
Dynamic output feedback compensation for linear systems with
independent amplitude and rate saturations

FENG TYAN² and DENNIS S. BERNSTEIN³

The positive real lemma provides the basis for constructing linear output feedback
dynamic compensators for multi-input plants with independent amplitude satura-
tions. Fixed-structure techniques are used to obtain full- and reduced-order feed-
back compensators along with a guaranteed domain of attraction. These results are
then applied to the problem of rate saturation. By using a feedback-type model,
rate saturation is modelled as an amplitude saturation. The closed-loop system with
amplitude and rate saturation is then treated as a system with independent
àmplitude’ saturations.

Nomenclature

Ir r ´ r identity matrix
Sn,Nn,Pn n ´ n symmetric, non-negative-de® nite, positive-de® nite mat-

rices
¸max(F),¸min(F) maximum and minimum eigenvalues of matrix F having real

eigenvalues
i xi euclidian norm of x, i.e. i xi = (xTx)1/2

Re real part
( )́* complex conjugate transpose

diag (d1, . . . ,dr) diagonal matrix with listed diagonal elements

1. Introduction

The need for controlling dynamic systems subject to input saturation is a
widespread problem of immense practical importance in control engineering. Most
of the literature on this subject addresses constraints on the amplitude of the control
input (Campo and Morari 1990, Frankena and Sivan 1979, Fuller 1969, Gutman and
Hagander 1985, Horowitz 1983, Klai et al. 1993, Kosut 1983, LeMay 1964, Lin and
Saberi 1993, Lin et al. 1995, Lindner et al. 1991, Ryan 1982, Shrivastava and Stengel
1989, Sontag 1984, Teel 1995, Wredenhagen and Belanger 1994). These papers
employ a wide variety of techniques. For example, the circle criterion was used in
Kosut (1983); a Riccati equation approach was adopted in Lin and Saberi (1993); an
anti-windup technique was applied in Campo and Morari (1990); and an LQR-type
controller was constructed in Wredenhagen (1994). However, none of these papers
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provides a direct connection between the performance index and the domain of
attraction. Finally, several studies consider rate constraints on the control input (see
for example Feng et al. 1992, Hanson and Stengel 1984, Horowitz 1984, Kapasouris
and Athans 1990, and Zhang and Evans 1988.

In the present paper we begin by considering systems having independent input
amplitude saturations. Positive-real-type absolute stability analysis is applied to
provide a guaranteed domain of attraction, while optimization techniques are used
to synthesize feedback controllers that provide acceptable performance. Our
approach is based upon LQG-type ® xed-structure techniques which characterize
both full- and reduced-order linear controllers. A similar technique was applied to
the control saturation problem in Tyan and Bernstein (1995a, 1995b) for a radial-
type amplitude saturation, where the direction of control input is preserved by the
saturation nonlinearity. A key aspect of the approach of the present paper, as well as
of Tyan and Bernstein (1995a, 1995b), is the guaranteed subset of the domain of
attraction of the closed-loop system. In Lin and Saberi (1993) and Teel (1995), local
or global stability is based upon a priori assumptions that the initial conditions and
states of the system lie in a prede® ned compact set and, in turn, the control input lies
in a bounded region. However, our approach does not require such assumptions. In
fact, our main result, Theorem 2.1, assumes instead that the initial condition lies in a
prescribed region which is a subset of the domain of attraction. The resulting control
signal is thus free to saturate during closed-loop operation without loss of stability.
The speci® ed subset of the domain of attraction thus provides a guaranteed region of
attraction, which is not provided by qualitative local results.

To model rate saturation, we adopt a position-feedback-type system with a
saturation nonlinearity inside the loop as in Feng et al. (1992), Kapasouris and
Athans (1990) and Zhang and Evans (1988). In these studies, only unity gain is used
before the saturation nonlinearity, and thus the rate saturation model may be
inaccurate when the control input has high frequency components. To remedy
this, the unity gain is now replaced by a larger gain, which is shown to yield
improved results.

With this rate saturation model, the closed-loop system with amplitude and rate
saturation can be treated as a system with àmplitude’ saturations only. We then
generalize the independent amplitude saturation methodology to characterize
optimal linear dynamic compensators. This generalization is required by the
feedback loop of the rate saturation model, which yields a closed-loop system
involving a feedthrough term, which does not appear in the amplitude saturation
problem.

The contents of the paper are as follows. In § 2 we present the ® rst main result
(Theorem 2.1) which guarantees stability with a speci® ed domain of attraction for a
system with independent amplitude saturations. In § 3 ® xed-order optimization is
applied to Theorem 2.1 to construct full- and reduced-order dynamic compensators
along with optimal performance and a guaranteed domain of attraction. In § 4 we
adopt a rate saturation model and give a corresponding closed-loop system
realization of a system with independent amplitude and rate saturation. This section
also contains the second main theorem (Theorem 4.1), which is based upon the
amplitude and rate saturation model used in the previous section. In § 5 the ® xed-
structure optimization technique, based on Theorem 4.1, is again used to derive full-
and reduced-order dynamic compensators. Finally, Propositions 3.1 and 5.1 are
applied in § 6 to an example given in Rodriguez and Cloutier (1994).
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2. Analysis of systems with independent amplitude saturation nonlinearities

In this section we consider the closed-loop system

Ç~x(t) =
~A~x(t) + ~B(s(u(t)) - u(t)), ~x(0) = ~x0 (2.1)

u(t) =
~C~x(t) (2.2)

where ~x ÎR
~n, u ÎRm, ~A, ~B, ~C are real matrices of compatible dimension, and

s : Rm ® Rm is a multivariable saturation nonlinearity. We assume that s( )́ is an
independent symmetric saturation function, that is, s(u)7 [s1(u1) ´´´sm(um)]T,
where, for each saturation level ui >0,

si(ui)7 satui (ui), i = 1, . . . ,m (2.3)
where

satui (ui) = ui,
= sgn (ui)ui,

|ui| £ ui

|ui| >ui

For m ³ 2 the saturation function s( )́ may change the direction of control input,
that is, s(u(t)) is not necessarily in the same direction as u is (see Fig. 1).
Equivalently, s(u) can be written as

s(u) = b (u)u (2.4)

where b (u)7 diag ( b 1(u1), . . . , b m(um)), and the function b i : R ® (0,1], i = 1, . . . ,m,
is de® ned by

b i(ui) = 1, |ui| £ ui

=
ui

|ui| , |ui| > ui

üï
ýïþ

(2.5)

The closed-loop system (2.1), (2.2) can be represented by the block diagramshown in
Fig. 2.

The following result provides the foundation for our synthesis approach. For
convenience, we de® ne

R07 diag (R01, . . . ,R0m), b 07 diag ( b 01, . . . , b 0m)

Theorem 2.1: L et ~R1 ÎN
~n, R2 ÎPm, b 0i Î[0,1], i = 1, . . . ,m, and assume that

( ~A, ~C) is observable. Furthermore, suppose there exists ~P ÎP
~n satisfying
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0 =
~AT ~P +

~P ~A +
~R1 +

~CTR2
~C + 1

2 [ ~BT ~P - R0(I - b 0) ~C]TR- 1
0 [ ~BT ~P - R0(I - b 0) ~C]

(2.6)
Then the closed-loop system (2.1), (2.2) is asymptotically stable with L yapunov
function V (~x) = ~xT ~P~x, and the set

~$ 7 {~x0 ÎR
~n : V (~x0) < V 0} (2.7)

is a subset of the domain of attraction of the closed-loop system, where

V07 min {u2
i /( b 2

l
~Ci

~P- 1 ~CT
i ) : i = 1, . . . ,m} (2.8)

~Ci is the ith row of ~C, i = 1, . . . ,m, and

b l7 max {0,1
2 [1 + b 0max - ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê(1 - b 0max)2 + 2¸min(R2R- 1

0 )Ï ]}
b 0max7 max {b 0i : i = 1, . . . ,m}

Proof: The procedure of the proof is similar to that providing absolute stability, see
for example, Haddad and Bernstein (1991). For details, see the Appendix. u

Remark 2.1: As in Tyan and Bernstein (1995a) Theorem 2.1 can be viewed as an
application of the positive real lemma of Anderson (1967) to a deadzone non-
linearity. To see this, de® ne
~L T7 [- ( ~BT ~P - R0(I - b 0))T ~C(2R0)- 1/2 ( ~R1 +

~CTR2
~C)1/2]V , ~W T7 [(2R0)1/2 0]V

where V TV = I. It is easy to check that the equations

0 =
~AT ~P +

~P ~A +
~L T ~L

0 =
~P ~B - ~CT(I - b 0)R0 +

~L T ~W

0 = 2R0 - ~W T ~W

are satis® ed and are equivalent to the Riccati equation (2.6). It thus follows that ~G(s)
is positive real, where

~G(s) ~ [
~A

R0(I - b 0) ~C
ï
ï
ïï

~B
R0 ] u

Remark 2.2: The small gain theorem can be viewed as a special case of the
application of Theorem 2.1. This can be veri® ed by using a simple loop shifting
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Figure 2. Closed-loop system with a deadzone nonlinearity in negative feedback.



technique. First, note that the closed-loop (2.1), (2.2) can be written as

Ç~x(t) = ( ~A - 1
2

~B ~C)~x(t) +
~B(s(u(t)) - 1

2 u(t)), ~x(0) = ~x0 (2.9)
u(t) =

~C~x(t) (2.10)
and it is easy to check that the nonlinearity s(u(t)) - 1

2 u(t) is bounded by the sector
[- 1

2 I, 1
2 I]. Next, by choosing b 0 = 0, R0 = 2I, ~R1 = 0, R2 = 0, equation (2.6) can be

reduced to the Riccati equation

0 = ( ~A - 1
2

~B ~C)T ~P +
~P( ~A - 1

2
~B ~C) +

~CT ~C + 1
4

~P ~B ~BT ~P (2.11)
which implies that

iiii [
~A - 1

2
~B ~C

~C
ï
ïï
ï

~B
0 ] iiii ¥

£ 2 (2.12)

u

3. Linear controller synthesis for systems with independent amplitude saturation

In this section, we consider linear controller synthesis based upon Theorem 2.1.
Consider the plant G(s) with the realization

Çx(t) = Ax(t) + Bs(u(t)), x(0) = x0 (3.1)
y(t) = Cx(t) (3.2)

where x ÎRn, u ÎRm, y ÎRl, (A,B) is controllable, (A,C) is observable, and let the
dynamic compensator Gc(s) have the form

Çxc(t) = Acxc(t) + Bc y(t), xc(0) = xc0 (3.3)
u(t) = Ccxc(t) (3.4)

where xc ÎRnc and nc £ n. Then the closed-loop system can be written in the form of
(2.1), (2.2) with

~x7 [ x
xc ] , ~x07 [ x0

xc0 ] , ~A7 [ A
BcC

BCc

Ac ] , ~B7 [ B
0 ] , ~C7 [0 Cc]

Our goal is to determine gains Ac,Bc,Cc that minimize the LQG-type cost

J(Ac,Bc,Cc) = tr ~P ~V (3.5)
where

~V = [ V 1

0
0

BcV 2BT
c ]

~P satis® es (2.6), and V 1 ÎNn and V 2 ÎPl are analogous to the plant disturbance and
measurement noise intensity matrices of LQG theory, respectively. Furthermore, let

~R1 = [ R1

0
0
0]

where R1 ÎNn.
We ® rst consider the full-order controller case, that is, nc = n. The following

results are obtained by minimizing J(Ac,Bc,Cc) with respect to Ac,Bc,Cc. These
necessary conditions then provide su� cient conditions for closed-loop stability by
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applying Theorem 2.1. For convenience de® ne

§ 7 1
4 B(I + b 0)[R2 + 1

2 (I - b 0)R0(I - b 0)]- 1(I + b 0)BT, § 07 1
2 BR- 1

0 BT,
§ 7 CTV - 1

2 C

Proposition 3.1: L et nc = n, suppose there exist n ´ n non-negative-de® nite matrices
P,Q, P̂ satisfying

0 = ATP + PA + R1 - P(§ - § 0)P (3.6)
0 = (A - Q§ + § 0P)TP̂+ P̂(A - Q§ + § 0P) + P̂§ 0P̂ + P§ P (3.7)
0 = [A + § 0(P + P̂)]Q + Q[A + § 0(P + P̂)]T + V 1 - Q§ Q (3.8)

and let Ac,Bc,Cc be given by

Ac = A + 1
2 B(I + b 0)Cc - BcC + § 0P (3.9)

Bc = QCTV - 1
2 (3.10)

Cc = - 1
2 [R2 + 1

2 (I - b 0)R0(I - b 0)]- 1(I + b 0)BTP (3.11)

Furthermore, suppose that ( ~A, ~C) is observable. Then

~P = [ P + P̂
- P̂

- P̂
P̂ ]

satis® es (2.6), and (Ac,Bc,Cc) is an extremal of J(Ac,Bc,Cc). Furthermore, the closed-
loop system (2.1), (2.2) is asymptotically stable, and ~$ de® ned by (2.7) is a subset of the
domain of attraction of the closed-loop system.

Proof: The proof is a special case of the proof of Proposition 3.2 below with nc = n
and ¡ = GT = ¿ = I. u

Next we consider the reduced-order case nc £ n. The following lemma is
required.

Lemma 3.1 (Bernstein and Haddad 1989): L et P̂,Q̂ be n ´ n non-negative-de® nite
matrices and suppose that rank Q̂P̂ = nc. Then there exist nc ´ n matrices G,¡ and an
nc ´ nc invertible matrix M, unique except for a change of basis in Rnc, such that

Q̂P̂ = GTM¡ , ¡ GT = Inc
(3.12)

Furthermore, the n ´ n matrices

¿7 GT¡ , ¿̂ 7 In - ¿ (3.13)

are idempotent and have rank nc and n - nc, respectively. If, in addition, rank Q̂ =
rank P̂ = nc, then

¿Q̂ = Q̂, P̂¿ = P̂ (3.14)
Proposition 3.2: L et nc £ n, suppose there exist n ´ n non-negative-de® nite matrices
P,Q, P̂,Q̂ satisfying
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0 = ATP + PA + R1 - P(§ - § 0)P + ¿T
^P§ P¿̂ (3.15)

0 = (A - Q§ + § 0P)TP̂ + P̂(A - Q§ + § 0P) + P̂§ 0P̂ + P§ P - ¿T
^P§ P¿̂ (3.16)

0 = [A + § 0(P + P̂)]Q + Q[A + § 0(P+ P̂)]T + V 1 - Q§ Q + ¿̂ Q§ Q¿T
^ (3.17)

0 = [A - (§ - § 0)P]Q̂ + Q̂[A - (§ - § 0)P]T + Q§ Q - ¿̂ Q§ Q¿T
^ (3.18)

rank Q̂ = rank P̂ = rank Q̂P̂ = nc (3.19)
and let Ac,Bc,Cc be given by

Ac = ¡ AGT + 1
2 ¡ B(I + b 0)Cc - BcCGT + ¡ § 0PGT (3.20)

Bc = ¡ QCTV - 1
2 (3.21)

Cc = - 1
2 [R2 + 1

2 (I - b 0)R0(I - b 0)]- 1(I + b 0)BTPGT (3.22)
Furthermore, suppose that ( ~A, ~C) is observable. Then

~P = [ P + P̂
- GP̂

- P̂GT

GP̂GT ]
satis® es (2.6), and (Ac,Bc,Cc) is an extremal of J(Ac,Bc,Cc). Furthermore, the closed-
loop system (2.1), (2.2) is asymptotically stable, and ~$ de® ned by (2.7) is a subset of the
domain of attraction of the closed-loop system.

Proof: The result is obtained by applying the Lagrangemultiplier technique to (3.5)
subject to (2.6) and by partitioning ~P and ~Q as

~P = [ P1

PT
12

P12

P2 ] , ~Q = [ Q1

QT
12

Q12

Q2 ]
Here, we show only the key steps. First, de® ne the lagrangian

, = tr ~P ~V + tr ~Q[( ~A - 1
2

~B(I - b 0) ~C)T ~P + ~P( ~A - 1
2

~B(I - b 0) ~C) + ~R1

+
~CT(R2 + 1

2 (I - b 0)R0(I - b 0)) ~C + 1
2

~P ~BR- 1
0

~BT ~P]
Taking derivatives with respect to Ac,Bc,Cc and ~P, and setting them to zero yields

0 =
¶,
¶Ac

= 2(PT
12Q12 + P2Q2) (3.23)

0 = ¶,
¶Bc

= 2P2BcV 2 + 2(PT
12Q1 + P2Q

T
12)CT (3.24)

0 = ¶,
¶Cc

= 2[R2 + 1
2 (I - b 0)R0(I - b 0)]CcQ2 + (I + b 0)BT(P1Q12 + P12Q2) (3.25)

0 = ¶,

¶~P
= [ ~A - 1

2
~B(I - b 0) ~C + 1

2
~BR- 1

0
~BT ~P] ~Q

+
~Q[ ~A - 1

2
~B(I - b 0) ~C + 1

2
~BR- 1

0
~BT ~P]T +

~V (3.26)
Next, de® ne P,Q,P̂,Q̂,¡ ,G,M by

P7 P1 - P̂, P̂7 P12P- 1
2 PT

12, Q7 Q1 - Q̂, Q̂7 Q12Q- 1
2 QT

12

GT7 Q12Q- 1
2 , M7 Q2P2, ¡ 7 - P- 1

2 PT
12
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Algebraic manipulation of equations (3.24) and (3.25) yields Bc and Cc given by
(3.21) and (3.22). The expression (3.20) for Ac is obtained by combining the (1,2)
and (2,2) blocks of equation (2.6) or (3.26) using (3.23). Equations (3.15) and (3.16)
are obtained by combining the (1,1) and (1,2) blocks of equation (2.6). Similarly,
(3.17) and (3.18) are obtained by combining the (1,1) and (1,2) blocks of (3.26). See
Bernstein and Haddad (1989) for details. u

Remark 3.1: Suppose xc0 = 0 and consider initial conditions of the form
~x0 = [xT

0 0]T. Then, since P1 = P + P̂, the set $ ´ {0}, where $ is de® ned by

$ 7 {x0 ÎRn : xT
0 (P + P̂)x0 <V 0} (3.27)

is a subset of ~$ with V 0 given by (2.8), and thus $ ´ {0} is a subset of the domain of
attraction. u

4. Analysis of systems with amplitude and rate saturation nonlinearities

Consider the nth-order plant G(s) shown in Fig. 3 subjected to both amplitude
saturation ss( )́ and rate saturation srs( )́ given by

Çx(t) = Ax(t) + Bsrs(ss(u(t))) (4.1)
y(t) = Cx(t) (4.2)

with the controller (3.3), (3.4). For convenience, we use the shorthand notation urs(t)
to denote srs(ss(u(t))). The amplitude saturation shown in Fig. 3 is de® ned as in § 2,
so that ss(u)7 [ss1(u1) ´´´ssm(um)]T, where

ssi(ui)7 satui
(ui), i = 1, . . . ,m (4.3)

and u1, . . . ,um are the independent amplitude saturation levels. The rate saturation
function srs( )́ in (4.1) is given in more detail in Fig. 4, where us ÎRm, v ÎRm,
urs ÎRm, K = diag (K1, . . . ,Km), Ki > 0, i = 1, . . . ,m, sr(v)7 [sr1(v1) ´´´srm(vm)]T,
and

sri(vi)7 satvi (vi), i = 1, . . . ,m (4.4)
where vi > 0 is the rate saturation level, i = 1, . . . ,m. The rate saturation model
shown in Fig. 4 is a closed-loop position-feedback-type model with dynamics

Çursi(t) = satv i
(Ki[usi(t) - ursi(t)]), ursi(0) = urs0i, i = 1, . . . ,m (4.5)

where Çursi(t) = sri(vi(t)), usi(t)7 ssi(ui(t)), and satv i enforces the rate saturation.
The rate saturation model (4.5) has two interpretations. First, it can be

interpreted as a limitation on the speed of a servomechanism which is determined
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Figure 3. Closed-loop system with control amplitude and rate saturation nonlinearities.



by the choice of K. In this case, the matrix K depends on the servo used so that K is a
design parameter.

Alternatively, this model can be viewed as a continuous-time version of the
discrete-time rate saturation model used by Kapasouris and Athans (1990) which is
also closely related to the rate limiter model in Simulink (Mathworks 1993). By
choosing K @ I, the rate saturation model (4.5) coincides with the rate limiter model
of Simulink. However, there is a discrepancy between these models when K = I as in
Kapasouris and Athans (1990). The simulations given in Figs 5 and 6, show that as
the gain K increases, the output from the rate saturation model (4.5) converges to the
output of the rate limiter model of Simulink.

The saturation function inside the rate saturation loop can be extracted from the
overall closed-loop systemand written as shown in Fig. 7. This con® guration has the
closed-loop system realization

Ç~x(t) =
~A~x(t) +

~B[s(~u(t)) - ~u(t)], ~x(0) = ~x0 (4.6)
~u(t) =

~C~x(t) +
~D[s(~u(t)) - ~u(t)] (4.7)
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Figure 5. Comparison of the output of the rate limiter model of SIMULINK and the rate
saturation model of Fig. 4 (srs(u(0)) = 0, vmax = 2, K = 1).



where

~u7 [ u
v ] , ~x7

x
urs

xc

é
êë

ùúû
, ~x07

x0

urs0

xc0

é
ë

ù
û

s(~u)7 [ ss(u)
sr(v) ] , ss(u)7

ss1(u1)
..
.

ssm(um)
é
êë

ùúû
, sr(v)7

sr1(v1)
..
.

srm(vm)
é
êë

ùúû

98 F. Tyan and D. S. Bernstein

Figure 6. Comparison of the output of the rate limiter model of SIMULINK and the rate
saturation model of Fig. 4 (srs(u(0)) = 0, vmax = 2, K = 10).

Figure 7. Closed-loop system with extracted amplitude and rate saturation nonlinearities.



and

~A7

A B 0
0 - K KCc

BcC 0 Ac

é
êë

ùúû
, ~B7

0 0
K I
0 0

é
ë

ù
û , ~C7 [ 0

0
0

- K
Cc

KCc ] , ~D7 [ 0
K

0
0 ]

With the rate saturation model given in Fig. 4, we have thus rewritten the system
involving both amplitude and rate saturation nonlinearities as a system with
amplitude saturation only. However, this transformation gives rise to a feedthrough
term ~D, which did not appear in § 3. Because of this term, the stability analysis of the
closed-loop system becomes more complicated than the case of pure amplitude
saturation nonlinearity. We thus require the following result which is an extension of
Theorem 4.1. For notational convenience, de® ne

R27 [ R2u

0
0

R2v ] , R07 [ R0u

0
0

R0v ] , b 07 [ b 0u

0
0

b 0v ]
~R07 R0 + 1

2 [ ~DT(I - b 0)R0 + R0(I - b 0) ~D]
where

R2u = diag (R2u1, . . . ,R2um),
R0u = diag (R0u1, . . . ,R0um),
b 0u = diag ( b 0u1, . . . , b 0um),

R2v = diag (R2v1, . . . ,R2vm)
R0v = diag (R0v1, . . . ,R0vm)
b 0v = diag ( b 0v1, . . . , b 0vm)

Theorem 4.1: L et ~R1 ÎN
~n+m, K = diag (K1, . . . ,Km), and Ki > 0, R2ui > 0,

R2vi > 0, R0ui > 0, R0vi >0, b 0ui Î[0,1], b 0vi Î[0,min {1, vi /(2Kiui)], i = 1, . . . ,m.
In addition, assume that ~R0 is positive de® nite and ( ~A, ~C) is observable. Furthermore,
suppose there exists ~P ÎP~n satisfying

0 =
~AT ~P + ~P ~A + ~R1 +

~CTR2
~C + 1

2 [ ~BT ~P - R0(I - b 0) ~C]T ~R- 1
0 [ ~BT ~P - R0(I - b 0) ~C]

(4.8)

Then the closed-loop system (4.6), (4.7) is asymptotically stable with L yapunov
function V (~x) = ~xT ~P~x, and the set

~$ 7 {~x0 ÎR
~n+m : V (~x0) < V 0, |urs0i| £ ui, i = 1, . . . ,m} (4.9)

is a subset of the domain of attraction of the closed-loop system, where

V07 min {u2
i /( b 2

li
~Ci

~P- 1 ~CT
i ) : i = 1, . . . ,m}

~Ci is the ith row of ~C, i = 1, . . . ,m, and

b li 7 max {0,1
2 [1 + b 0ui - {(1 - b 0ui)2 + 2R2uiR- 1

0ui}1/2]}, i = 1, . . . ,m
Proof: For the proof see the Appendix. u

Theorem 4.1 requires that ~R0 be positive de® nite which places a constraint on the
relationship between K, b 0 and R0. In particular

~R0 = [ R0u
1
2 R0v(I - b 0v)K

1
2 K(I - b 0v)R0v

R0v ] > 0

implies that R0u - 1
4 K(I - b 0v)R0v(I - b 0v)K > 0. However, note that equation (4.7)

Dynamic output feedback compensation for linear systems 99



can be written in detail as

u(t) = Ccxc(t)
v(t) = - Kurs(t) + K(ss(u(t)) - u(t))

which indicates that the size of K is not constrained by equation (4.7).

5. Linear controller synthesis of systems with independent amplitude and
rate saturation

In this section, we consider the closed-loop system (4.6), (4.7), and apply the same
technique as in § 3 to obtain linear dynamic compensators. Again our goal is to
determine gains Ac,Bc,Cc that minimize the LQG-type cost

J(Ac,Bc,Cc) = tr ~P ~V
where

~V = [ V 1

0
0

BcV 2BT
c ]

~P satis® es (4.8), and V 1 ÎNn+m and V 2 ÎPl are analogous to the plant disturbance
and measurement noise intensity matrices of LQG theory, respectively. Further-
more, let

~R1 = [ R1

0
0
0]

where R1 ÎNn+m. For notational convenience, we de® ne

Aa7 [ A
0

B
- K] , Ba17 [ 0

K] , Ba27 [ 0
I ] , Ba7 [Ba1 Ba2], Ca7 [C 0]

C17 [ 0
0

0
- K] , C27 [ I

K] , ~D7 [ 0
K

0
0 ]

R207 1
2 (I - b 0)R0

~R- 1
0 R0(I - b 0), R2a7 CT

2 (R2 + R20)C2

§ 07 1
2 Ba

~R- 1
0 BT

a , § 7 CT
a V - 1

2 Ca, § 7 BPR- 1
2a BT

P
and

AP7 Aa - 1
2 Ba

~R- 1
0 (I - b 0)C1, BP7 Ba1 - 1

2 Ba
~R- 1

0 (I - b 0)C2

CP7 CT
2 (R2 + R20)C1, AQ̂7 AP + § 0P - BPR- 1

2a (BT
PP + CP)

We ® rst consider the full-order case.

Proposition 5.1: L et nc = n, suppose there exist n ´ n non-negative-de® nite matrices
P,Q, P̂ satisfying

0 = AT
PP + PAP + R1 + CT

1 (R2 + R20)C1 + P§ 0P

- (BT
PP + CP)TR- 1

2a (BT
PP + CP) (5.1)

0 = (AP - Q§ + § 0P)TP̂ + P̂(AP - Q§ + § 0P) + P̂§ 0P̂

+ (BT
PP + CP)TR- 1

2a (BT
PP + CP) (5.2)

0 = [AP + § 0(P + P̂)]Q + Q[AP + § 0(P + P̂)]T + V 1 - Q§ Q (5.3)
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and let Ac,Bc,Cc be given by

Ac = AP + § 0P + BPCc - BcCa (5.4)
Bc = QCT

a V - 1
2 (5.5)

Cc = - R- 1
2a (BT

PP + CP) (5.6)

Furthermore, suppose that ( ~A, ~C) is observable. Then

~P = [ P + P̂
- P̂

- P̂
P̂ ]

satis® es (2.6), and (Ac,Bc,Cc) is an extremal of J(Ac,Bc,Cc). Furthermore, the closed-
loop system (2.1), (2.2) is asymptotically stable, and ~

$ de® ned by (4.9) is a subset of the
domain of attraction of the closed-loop system.

Proof: The proof is similar to the proof of Proposition 5.2 below with nc = n and
¡ = GT = ¿ = I. u

Next we consider the reduced-order case nc £ n.

Proposition 5.2: L et nc £ n, suppose there exist n ´ n non-negative-de® nite matrices
P,Q,P̂, Q̂ satisfying

0 = AT
PP + PAP + R1 + CT

1 (R2 + R20)C1 + P§ 0P - (BT
PP + CP)TR- 1

2a (BT
PP + CP)

+ ¿T
^(BT

PP + CP)TR- 1
2a (BT

PP + CP)¿̂ (5.7)
0 = (AP - Q§ + § 0P)TP̂ + P̂(AP - Q§ + § 0P) + P̂§ 0P̂

+ (BT
PP + CP)TR- 1

2a (BT
PP + CP) - ¿T(̂BT

PP + CP)TR- 1
2a (BT

PP + CP)¿̂ (5.8)
0 = [AP + § 0(P + P̂)]Q + Q[AP + § 0(P + P̂)]T + V 1 - Q§ Q + ¿̂ Q§ Q¿T

^ (5.9)
0 = AQ̂Q̂ + Q̂AT

Q̂ + Q§ Q - ¿̂ Q§ Q¿T
^ (5.10)

and let Ac,Bc,Cc be given by

Ac = ¡ (AP + § 0P)GT + ¡ BPCc - BcCaGT (5.11)
Bc = ¡ QCT

a V - 1
2 (5.12)

Cc = - R- 1
2a (BT

PP + CP)GT (5.13)

Furthermore, suppose that ( ~A, ~C) is observable. Then

~P = [ P + P̂
- GP̂

- P̂GT

GP̂GT ]
satis® es (2.6), and (Ac,Bc,Cc) is an extremal of J(Ac,Bc,Cc). Furthermore, the closed-
loop system (2.1), (2.2) is asymptotically stable, and ~

$ de® ned by (4.9) is a subset of the
domain of attraction of the closed-loop system.

Proof: The proof is analogous to the proof of Proposition 3.2. u
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6. Numerical examples

In this section, we consider the example given by Rodriguez and Cloutier (1994)
to demonstrate the ability of the full-order compensators given by Propositions 3.1
and 5.1 to address amplitude and rate saturation. To solve the synthesis equations
(3.6) ± (3.8) and (5.1) ± (5.3), we utilize the iterative method given in Tyan and
Bernstein (1995a) initialized with LQG gains. Starting with the solution P of (3.6)
or (5.1), we then solve (3.7) ± (3.8) or (5.2) ± (5.3) iteratively until convergence is
achieved. Although guarantees of convergence are not available, this algorithm has
been shown to work e� ectively in practice.

Example 6.1: To demonstrate dynamical controllers given by Proposition 3.1
dealing with independent input saturation nonlinearities, we consider the asympto-
tically stable open-loop system Gp(s) with realization

Çxp(t) = Apxp(t) + Bps(u(t)), xp(0) = xp0 (6.1)
y(t) = Cpxp(t) (6.2)

where

xp7

side slip (deg)
yaw rate (deg s- 1)
roll rate (deg s- 1)

é
êë

ùúû
, u7 [ rudder (deg)

aileron (deg) ] , y7 [ side slip (deg)
yaw rate (deg s- 1) ]

Ap =
- 0´818 - 0´999 0´349
80´29 - 0´579 0´009
- 2734 0´5621 - 2´10

é
êë

ùúû
, Bp =

0´147 0´012
- 194´4 37´61
- 2176 - 1093

é
ë

ù
û , Cp = [ 1 0 0

0 1 0 ]
and the saturation nonlinearity s(u(t)) = [s1(u1(t)) s2(u2(t))]T given by

si(ui(t)) = sat8(ui(t)), i = 1,2
To track step input commands, we consider the closed-loop-system con® guration

shown in Fig. 8. For design purposes, we interchange (1/s)I2 and the saturation
nonlinearity so that we have the pseudo-equivalent con® guration given in Fig. 9.
Next we consider the realization of the augmented plant Gp(s) /s with the step input
command r given by

[ Çxp(t)
Çe(t) ] = [ Ap

- Cp

0
0 ] [ xp(t)

e(t) ] + [ Bp

0 ]s(u(t)), [ xp(0)
e(0) ] = [ xp0

e0 ] (6.3)

e(t) = [0 I][ xp(t)
e(t) ] (6.4)
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Figure 8. Closed-loop system for Example 6.1.



where e(t) = r - y(t). The dynamic controller has the realization

Çxc(t) = Acxc(t) + Bce(t), xc(0) = xc0

u(t) = Ccxc(t)

Choosing R1 = diag [1 1 1 5000 50 000], R2 = I2, V1 = R1, V 2 = I2, b 0 = 0´8I2,
and R0 = 106I2 yields the linear controller (3.3), (3.4) with gains (3.9) ± (3.11) given by

Ac =

- 7 7́185e- 01 - 9´8460e - 01 3 4́989e- 01 5 9́631e - 02 3´1160e+ 00
1 7́445e+ 01 - 2´0643e + 01 - 1 0́077e+ 00 7 4́092e + 00 1´0762e+ 03

- 3 3́860e+ 03 - 1´9503e + 02 - 1 7́863e+ 01 6 7́207e + 02 5´0822e+ 03
- 1 0́000e+ 00 0 0 - 7 0́712e + 01 - 4´5657e- 02

0 - 1´0000e + 00 0 - 4 5́657e - 02 - 2´2714e+ 02

é
êêêêêêë

ùúúúúúúû

Bc =

- 7 5́317e- 02 - 3´3186e+ 00
- 1 0́280e+ 01 - 7´9633e+ 02
- 3 5́658e+ 01 - 2´2879e+ 03

7 0́712e+ 01 4´5657e- 02
4 5́657e- 02 2.2714e+ 02

é
êêêêêêë

ùúúúúúúû
Cc =[ 3 5́629e- 01

- 3 8́233e- 02
1´1194e- 01

- 2´1541e- 02
6 5́137e- 03
3 2́569e- 03

- 7´9496e- 02
- 4´9678e- 01

- 1´5710e+ 00
2´5139e- 01]

To illustrate the closed-loop behaviour, let the initial conditions of the closed-loop
system be ~xT

0 = [xT
0 xT

c0], where xT
0 = [xT

p0 eT
0 ] = [01´3 rT], xc0 = 05´1, with the step

input command r = [4´2 - 4´2]T. By applying Remark 3.1, $ is given by
$ = {x0 : xT

0 (P + P̂)x0 < 4´1615´ 103}, where

P+P̂=

1´8880e+ 03 2´9894e+ 00 - 4 1́954e - 01 - 1´5664e+ 02 - 6 9́950e+ 02
2´9894e+ 00 7´2237e+ 01 1 6́531e + 00 8´4144e+ 01 3 4́613e+ 01

- 4´1954e- 01 1´6531e+ 00 2 9́270e - 01 - 7´7307e+ 00 6 1́835e+ 00
- 1´5664e+ 02 8´4144e+ 01 - 7 7́307e + 00 2´6946e+ 04 1 1́531e+ 02
- 6´9950e+ 02 3´4613e+ 01 6 1́835e + 00 1´1531e+ 02 5 1́121e+ 03

é
êêêêêêë

ùúúúúúúû
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Note that xT
0 (P + P̂)x0 = 5´6143´ 105, so that x0 is not an element of $ . Figure 10

shows the output of the system and control e� ort using the LQG controller without
saturation. As can be seen in Fig. 11, the response of the closed-loop system
consisting of the saturation nonlinearity and the LQG controller designed for the
`unsaturated’ plant is unacceptable. Figure 12 shows the saturated input of the LQG
controller. However, the controller designed by Proposition 3.1 provides an
asymptotically stable closed-loop system (see Fig. 13). Since (1/s)I and the
saturation nonlinearity were interchanged, the side slip of y exhibits steady-state
errors. Finally, Fig. 14 shows the saturated input s(u(t)) for the controller obtained
from Proposition 3.1. As shown in the ® gure, the controller is free to saturate during
closed-loop operation without loss of stability. u

Example 6.2: To demonstrate Proposition 5.1 involving rate saturation, we
consider the con® guration shown in Fig. 15, where the asymptotically stable open-
loop system Gp(s) has the same realization (6.1), (6.2) as in Example 6.1. To track
step input commands, we let our dynamic compensator be Gc(s) /s. Again, for design
purposes, we interchange (1/s)I2 with both the amplitude and rate saturation
nonlinearities inside the feedback loop, so that we have the pseudo-equivalent
con® guration given by Fig. 16. The rate limited actuator is modelled as a position
type feedback system

Çursi(t) = satv i
(Ki[usi(t) - ursi(t)]), ursi(0) = urs0i, i = 1,2

with rate saturation level v1 = v2 = 4, and the actuator constant K1 = K2 = 10.
We ® rst consider the controller Ac,Bc,Cc obtained from Example 6.1 in the

presence of a rate-limited actuator. As can be seen in Fig. 17, this controller does not
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Figure 10. Response (side slip, yaw rate) of system (6.1), (6.2) and control e� ort u (rudder,
aileron) using the LQG controller for Example 6.1 without amplitude saturation present.
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Figure 11. Output of system (6.1), (6.2) using the LQG controller for Example 6.1 with
amplitude saturation present.

Figure 12. Saturated input s(u) of the LQG controller for Example 6.1 with amplitude
saturation present.
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Figure 13. Response of system (6.1), (6.2) using the controller given by Proposition 3.1 for
Example 6.1 with amplitude saturation present.

Figure 14. Saturated input s(u) of the controller given by Proposition 3.1 for Example 6.1
with amplitude saturation present.
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Figure 15. Closed-loop system of Example 6.2.

Figure 16. Pseudo-equivalent closed-loop system of Example 6.2.

Figure 17. Response of system shown in Fig. 15 using controller given by Proposition 3.1
for Example 6.1 with amplitude and rate saturation present.



give satisfactory transient yaw rate due to the rate saturation. We thus apply
Proposition 5.1 to account for this e� ect. As in Example 6.1 we consider the
realization of the augmented plant Gp(s) /s plus the step input command r given by

[ Çxp(t)
Çe(t) ] = [ Ap

- Cp

0
0] [ xp(t)

e(t) ] + [ Bp

0 ] srs(ss(u(t)))

e(t) = [0 I][ xp(t)
e(t) ]

and the saturation nonlinearity ss(u(t)) = [ss1(u1(t)) ss2(u2(t))]T given by

ssi(ui(t)) = sat10(ui(t)), i = 1,2
Furthermore, the dynamic controller has the realization

Çxc = Acxc + Bce

u = Ccxc

Choosing R1 = diag [1 1 1 5000 50 000 1 1], R2 = I2, V 1 = R1, V 2 = I2, b 0 =
diag [1 1 0´9 0´9], R0 = diag [1012 1012 106 106], yields the linear controller (3.3),
(3.4) with gains (5.4) ± (5.6) given by

To illustrate the closed-loop behaviour, let the initial conditions of the closed-
loop system be ~x0 = [xT

p0 e(0)T uT
rs0 xT

c0]T = [01´3 rT 01´2 01´7]T where the step
input command r = [4´2 - 4´2]T. For convenience, de® ne x0 = [xT

p0 e(0)T uT
rs0]T.

Using Remark 3.1, $ is given by $ = {x0 : xT
0 (P + P̂)x0 < 1´023´ 105}. Note that

xT
0 (P + P̂)x0 = 4´025´ 105, so that x0 is not an element of $ . Also, b 0 correspond-

ing to rate saturation is chosen to be diag (0´9,0´9) whose diagonal elements are

larger than the value b 0v i Î[ 0, 10
2 ´ 10 ´ 4 ] , i = 1,2, givenby Theorem 4.1. Figure 18

shows the response and control signals of the closed-loop system using the
LQG controller without amplitude and rate saturation present. Figures 19, 20
illustrate the output and saturated input s(u(t)) for the LQG controller with both
amplitude and rate saturation present. However, as shown in Fig. 21 the controller
designed by Proposition 5.1 provides an asymptotically stable closed-loop system.

108 F. Tyan and D. S. Bernstein

Ac =

Bc =

Cc =

- 8´1800e- 01 - 9´9900e- 01 3 4́900e- 01 3´3611e- 03 2´9873e- 02 1´4700e- 01 1 2́000e- 02
8´0290e+ 01 - 5´7900e- 01 9 0́000e- 03 9´9509e- 02 6´1532e+ 01 - 1´9440e+ 02 3 7́610e+ 01

- 2´7340e+ 03 5´6210e- 01 - 2 1́000e+ 00 1´8607e- 01 1´7597e- 02 - 2´1760e+ 03 - 1 0́930e+ 03
- 1´0000e+ 00 0 0 - 7´0711e+ 01 - 4´3919e- 04 0 0

0 - 1´0000e+ 00 0 - 4´3919e- 04 - 2´2388e+ 02 0 0
1´7962e- 01 5´7856e- 01 1 7́551e- 02 - 4´4626e- 02 - 3´2023e+ 00 - 1´7352e+ 01 4 2́455e- 01

- 1´0654e- 01 - 2´3269e- 02 - 3 1́276e- 04 - 9´4996e- 01 1´4357e- 01 4´2455e- 01 - 9 4́300e- 01

é
êêêêêêêêêêêë

ùúúúúúúúúúúúû
- 3´3611e- 03 - 2´9873e- 02

- 9´9509e- 02 - 6´1532e+ 01
- 1´8607e- 01 - 1´7597e+ 02

7´0711e+ 01 4´3919e- 04
4´3919e- 04 2´2388e+ 02
7´0980e- 04 2´0554e- 01
2´3058e- 03 - 4´6952e- 03

é
êêêêêêêêêêêë

ùúúúúúúúúúúúû
[ 1´8960e- 02
- 1´1246e- 02

6´1070e- 02
- 2´4561e- 03

1´8526e- 03
- 3´3014e- 05

- 4 6́356e- 03
- 1 0́003e- 01

- 3´1632e- 01
1´4659e- 02

- 8´3160e- 01
4´4813e- 02

4´4813e- 02
9´0046e- 01]
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Figure 18. Response (side slip, yaw rate) of system (6.1), (6.2) and control e� ort u (rudder,
aileron) using the LQG controller for Example 6.2 without amplitude and rate saturation

present.

Figure 19. Output of system (6.1), (6.2) using the LQG controller for Example 6.2 with both
amplitude and rate saturation present.
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Figure 20. Saturated input srs(u(t)) of the LQG controller for Example 6.2 with both ampli-
tude and rate saturation present.

Figure 21. Output of system (6.1), (6.2) using the controller given by Proposition 5.1 for
Example 6.2 with both amplitude and rate saturation present.



Figure 22 shows that this controller tends to reduce the rate of the control signal u(t)
so that u(t) does not reach the rate limit boundary during the entire process.

7. Conclusions

In this paper, we developed full- and reduced-order linear dynamic compensators
based upon Theorem 2.1 and Theorem 4.1, which account for independent input
saturation and rate saturation nonlinearities, respectively. Theorem 4.1 extends
Theorem 2.1 to address the more involved feedthrough term. A guaranteed domain
of attraction is provided by means of a positive-real-type Riccati equation. Although
the domain of attraction provided by this paper is conservative, we can treat the
matrix b 0 as a design parameter. By decreasing the value of the diagonal elements of
b 0, we can improve the system response for larger plant initial conditions x0.
However, the lowest possible values of b 0 are constrained by the open-loop system.
Controller gains were characterized by Riccati equations that were obtained by
minimizing an LQG-type cost. The synthesis approach was demonstrated by nu-
merical examples involving full-order dynamic compensators. From these examples,
it was seen that smaller b 0 tends to let the saturation occur later. A numerical
algorithm based upon Greeley and Hyland (1988) was adopted for solving the
coupled design equations. More sophisticated algorithms based upon homotopy
methods can also be developed, as in Ge et al. (1994); however, this approach is
beyond the scope of this paper. Future research includes improving the guaranteed
domain of attraction and the analysis of the necessary conditions of the existence of
the non-negative-de® nite solutions P,Q,P̂,Q̂ in those design equations. Finally, a re-
formulation of design equations in terms of linear matrix inequalities may help to
ensure the existence of solutions to the design equations.
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Figure 22. Saturated input srs(u(t)) of the controller given by Proposition 5.1 for Example
6.2 with both amplitude and rate saturation present.
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Appendix

Proof of Theorem 2.1: First note that by using (2.1) and (2.2), ÇV (~x(t)) can be
written as

ÇV (~x(t)) = - [~xT(t) u T(u(t))][ - ~AT ~P - ~P ~A
~BT ~P

~P ~B
0 ] [ ~x(t)

u (u(t)) ]
where u (u)7 u - s(u). Adding and subtracting 2[uT(t)(Im - b 0) - u T(u(t))]R0 u (u(t))
and using (2.6) yields

ÇV (~x(t))

= - [~xT(t) u T(u(t))]
´ [

~R1 +
~CTR2

~C + 1
2 ( ~P~B - ~CT(Im - b 0)R0)R- 1

0 ( ~BT ~P - R0(Im - b 0) ~C)
~BT ~P - R0(Im - b 0) ~C

~P~B - ~CT(Im- b 0)R0

2R0 ]
´ [ ~x(t)

u (u(t)) ] - 2uT(t)( b (u(t)) - b 0)R0(Im - b (u(t)))u(t)

= - 1
2 [( ~BT ~P - R0(Im - b 0) ~C)~x(t) + 2R0 u (u(t))]TR- 1

0 [( ~BT ~P - R0(Im - b 0) ~C)~x(t) + 2R0 u (u(t))]
- ~xT(t) ~R1

~x(t) - uT(t)[2( b (u(t)) - b 0)R0(Im - b (u(t))) + R2]u(t) (A 1)
To guarantee that ÇV (~x(t)) £ 0, we need to show that 2( b (u(t)) - b 0)´
R0(Im - b (u(t))) + R2 is positive de® nite for all t ³ 0. Since b (u(t)), b 0,R0 are
diagonal matrices, the proof is equivalent to proving that b (u(t)) ³ b lIm. To do
this, note that for all t Î[0,¥) it follows that

2( b (u(t)) - b 0)R0(Im - b (u(t))) + R2

= 2R1/2
0 [( b (u(t)) - b 0)(Im - b (u(t))) + 1

2 R- 1/2
0 R2R- 1/2

0 ]R1/2
0

= 2R1/2
0 [(- b 2(u(t)) + b (u(t)) + b (u(t)) b 0 - b 0 + 1

2 ¸min(R- 1/2
0 R2R- 1/2

0 ))Im

+ 1
2 R- 1/2

0 R2R- 1/2
0 - 1

2 ¸min(R- 1/2
0 R2R- 1/2

0 )Im]R1/2
0

If b 0max £ 1
2 ¸min(R- 1/2

0 R2R
- 1/2
0 ) = 1

2 ¸min(R2R- 1
0 ), which is equivalent to b l = 0, it is

easy to check that 2( b (u(t)) - b 0)(1 - b (u(t)))R0 + R2 > 0 for all t Î[0,¥). Thus,
ÇV (~x(t)) £ 0 for all t Î[0,¥). If ÇV (~x(t)) = 0, for all t ³ 0, it follows from (A 1) that

u(t) =
~C~x(t) = 0, which gives ~x(t) = exp ( ~At)~x0, and thus ~C~x(t) =

~C exp ( ~At)~x0 = 0.
Since ( ~A, ~C) is observable, the invariant set consists of ~x = 0. It thus follows that
V (~x(t)) ® 0 as t ® ¥ and the closed-loop system (2.1), (2.2) is asymptotically
stable.

On the other hand, suppose that b 0max > 1
2 ¸min(R2R- 1

0 ). In this case
(1 - b 0max)2 + 2¸min(R2R- 1

0 ) < (1 + b 0max)2 and thus b l = 1
2 [1 + b 0max-

{(1 - b 0max)2 + 2¸min(R2R- 1
0 )}1/2]. Furthermore, we have the identity
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2[ b (u(t)) - b 0]R0[Im - b (u(t))] + R2

= R1/2
0 {2[ b (u(t))- b lIm][12 [1+ b 0max +{(1- b 0max)2+ 2¸min(R2R- 1

0 )}1/2]Im- b (u(t))]
+ R- 1/2

0 R2R- 1/2
0 - ¸min(R- 1/2

0 R2R- 1/2
0 )Im

+ 2( b 0maxIm - b 0)(Im - b (u(t))}R1/2
0 (A 2)

Also note that for all b 0max Î[0,1] it is easy to check that

1
2 [(1 + b 0max) + {(1 - b 0max)2 + 2¸min(R2R- 1

0 )}1/2] >1

For all t Î[0,¥) our goal is to show that b (u(t)) > b lIm, so that
2( b (u(t)) - b 0)R0(Im - b (u(t))) + R2 > 0, and ÇV (~x(t)) £ 0. Let t = 0 and ~x0 Î~

$ .
If u2

i (0) > u2
i , i = 1, . . . ,m, then by (2.5) and (2.7)

1
b 2

i (ui(0))
=

u2
i (0)
u2

i
=

~xT
0

~CT
i

~Ci
~x0

u2
i

£ ~xT
0

~P~x0

~CT
i

~P- 1 ~Ci

u2
i

< 1
b 2

l

so that b i(u(0)) > b l, i = 1, . . . ,m and hence ÇV (~x(0)) £ 0. If, on the other hand,
u2

i (0) £ u2
i , i = 1, . . . ,m, then b i(u(0)) = 1. In this case we also have ÇV (~x(0)) £ 0.

Two cases, that is, ÇV (~x(0)) < 0 and ÇV (~x(0)) = 0, will be treated separately.
First consider the case ÇV (~x(0)) <0. Suppose on the contrary there exist

T1 > T > 0 such that ÇV (~x(t)) <0 for all t Î[0,T ), ÇV (~x(T )) = 0, and ÇV (~x(t)) > 0,
t Î(T ,T1]. Since ÇV (~x(t)) < 0, t Î[0,T ), there exists T2 satisfying T < T2 £ T1 and
su� ciently close to T such that ~xT(t) ~P~x(t) = V (~x(t)) < V (~x0) = ~xT

0
~P~x0, t Î(0,T2],

and thus

u2
i (t)
u2

i
£ ~xT(t) ~P~x(t)

~CT
i

~P- 1 ~Ci

u2
i

< ~xT
0

~P~x0

~CT ~P- 1 ~C
u2

i
< 1

b 2
l
, i = 1, . . . ,m

t Î[0,T2]. Hence, b i(ui(t)) > b l, i = 1, . . . ,m, t Î[0,T2]. Since, by assumption,
ÇV (~x(t)) > 0, t Î(T ,T1], it follows from (A 1) and (A 2) that b i(ui(t)) < b l,

i = 1, . . . ,m, t Î(T ,T1]. Therefore, b i(ui(T2)) < b l, i = 1, . . . ,m, which is a contra-
diction. As a result, ÇV (~x(t)) £ 0, for all t ³ 0. Again, using the assumption that
( ~A, ~C) is observable, we conclude that the closed-loop system (2.1), (2.2) is
asymptotically stable.

Next, consider the case ÇV (~x(0)) = 0. It follows from (A 1), (A 2) and
b i(u(0)) > b l, i = 1, . . . ,m, that u(0) = 0, that is, uT(0)u(0) = 0. Since, for t > 0,
also by (A 1), ÇV (~x(t)) > 0 implies that there exists i Î{1, . . . ,m} such that
b i(ui(t)) < 1, that is, uT(t)u(t) > u2

i . For t su� ciently close to 0, if this is the case,
it will violate the continuity of u(t). It follows that there exists T0 >0 su� ciently
close to 0 such that ÇV (~x(t)) £ 0 for all t Î(0,T0]. Using similar arguments as in the
case ÇV (~x(0)) <0, it can be shown that ÇV (~x(t)) /= 0 for all t Î(0,T0]. Therefore,
ÇV (~x(t)) < 0 for all t Î(0,T0]. In particular, ÇV (~x(T0)) < 0. Hence we can proceed as

in the previous case where ÇV (~x(0)) <0 with the time 0 replaced by T0. It thus
follows that ÇV (~x(t)) ® 0 as t ® ¥ and the closed-loop system (2.1), (2.2) is
asymptotically stable. u

The following lemma will be used in the next theorem.

Lemma A.1: L et i Î{1, . . . ,m}, assume that |usi(t)| £ ui for all t ³ 0, and let ursi( )́
satisfy (4.5), with |urs0i| £ ui. Then |ursi(t)| £ ui for all t ³ 0.
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Proof: De® ne V (ursi(t)) = u2
rsi(t) and note that

ÇV (ursi(t)) = 2ursi(t) Çursi(t) = 2ursi(t) satv i
(Ki[usi(t) - ursi(t)])

It follows that for all t ³ 0

ÇV (ursi(t))
= 0, ursi(t) = 0 or usi(t) = ursi(t)
> 0, 0 <ursi(t) < usi(t) or usi(t) < ursi(t) < 0
< 0, otherwise

ìï
íïî

Hence, if V (urs0i) £ u2
i and |usi(t)| £ ui for all t ³ 0, it is easy to check that

V (ursi(t)) £ u2
i or |ursi(t)| £ ui for all t ³ 0. u

Proof of Theorem 4.1: First note that by using (4.6) and (4.7), ÇV (~x(t)) can be
written as

ÇV (~x(t)) = - [~xT(t) u T(~u(t))][ - ~AT ~P - ~P ~A
~BT ~P

~P ~B
0 ] [ ~x(t)

u (~u(t)) ]
where u (~u)7 ~u - s(~u). Recalling that ~u(t) =

~C~x(t) - ~Du (~u(t)), we have

2[~uT(t)(I - b 0) - u T(~u(t))]R0 u (~u(t))

= ~xT(t) ~CT(I - b 0)R0 u (~u(t)) + u T(u(t))R0(I - b 0) ~C~x(t)
- u T(~u(t))[2R0 +

~DT(I - b 0)R0 + R0(I - b 0) ~D] u (~u(t))
and

~xT(t) ~CTR2
~C~x(t) = (~u(t) +

~Du (~u(t)))TR2(~u(t) +
~Du (~u(t)))

= ~u(t)T[I +
~D(I - b (~u(t)))]TR2[I +

~D(I - b (~u(t)))]~u(t)
Adding and subtracting 2[~uT(t)(I - b 0) - u T(~u(t))]R0 u (~u(t)) and using (4.8) yields

ÇV (~x(t))

= - [~xT(t) u T(~u(t))][ - ( ~AT ~P +
~P ~A)

~BT ~P - R0(I - b 0) ~C

~P ~B - ~CT(I - b 0)R0

2R0 + ~DT(I - b 0)R0 + R0(I - b 0) ~D ] [ ~x(t)
u (~u(t)) ]

- 2~uT(t)( b (~u(t)) - b 0)R0(I - b (~u(t)))~u(t)
= - 1

2 [( ~BT ~P - R0(I - b 0) ~C)~x(t) + 2 ~R0 u (~u(t))]T ~R- 1
0 [( ~BT ~P - R0(I - b 0) ~C)~x(t) + 2 ~R0 u (~u(t))]

- ~xT(t) ~R1
~x(t) - ~xT(t) ~CTR2

~C~x(t) - 2~uT(t)( b (~u(t)) - b 0)R0(I - b (~u(t)))~u(t)
= - 1

2 [( ~BT ~P - R0(I - b 0) ~C)~x(t) + 2 ~R0 u (~u(t))]T ~R- 1
0 [( ~BT ~P - R0(I - b 0) ~C)~x(t) + 2 ~R0 u (~u(t))]

- ~uT(t){2( b (~u(t)) - b 0)R0(I - b (~u(t))) + [I + ~D(I - b (~u(t)))]TR2[I + ~D(I - b (~u(t)))]}~u(t)
- ~xT(t) ~R1

~x(t) (A 3)
where ~R07 R0 + 1

2 [ ~DT(I - b 0)R0 + R0(I - b 0) ~D]. To guarantee that ÇV (~x(t)) £ 0,
we need to show that 2( b (~u(t)) - b 0)R0(I - b (~u(t))) + [I +

~D(I - b (~u(t)))]T´
R2[I +

~D(I - b (~u(t)))] is positive de® nite for all t ³ 0. For convenience, b (~u(t)) is
decomposed as

b (~u(t)) = [ b u(u(t))
0

0
b v(v(t)) ]
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then it follows that

2( b (~u(t)) - b 0)R0(I - b (~u(t))) + [I +
~D(I - b (~u(t)))]TR2[I +

~D(I - b (~u(t)))]
= [ 2( b u(u(t)) - b 0u)R0u(I - b u(u(t))) + R2u

0
0

2( b v(v(t)) - b 0v)R0v(I - b v(v(t))) ]
+ [ (I - b u(u(t)))KR2vK(I - b u(u(t)))

R2vK(I - b u(u(t)))
(I - b u(u(t)))KR2v

R2v ]
Hence it is su� cient to have 2( b u(u(t)) - b 0u)R0u(I - b u(u(t))) + R2u > 0 and
b v(v(t)) - b 0v ³ 0 to ensure ÇV (~x(t)) £ 0 for all t ³ 0. It then follows the same
procedure as in Tyan and Bernstein (1995a), that if V (~x0) < V 0, then
2( b u(u(t)) - b 0u)R0u(I - b u(u(t))) + R2u > 0. It follows from Lemma A.1 that for
i = 1, . . . ,m, if |srsi(ui(0))| £ ui, and |ssi(ui(0))| £ ui, then |srsi(ui(t))| £ ui, for all
t ³ 0. As a result, |v i(t)| £ 2Kiui, and b v i

(v i(t)) ³ vi /(2Kiui), i = 1, . . . ,m, for all
t ³ 0. Therefore, if b 0vi Î[0,min {1,vi /(2Kiui)}] then b vi

(vi(t)) ³ b 0v i , i = 1, . . . ,m,
for all t ³ 0. Hence ÇV (~x(t)) £ 0 for all t ³ 0. u
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