a small-
gradient condition for termination for each value of

¬i, including those where, as shown in ®gure 4, the q-
domain ®xed structure solution begins to diverge.

9. Mixed H2=H1 control example

Next we consider mixed H2=H1 control for the 4th-
order HIMAT aircraft longitudinal dynamics model
given in Design B of Ullauri et al. (1994). The transfer
function from d to e represents the input weighted com-
plementary sensitivity function, where the weighting
function is (Ullauri et al. 1994)

WTi
ˆ I2£2 « 50…s ‡ 100†

s ‡ 10 000
…62†

For discrete-time control, the sampling rate was chosen
based on the highest frequency dynamics of the system.
In this case, the weighting function WTi

has poles at

10 000 rad/s (undamped natural frequency), or approxi-
mately 1591 Hz. A sampling frequency of fs ˆ 4000 Hz
was chosen so that h ˆ 2:5 £ 10¡4 s. This sampling rate
is approximately 2.5 times the frequency of the highest
frequency pole. Properties of the full-order H2-optimal
solution properties for this problem are given in table 1.

A mixed H2=H1 problem was considered with

® ˆ 1. Since the H1 norm of ~GGed …±† is approximately
55 in all three domains (see table 1), the H2-optimal
solution is not a feasible solution for the mixed problem.
The two-step continuation algorithm was used to solve
the high-authority, mixed H2=H1 problem. The conti-
nuation algorithm used 50 logarithmically spaced values
of ¬i decreasing from 1 to 0.05. The parameter » ˆ »1

was held at a constant value of 0.9 during the continua-
tion on ¬. With ¬ ˆ ¬50 held constant at 0.05, the sec-
ond step of the continuation algorithm used 50
logarithmically spaced values of »j increasing from 0.9
to 0.9999.

Figures 5 and 6 show k ~GGzw…±†k2 versus the continua-
tion parameters ¬ and » for s-domain and ¯-domain
synthesis solutions, respectively, while ®gure 7 shows
…1=

���
h

p
†k ~GGzw…q†k2 versus the continuation parameters ¬

and » for the q-domain synthesis solution. Figures 5 and
6 show similar behaviour of the s-domain and ¯-domain
solutions during the two-step continuation algorithm,
while ®gure 7 indicates the inability of the algorithm
to ®nd a solution for the q-domain formulation of the
problem.

Figures 8, 9 and 10 plot k ~GGed …±†k1 versus the con-
tinuation parameters ¬ and » for s-domain, ¯-domain
and q-domain synthesis solutions, respectively. Again,
®gures 8 and 9 illustrate similar properties of the s-
domain and ¯-domain solutions during the continuation
algorithm, while ®gure 10 shows that in the q-domain
formulation, the algorithm e� ectively gets `stuck’ at an
early stage in the continuation, and never recovers.
Table 2 gives the solution properties for the ®nal results
of the two-step continuation algorithm.

10. Discussion and conclusions

This paper presented the delta operator formulation
of the ®xed-structure mixed H2=H1 control problem.
Using continuation techniques in conjunction with a
Lagrangian approach, necessary conditions for sub-
optimal controller synthesis were derived for the s-
domain, q-domain and ¯-domain formulations of the
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Figure 4. Normalized H2 cost for reduced-order q-domain
and ¯-domain ®xed-structure solutions.

s-Domain ¯-Domain q-Domain

k ~GGzw…±†k2 6.115 6.115 6.118
���
h

p

k ~GGed…±†k1 55.13 55.31 55.07

Table 1. Full-order H2-optimal controller properties.
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Figure 5. k ~GGzw…s†k2 versus continuation parameters ¬ and »
for s-domain H2=H1 synthesis.

Figure 6. k ~GGzw…¯†k2 versus continuation parameters ¬ and »
for ¯-domain H2=H1 synthesis.

Figure 7. …1=
���
h

p
†k ~GGzw…q†k2 versus continuation parameters ¬

and » for q-domain H2=H1 synthesis.

Figure 8. k ~GGed…s†k1 versus continuation parameters ¬ and »
for s-domain H2=H1 synthesis.

Figure 9. k ~GGed…¯†k1 versus continuation parameters ¬ and »
for ¯-domain H2=H1 synthesis.

Figure 10. k ~GGed…q†k1 versus continuation parameters ¬ and
» for q-domain H2=H1 synthesis.



H2=H1 problem. The performance of a quasi-Newton
continuation algorithm in computing solutions for the q-
domain and ¯-domain formulations of the problem was
compared numerically. It was found that the ¯-domain
formulation of the problem yielded signi®cant numerical
advantages over the standard q-domain problem formu-
lation. In particular, the algorithm showed increased
robustness to large changes in the continuation par-
ameter and required fewer iterations for convergence.
The results demonstrate the advantages of the ¯-domain
formulation over the q-domain formulation in the con-
text of discrete-time ®xed-structure controller synthesis.

Numerical experience suggests that the poor numer-
ical conditioning of the q-domain state-space matrices
(Middleton and Goodwin 1990, Gevers and Li 1993)
and lower numerical accuracy of q-domain Riccati equa-
tion solvers relative to their ¯-domain counterparts
(Middleton and Goodwin 1990, pp. 287, 511±515) lead
to inaccurate evaluations of the gradient formulae used
by the quasi-Newton algorithm, which is then unable to
compute meaningful solutions in the q-domain. Direct
con®rmation of this is non-trivial, however, as it would
require computing the exact (i.e. in®nite precision) sol-
ution to the Riccati equation at the point where the
solutions from the q- and ¯-domain formulations
diverge and then evaluating the gradient formulae
using this exact solution.

The software used to compute the results of this
paper is available to interested parties in the form of a
Matlab toolbox. Software requests may be directed to
the ®rst author.
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Appendices

A. Proof of Proposition 2

The cases ± ˆ s and q are standard; see, for example,
Zhou (1996). For ± ˆ ¯, we note that since G…¯† ¹
…A; B; C; D† is a ±-stable matrix transfer function,
Proposition 1 implies that ĜG…q† ¹ …I ‡ hA; hB; C; D† is
the equivalent q-domain transfer function. Using (27)
and (29), it then follows that

kG…¯†k2
2 ˆ h¡1 tr ‰h2BTP̂PB ‡ DTDŠ …63†

where P̂P is the solution of the q-domain Lyapunov equa-
tion

0 ˆ …I ‡ hA†TP̂P…I ‡ hA† ¡ P̂P ‡ CTC …64†

Expanding (64) and de®ning P ˆ hP̂P yields (20). Finally,
applying this de®nition to (63) yields (30). &

B. Centralized strictly proper dynamic compensation

Consider a plant of the form

±x0 ˆ Ax0 ‡ Bu0 ‡ M1d ‡ D1w …65†

y0 ˆ Cx0 ‡ Fu0 ‡ M2d ‡ D2w …66†

e ˆ N1x0 ‡ N2u0 ‡ E4d ‡ E5w …67†

z ˆ E1x0 ‡ E2u0 ‡ E3d ‡ E0w …68†

controlled by a full- or reduced-order strictly proper,
centralized dynamic compensator having the realization

±xc ˆ Acxc ‡ Bcy …69†

u ˆ Ccxc …70†

This system can be written as decentralized static output
feedback with m ˆ v ˆ 3, ¿1 ˆ ¿2 ˆ ¿3 ˆ 1, G…±† given
by

G…±† ¹

A 0 0 0 B M1 D1

0 0 I I 0 0 0

0 I 0 0 0 0 0

C 0 0 0 F M2 D2

0 I 0 0 0 0 0

N1 0 0 0 N2 E4 E5

E1 0 0 0 E2 E3 E0

2

6666666666666664

3

7777777777777775

…71†

- - - - - - - - - - - - - -
- - - - - - - - - - - - - -

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

and K denoting the block-diagonal matrix K ˆ
block-diag …Ac; Bc; Cc†. This yields

LK ˆ
I 0 0

0 I ¡DCc

0 0 I

2

64

3

75 …72†

which is non-singular.
Note that in this derivation, every entry in the state-

space realization matrices is a parameter to be optimized
(a so-called full-matrix parameterization). Thus, any
optimal solution in this parameterization, if one exists,
is non-unique, as a similarity transformation on the
resulting state-space matrices yields another set of par-
ameters yielding the same cost. The decentralized static
output feedback framework used in this work can incor-
porate various other internal parameterizations of the
state space realization (canonical forms, etc.). A study
on the e� ect of di� erent internal parameterizations on
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s-Domain ¯-Domain q-Domain

k ~GGzw…±†k2 6.303 6.303 8.291
���
h

p

k ~GGed…±†k1 1.000 1.000 1.000

Table 2. Full-order H2-optimal controller properties.



computational e� cency can be found in Erwin et al.
(1998).

C. Necessary conditions

De®ne QLij and QRij by

QLij 7

0r1¿1£ri

0r2¿2£ri

..

.

0ri¡1¿i¡1£ri

0ri… j¡1†£ri

Iri

0ri…¿i¡j†£ri

0ri‡1¿i‡1£ri

..

.

0rv¿v£ri

2

66666666666666666664

3

77777777777777777775

; QRij 7

0c1¿1£ci

0c2¿2£ci

..

.

0ci¡1¿i¡1£ci

0ci… j¡1†£ci

Ici

0ci…¿i¡j†£ci

0ci‡1¿i‡1£ci

..

.

0cv¿v£ci

2

66666666666666666664

3

77777777777777777775

T

…73†

The Lagrangian for the s-domain H2=H1 control
problem is given by

L… ~PPzw; ~QQzw; ~PPed ; ~QQed ; Ki†
ˆ » tr ~BBT

w
~PPzw

~BBw ‡ tr ~QQzw‰ ~AAT ~PPzw ‡ ~PPzw
~AA ‡ ~CCT

z
~CCzŠ

‡ …1 ¡ »†tr ~BBT
d

~PPed
~BBd ‡ tr ~QQed ‰ ~AAT ~PPed

‡ ~PPed
~AA ‡ ®¡1 ~CCT

e
~CCe

‡ ®¡1… ~BBT
d

~PPed ‡ ~SST†T ~RR¡1… ~BBT
d

~PPed ‡ ~SST†Š …74†

with partial derivatives given by

@L
@ ~PPzw

ˆ ~AA ~QQzw ‡ ~QQzw
~AAT ‡ » ~BBw

~BBT
w …75†

@L
@ ~QQzw

ˆ ~AAT ~PPzw ‡ ~PPzw
~AA ‡ ~CCT

z
~CCz …76†

@L
@ ~PPed

ˆ … ~AA ‡ ®¡1 ~BBd
~RR¡1S† ~QQed

‡ ~QQed … ~AA ‡ ®¡1 ~BBd
~RR¡1S†T ‡ …1 ¡ »† ~BBd

~BBT
d …77†

@L
@ ~QQed

ˆ ~AAT ~PPed ‡ ~PPed
~AA ‡ ®¡1ST ~RR¡1S ‡ ®¡1 ~CCT

e
~CCe …78†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡ DT

yuL¡T
K KT†

£ ‰»BT
u

~PPzw
~BBwDT

yw ‡ …1 ¡ »†BT
d

~PPed
~BBdDT

yd

‡ BT
u

~PPzw
~QQzwCT

y ‡ DT
zu

~CCz
~QQzwCT

y

‡ BT
u

~PPed
~QQedCT

y ‡ ®¡1DT
eu

~CCe
~QQedCT

y

‡ ®¡1BT
u

~PPed
~QQedST ~RR¡1DT

yd

‡ ®¡2DT
eu

~CCe
~QQedST ~RR¡1DT

yd

‡ ®¡3DT
eu

~DDed
~RR¡1S ~QQedST ~RR¡1DT

yd ŠL¡T
K QT

Rij …79†

where

S 7 ~BBT
d

~PPed ‡ ~SST …80†

The Lagrangian for the q-domain H2=H1 control
problem is given by

L… ~PPzw; ~QQzw; ~PPed ; ~QQed ; Ki†

ˆ » tr ‰ ~BBT
w

~PPzw
~BBw ‡ ~DDT

zw
~DDzwŠ

‡ tr ~QQzw‰ ~AAT ~PPzw
~AA ‡ ~CCT

z
~CCz ¡ ~PPzwŠ

‡ …1 ¡ »† tr ‰ ~BBT
d

~PPed
~BBd ‡ ~DDT

ed
~DDed Š

‡ tr ~QQedf ~AAT ~PPed
~AA ‡ ®¡1 ~CCT

e
~CCe ¡ ~PPed

‡ ®¡1‰ ~BBT
d

~PPed
~AA ‡ ~SSTŠT

£ ‰ ~RR ¡ ®¡1 ~BBT
d

~PPed
~BBd Š¡1‰ ~BBT

d
~PPed

~AA ‡ ~SSTŠg …81†

with partial derivatives given by

@L
@ ~PPzw

ˆ ~AA ~QQzw
~AAT ‡ » ~BBw

~BBT
w ¡ ~QQzw …82†

@L
@ ~QQzw

ˆ ~AAT ~PPzw
~AA ‡ ~CCT

z
~CCz ¡ ~PPzw …83†

@L
@ ~PPed

ˆ … ~AA ‡ ®¡1 ~BBdG¡1S† ~QQed … ~AA ‡ ®¡1 ~BBdG¡1S†T

‡ …1 ¡ »† ~BBd
~BBT

d ¡ ~QQed …84†

@L
@ ~QQed

ˆ ~AAT ~PPed
~AA ‡ ®¡1STG¡1S ‡ ®¡1 ~CCT

e
~CCe ¡ ~PPed …85†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡ DT

yuL
¡T
K KT†

£ ‰»…BT
u

~PPzw
~BBwDT

yw ‡ DT
zu

~DDzwDT
zw†

‡ …1 ¡ »†…®¡1BT
u

~PPed
~BBdDT

yd ‡ ®¡2DT
eu

~DDedDT
yd†

‡ BT
u

~PPzw
~AA ~QQzwCT

y ‡ DT
zu

~CCz
~QQzwCT

y

‡ BT
u

~PPed
~AA ~QQedCT

y ‡ ®¡1DT
eu

~CCe
~QQedCT

y

‡ ®¡2DT
eu

~DDedG¡1S ~QQedCT
y

‡ ®¡1DT
eu

~CCe
~QQedSG¡1DT

yd

‡ ®¡1BT
u

~PPed
~BBdG¡1ST ~QQedCT

y

‡ ®¡1BT
u

~PPed
~AA ~QQedSTG¡1DT

yd

‡ ®¡3DT
eu

~DDedG¡1S ~QQedSTG¡1DT
yd

‡ ®¡2BT
u

~PPed
~BBdG¡1S ~QQedSTG¡1DT

yd ŠL¡T
K QT

Rij …86†

where

G 7 ~RR ‡ ®¡1 ~BBT
d

~PPed
~BBd ; S 7 ~BBT

d
~PPed

~AA ‡ ~SST …87†

The Lagrangian for the ¯-domain H2=H1 control
problem is given by
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L… ~PPzw; Q̂Qzw; ~PPed ; ~QQed ; Ki†

ˆ » tr ~BBT
w

~PPzw
~BBw ‡ 1

h
~DDT

zw
~DDzw

µ ¶

‡ tr ~QQzw‰ ~AAT ~PPzw ‡ ~PPzw
~AA ‡ h ~AAT ~PPzw

~AA ‡ ~CCT
z

~CCzŠ

‡ …1 ¡ »† tr ~BBT
d

~PPed
~BBd ‡ 1

h
~DDT

ed
~DDed

µ ¶

‡ tr ~QQedf ~AAT ~PPed ‡ ~PPed
~AA ‡ h ~AAT ~PPed

~AA ‡ ®¡1 ~CCT
e

~CCe

‡®¡1‰ ~BBT
d

~PPed …I ‡ h ~AA† ‡ ~SSTŠT‰ ~RR ¡ h®¡1 ~BBT
d

~PPed
~BBd Š¡1

£ ‰ ~BBT
d

~PPed …I ‡ h ~AA† ‡ ~SSTŠg …88†

with partial derivatives given by

@L
@ ~PPzw

ˆ ~AA ~QQzw ‡ ~QQzw
~AAT ‡ h ~AA ~QQzw

~AAT ‡ » ~BBw
~BBT

w …89†

@L
@ ~QQzw

ˆ ~AAT ~PPzw ‡ ~PPzw
~AA ‡ h ~AAT ~PPzw

~AA ‡ ~CCT
z

~CCz …90†

@L
@ ~PPed

ˆ … ~AA ‡ ®¡1 ~BBdG¡1ST† ~QQed ‡ ~QQed … ~AA ‡ ®¡1 ~BBdG¡1ST†T

‡ h… ~AA ‡ ®¡1 ~BBdG¡1ST†

£ ~QQed … ~AA ‡ ®¡1 ~BBdG¡1ST†T ‡ …1 ¡ »† ~BBd
~BBT

d …91†
@L

@ ~QQed

ˆ ~AAT ~PPed ‡ ~PPed
~AA ‡ h ~AAT ~PPed

~AA

‡ ®¡1STG¡1S ‡ ®¡1 ~CCT
e

~CCe …92†

@L
@Ki

ˆ 2
X¿i

jˆ1

QT
Lij…I ‡ DT

yuL¡T
K KT†

£ » BT
u

~PPzw
~BBwDT

yw ‡
1

h
DT

zu
~DDzwDT

yw

³ ´µ

‡ …1 ¡ »† ®¡1BT
u

~PPed
~BBdDT

yd ‡ 1

h
®¡2DT

eu
~DDedDT

yd

³ ´

‡ BT
u

~PPzw
~QQzwCT

y ‡ DT
zu

~CCz
~QQzwCT

y

‡ hBT
u

~PPzw
~AA ~QQzwCT

y ‡ BT
u

~PPed
~QQedCT

y

‡ ®¡1DT
eu

~CCe
~QQedCT

y ‡ hBT
u

~PPed
~AA ~QQedCT

y

‡ ®¡1BT
u

~PPed…I ‡ h ~AA† ~QQedSTG¡1DT
yd

‡ h®¡1BT
u

~PPed
~BBdG¡1S ~QQedCT

y

‡ ®¡2DT
eu

~CCe
~QQedSTG¡1DT

yd

‡ ®¡2DT
eu

~DDedG¡1S ~QQedCT
y

‡ ®¡3DT
eu

~DDedG¡1S ~QQedSTG¡1DT
yd

‡ h®¡2BT
u

~PPed
~BBdG¡1S ~QQedSTG¡1DT

yd

¶
L¡T

K QT
Rij

…93†

where

G 7 ~RR ‡ ®¡1 ~BBT
d

~PPed
~BBd ; S 7 ~BBT

d
~PPed …I ‡ h ~AA† ‡ ~SST

…94†

For s-domain, q-domain and ¯-domain H2-optimal
control, the Lagrangians and necessary conditions can
be obtained from the corresponding equations for the
H2=H1 optimal control problem, with the substitutions
~BBd ˆ 0, ~DDed ˆ 0, ~CCe ˆ 0, ~PPed ˆ 0, ~QQed ˆ 0, » ˆ 1 into
the partial derivatives @L=@ ~PPzw, @L=@ ~QQzw and @L=@Ki.
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