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I. Introduction

ATTITUDE modeling is a central topic for vehicles that move in

three dimensions. The orientation of a rigid body can be

represented by a real 3 × 3 matrix R that is orthogonal, that is,

RRT � I, and proper, that is, det R � 1. Matrices of this type can be

viewed as direction cosine matrices. The set of rotation matrices

forms the Lie group SO�3� [1].
Historically, various representations of SO�3� have been used to

model the attitude of a rigid body. These include Euler angles ([2], [3]

pp. 763–765), Euler parameters (also called quaternions) [4], and

Gibbs parameters (also called Rodrigues parameters) [5,6]. Despite

more than two centuries devoted to parameterizations of SO�3�,
interest in this subject continues unabated, as evidenced by recent

studies devoted to generalized Euler angles [7,8].
The present paper focuses on the classical Euler angles and

explores the problem of determining the feasible values of Euler

angles for closed rotation sequences, that is, sequences of Euler

rotation matrices whose product is equal to the identity matrix [9].

For the case of up to four orthogonal rotation axes, the present paper

provides an explicit characterization of the feasible rotation angles.
The present paper is motivated by aircraft kinematics and the need

to determine explicit instantaneous relationships among constant

or time-dependent Euler angles under steady or nonsteady flight

conditions. Assuming a flat Earth and beginning from an Earth-fixed

frame FE, the 3-2-1 Euler-angle sequence with the yaw, pitch, and

roll angles Ψ, Θ, and Φ yields the aircraft body-fixed frame FAC.
These are the body angles. An additional 2-axis rotation through

minus the angle of attack −α yields the stability frame FE, and
a 3-axis rotation through the sideslip angle β yields the wind frame

FW, whose 1-axis is aligned with the aircraft velocity vector. These

are the aerodynamic angles. The combined 3-2-1-2-3 sequence can

be represented by [10]

FE →
Ψ

3
FE 0 →

Θ

2
FE 0 0 →

Φ

1
FAC →

−α

2
FS →

β

3
FW (1)

where FE 0 and FE 0 0 are intermediate Earth frames.
Alternatively, the wind frame FW can be reached by a different

sequence. In particular, beginning again from FE, the 3-2-1 Euler-

angle sequence with the heading, flight-path, and bank angles η, γ,

and μ yields FW. This 3-2-1 sequence of navigation angles can be
represented by

FE →
η

3
FF →

γ

2
FG →

μ

1
FW (2)

where FF and FG are intermediate Earth frames. The bank angle μ is a
rotation around the aircraft velocity vector and is not necessarily
equal to the roll angleΦ, which is a rotation around the body 1-axis.
The body, aerodynamic, and navigation angles thus involve a total of
eight frames and eight rotation angles. Merging Eqs. (1) and (2)
yields the closed rotation sequence

FE →
Ψ

3
FE 0 →

Θ

2
FE 0 0 →

Φ

1
FAC →

−α

2
FS →

β

3
FW →

−μ

1
FG →

−γ

2
FF →

−η

3
FE (3)

Now, let OW∕E denote the direction cosine matrix that transforms
physical vectors resolved in FE to physical vectors resolved in FW. It
thus follows from Eqs. (1) and (2) that

OW∕E � O3�β�O2�−α�O1�Φ�O2�Θ�O3�Ψ� � O1�μ�O2�γ�O3�η�
(4)

which can be rewritten as

O2�−γ�O1�−μ�O3�β�O2�−α�O1�Φ�O2�Θ�O3�Ψ − η� � I (5)

Note that Eq. (5) is a 3-2-1-2-3-1-2 Euler-angle sequence (reading
right to left) involving seven rather than eight angles because the
single angle Ψ − η replaces the separate angles Ψ and η. Therefore,
for all real numbers a, the angles Ψ and η can be replaced by Ψ� a
and η� a, respectively, without modifying the remaining angles.
Physically, this means that the yaw and heading angles can be rotated
by the same amount relative to the Earth without changing the
aerodynamic angles and remaining body and navigation angles.
Several special cases are worth noting. If Ψ ≡ η, then Eq. (5)

becomes

O1�−μ�O3�β�O2�−α�O1�Φ�O2�Θ − γ� � I (6)

and thus the effective number of angles is five rather than six. IfΨ ≡ η
and Θ ≡ γ, then Eq. (6) becomes

O3�β�O2�−α�O1�Φ − μ� � I (7)

and thus the effective number of angles is three rather than four.
If Ψ ≡ η and Φ ≡ 0, then Eq. (6) becomes

O1�−μ�O3�β�O2�Θ − γ − α� � I (8)

and again the effective number of angles is three rather than four.
If Φ ≡ 0, then Eq. (5) becomes

O2�−γ�O1�−μ�O3�β�O2�Θ − α�O3�Ψ − η� � I (9)

and the effective number of angles is again five rather than six.
If Φ ≡ 0 and Θ ≡ α, then Eq. (9) becomes

O2�−γ�O1�−μ�O3�Ψ − η� β� � I (10)

and thus the effective number of angles is three rather than four.
If β ≡ μ ≡ 0, then Eq. (9) becomes

O2�−γ − α�O1�Φ�O2�Θ�O3�Ψ − η� � I (11)
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and thus the effective number of angles is four rather than five.
If α ≡ β ≡ 0, then Eq. (9) becomes

O2�−γ�O1�Φ − μ�O2�Θ�O3�Ψ − η� � I (12)

and thus the effective number of angles is four rather than five.
The fact that a product of seven Euler rotation matrices equals the

identity matrix implies that the angles Ψ − η, Θ, Φ, α, β, μ, and γ
cannot be independent. It is thus of interest to determine the feasible
values of these seven angles. Note that the constraint (5) must be
satisfied at each instant of timewhether or not the angles are constant;
however, the time argument is omitted in Eq. (5) for simplicity. Note
that all of the navigation angles are constant if and only if the aircraft
is flying in a straight line relative to the Earth frame. This case is
discussed in Sec. VII. Relationships among these angles for
maneuvering flight are studied in [11] using spherical trigonometry.
All of the results in this paper are stated for the full possible range

of angles. In particular, each body, aerodynamic, and navigation
angle can be equal to π. For example, if either α � β � 0 or
α � β � π, then the aircraft velocity vector is pointed in the direction
of the body 1-axis. Furthermore, if either α � π and β � 0 or α � 0
and β � π, then the aircraft velocity vector is pointed in the direction
that is opposite to the body 1-axis. In this case, the aircraft is flying
backward. Although this is nonphysical for fixed-wing aircraft, it is
meaningful for quadrotors.
The contents of this paper are as follows. Section II provides

preliminary material. Section III considers products of two and three
Euler rotation matrices that are equal to the identity matrix.
Section IV considers products of four Euler rotation matrices.
Section V discusses extensions to five or more Euler rotation
matrices. SectionVI applies the results of Secs. III and IV to the body,
aerodynamic, and navigation angles.

II. Preliminaries

A rotation matrixR is a real 3 × 3matrix that is orthogonal, that is,
RTR � I, and proper, that is, det R � 1. For a real number a, define
the Euler rotation matrices

O1�a� �

2
664
1 0 0

0 cos a sin a

0 − sina cos a

3
775;

O2�a� �

2
664
cos a 0 − sin a

0 1 0

sin a 0 cos a

3
775;

O3�a� �

2
664

cos a sin a 0

− sin a cos a 0

0 0 1

3
775 (13)

each of which is a rotation matrix.
For trigonometric functions, it suffices to confine angles to (−π, π].

However, sums and differences of angles can violate this constraint,
and thus it is convenient to represent angles by arbitrary real numbers.
Hence, for a, b ∈ R, the notation a ≡ bmeans that a − b is an integer
multiple of 2π, and thus sin a � sin b and cos a � cos b. Note
that π ≡ −π.
Some basic properties of Euler rotation matrices are given by the

following result.
Lemma 1: The following statements hold:
i) Leta ∈ R and i ∈ f1; 2; 3g. Then,a ≡ 0 if and only ifOi�a� � I.
ii) Let a ∈ R. Then, the following statements are equivalent:
a) a ≡ π.
b) O1�a� � diag�1;−1;−1�.
c) O2�a� � diag�−1; 1;−1�.
d) O3�a� � diag�−1;−1; 1�.

iii) Let i, j, k ∈ f1; 2; 3g be distinct. Then,Oi�π�Oj�π�Ok�π� � I3
and Oi�π� � Oj�π�Ok�π�.
iv) Let a ∈ R and i ∈ f1; 2; 3g. Then, the following statements are

equivalent:
a) Either a ≡ 0 or a ≡ π.
b) Oi�a� is symmetric.
c) Oi�a� is diagonal.

v) Let a ∈ R and i ∈ f1; 2; 3g. Then,Oi�a�ei � ei, where ei is the
ith column of I3.
vi) Let a ∈ R and i ∈ f1; 2; 3g. Then, Oi�−a� � Oi�a�−1 �

Oi�a�T .
vii) Let a ∈ R, and let i, j ∈ f1; 2; 3g be distinct. Then,

Oi�π�Oj�a�Oi�π� � Oj�−a�.
viii) Let a ∈ R, and let i, j, k ∈ f1; 2; 3g be distinct. Then,

Oi��π∕2�Oj�a�Oi�∓π∕2� �(
Ok��a�; �i; j� ∈ f�1; 3�; �2; 1�; �3; 2�g;
Ok�∓a�; �i; j� ∈ f�1; 2�; �2; 3�; �3; 1�g

(14)

ix) Let a, b ∈ R and i ∈ f1; 2; 3g. Then, Oi�a�Oi�b� �
Oi�a� b�.
x) Let a, b ∈ R, and let i, j ∈ f1; 2; 3g be distinct. Then, the

following statements are equivalent:
a) a ≡ b ≡ 0.
b) Oi�a� � Oj�b�.
c) Oi�a�Oj�b� � I.

Lemma 1 can be used to show that the angles 0 and π can be
interchanged by suitably modifying additional angles. For example,
suppose that Θ � π, so that Eq. (5) has the form

O2�−γ�O1�−μ�O3�β�O2�−α�O1�Φ�O2�π�O3�Ψ − η� � I (15)

It follows from iii of Lemma 1 that O2�π� � O1�π�O2�0�O3�π�.
Therefore, Eq. (15) can be written as

O2�−γ�O1�−μ�O3�β�O2�−α�O1�Φ� π�O2�0�O3�Ψ − η� π� � I

(16)

Hence Θ � π is replaced by Θ � 0, and the angles Φ and Ψ − η are
replaced byΦ� π andΨ − η� π, respectively. Conversely, suppose
that Θ � 0, so that Eq. (5) has the form

O2�−γ�O1�−μ�O3�β�O2�−α�O1�Φ�O2�0�O3�Ψ − η� � I (17)

It follows from iii and ix of Lemma 1 that O2�0� � I �
O1�π�O2�π�O3�π�. Therefore, Eq. (17) can be written as

O2�−γ�O1�−μ�O3�β�O2�−α�O1�Φ� π�O2�π�O3�Ψ − η� π� � I

(18)

Hence Θ � 0 is replaced by Θ � π, and the angles Φ and Ψ − η are
replaced by Φ� π and Ψ − η� π, respectively. This technique can
be applied to μ, Θ, α, γ, β, but not to Φ and Ψ − η because these two
angles occur between pairs of 2-axis rotations.

III. Euler-Angle Permutations

Considering all permutations of i, j, k ∈ f1; 2; 3g, there exist 12
distinct sequences of 3 Euler rotation matrices [3] p. 764). However,
by relabeling axes, these 12 sequences can be represented by 2
sequences, for example, 3-2-1 and 1-2-1. Consequently, a rotation
represented in terms of the axes i, j, k can be equivalently represented
in terms of an arbitrary permutation of i, j, k. For example, a 1-2-1
sequence can be applied as a 3-1-3 sequence involving precession,
nutation, and spin used in spacecraft kinematics. Note, however, that,
although a 2-1-2 sequence can be applied as a 3-1-3 sequence by
relabeling the 2-axis as the 3-axis, the resulting 3-axis must be
reflected in order to retain the right-handedness of the coordinate
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frame. In characterizing all closed rotation sequences, it thus suffices
to disregard the effect of axis relabeling and reflection.
In addition to axis relabeling, by choosing an alternative starting

point, sequence cycling can be disregarded in the sense that the
sequences 2-1-2-1-3 and 1-2-1-3-2 are identical. Finally, by
multiplying each angle by −1, sequence reversal can be disregarded
in the sense that 2-1-2-1-3 and 3-1-2-1-2 are identical. Consequently,
in characterizing all closed rotation sequences of a given length, a pair
of sequences can be viewed as identical if one sequence can be
obtained from the other by axis relabeling (with axis reflection to
retain right-handedness), sequence cycling, and sequence reversal.
To make this idea more precise, let σ: f1; 2; 3g → f1; 2; 3g be a

permutation, and define the matrix Sσ ∈ SO�3� by �Sσ�i;j � 1 if
σ�i� � j and 0 otherwise. Hence, if σ maps the rotation sequence
(1, 2, 3) to the rotation sequence (2, 1, 3), then

Sσ �
2
4 0 1 0

0 0 1

1 0 0

3
5 (19)

Note that, for all σ, det Sσ � �1.
Lemma 2: Let i ∈ f1; 2; 3g, and let a ∈ R. Then,

STσOi�a�Sσ � Oσ�i���det Sσ�a� (20)

The following result, which follows directly fromLemma 2, shows
that an arbitrary product of Euler rotation matrices can be
equivalently represented as a product of Euler rotation matrices with
axis relabeling.
Proposition 1:Letnbe a positive integer, let i1; : : : ; in be elements

of {1, 2, 3}, let a1; : : : ; an be real numbers, let R ∈ SO�3�, and
assume that

Oi1�a1� ⋅ ⋅ ⋅Oin�an� � R (21)

Then,

Oσ�i1���detSσ�a1� ⋅ ⋅ ⋅Oσ�in���det Sσ�an� � STσRSσ (22)

Definition 1: Let n be a positive integer, and let (i1; : : : ; in) and
(j1; : : : ; jn) be sequences of elements of {1, 2, 3} with distinct
adjacent components and distinct first and last components. Then,
(i1; : : : ; in) and (j1; : : : ; jn) are permutationally distinct if there does
not exist a permutation σ such that �σ�i1�; : : : ; σ�in�� can be
transformed to (j1; : : : ; jn) by sequence cycling and sequence reversal.

IV. Products of Two and Three Euler RotationMatrices
Equal to the Identity Matrix

There isonepermutationallydistinct casewhereaproductof twoEuler
rotation matrices is equal to the identity matrix, namely, a 1-2 product.
Proposition 2: Let a, b ∈ R. Then,

O1�a�O2�b� � I (23)

if and only if a ≡ b ≡ 0.

Proof: The result follows from x of Lemma 1. □

There is one permutationally distinct casewhere a product of three

Euler rotationmatrices is equal to the identity matrix, namely, a 1-2-3

product.
The following result is a special case of the Rodrigues-Hamilton

theorem [9]; an animation of this result appears in the online version

of [9].
Proposition 3: Let a, b, c ∈ R. Then,

O1�a�O2�b�O3�c� � I (24)

if and only if either a ≡ b ≡ c ≡ 0 or a ≡ b ≡ c ≡ π.
Proof: Sufficiency is immediate. To prove necessity, note that, by

rewriting Eq. (24) as (writing Sa for sin a)

2
4 CbCc CbSc −Sb
CcSaSb − CaSc CaCc� SaSbSc CbSa
SaSc� CaCcSb CaSbSc − CcSa CaCb

3
5 � I

it follows from the (1,1) entry that Cb ≠ 0, and thus from the (1,2),

(1,3), and (2,3) entries that Sa � Sb � Sc � 0. Hence, it follows
from the (2,2) and (3,3) entries that CaCc � CaCb � 1, and thus

either Ca � Cb � Cc � 1 or Ca � Cb � Cc � −1. Hence, either
a ≡ b ≡ c ≡ 0 or a ≡ b ≡ c ≡ π.
As an alternative proof of necessity, it follows from Eq. (24) using

v and ix of Lemma 1 that

0 � eT1 I3e3 � eT1O1�a�O2�b�O3�c�e3 � eT1O2�b�e3 � − sin b

Hence, eitherb ≡ 0 orb ≡ π. In the casewhereb ≡ 0, Eq. (24) implies

thatO1�a�O3�c� � I3, and thus Proposition 2 implies that a ≡ c ≡ 0.
In the case where b ≡ π, it follows from Eq. (24) that

I3 � O1�a�O2�π�O3�c� � O1�a�O1�π�O3�π�O3�c�
� O1�a� π�O3�c� π�

and thus Proposition 2 implies that a ≡ c ≡ π. □

V. Products of Four Euler Rotation Matrices Equal
to the Identity Matrix

There are two permutationally distinct cases where a product of

four Euler rotation matrices is equal to the identity matrix, namely,

1-2-3-2 and 1-2-1-2 products. The following result considers the case

of a 1-2-3-2 product.
Proposition 4: Let a, b, c, d ∈ R. Then,

O1�a�O2�b�O3�c�O2�d� � I (25)

if and only if either i) b ≡ −d ≡ π∕2 and a ≡ c, ii) b ≡ −d ≡ −π∕2
and a ≡ −c, iii) a ≡ c ≡ 0 and b ≡ −d, or iv) a ≡ c ≡ π
and b ≡ d� π.
Proof: Sufficiency is immediate. To prove necessity, note that

Eq. (25) implies

2
4 CbCcCd − SbSd CbSc −CdSb − CbCcSd

CbSaSd − Cd�CaSc − CcSaSb� CaCc� SaSbSc Sd�CaSc − CcSaSb� � CbCdSa
Cd�SaSc� CaCcSb� � CaCbSd CaSbSc − CcSa CaCbCd − Sd�SaSc� CaCcSb�

3
5 � I

Since CbSc � 0, it follows that either Cb � 0 or Sc � 0. Therefore, either i) b ≡ π∕2, ii) b ≡ −π∕2, iii) c ≡ 0, or iv) c ≡ π.
Case i: b ≡ π∕2. In this case,

2
4 −Sd 0 −Cd
−Cd�CaSc − CcSa� CaCc� SaSc Sd�CaSc − CcSa� � CbCdSa
Cd�SaSc� CaCc� CaSc − CcSa −Sd�SaSc� CaCc�

3
5 � I
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Since Sd � −1 and Cd � 0, it follows that d ≡ −π∕2. Hence,

2
4 1 0 0

0 CaCc� SaSc −�CaSc − CcSa�
0 CaSc − CcSa SaSc� CaCc

3
5 � I

which can be written as

2
4 1 0 0

0 cos�a − c� sin�a − c�
0 − sin�a − c� cos�a − c�

3
5 � I

Hence, a − c ≡ 0.
Case ii: b ≡ −π∕2. In this case,

2
4 Sd 0 Cd
−Cd�CaSc�CcSa� CaCc−SaSc Sd�CaSc�CcSa�
Cd�SaSc−CaCc� −CaSc−CcSa −Sd�SaSc−CaCc�

3
5� I

Since Sd � 1 and Cd � 0, it follows that d ≡ π∕2. Hence,

2
4 1 0 0

0 CaCc − SaSc CaSc� CcSa
0 −CaSc − CcSa −�SaSc − CaCc�

3
5 � I

which can be written as

2
4 1 0 0

0 cos�a� c� sin�a� c�
0 − sin�a� c� cos�a� c�

3
5 � I

Hence, a� c ≡ 0.
Case iii: c ≡ 0. In this case,

2
4 CbCd − SbSd 0 −CdSb − CbSd
CbSaSd� CdSaSb� Ca −SdSaSb� CbCdSa
CdCaSb� CaCbSd −Sa CaCbCd − SdCaSb

3
5 � I

Since Ca � 1 and Sa � 0, it follows that a ≡ 0. Hence,

2
4 CbCd − SbSd 0 −CdSb − CbSd

0 1 0

CdSb� CbSd 0 CbCd − SdSb

3
5 � I

which can be written as

2
4 cos�b� d� 0 − sin�b� d�

0 1 0

sin�b� d� 0 cos�b� d�

3
5 � I

Hence, b� d ≡ 0.
Case iv: c ≡ π. In this case,

2
4 −CbCd − SbSd 0 −CdSb� CbSd

CbSaSd − CdSaSb −Ca SdSaSb� CbCdSa
−CdCaSb� CaCbSd Sa CaCbCd� SdCaSb

3
5 � I

Since Ca � −1 and Sa � 0, it follows that a ≡ π. Hence,

2
4−CbCd − SbSd 0 −CdSb� CbSd

0 1 0

CdSb − CbSd 0 −CbCd − SdSb

3
5 � I

which can be written as

2
4− cos�b − d� 0 − sin�b − d�

0 1 0

sin�b − d� 0 − cos�b − d�

3
5 � I

Hence, b − d ≡ π.
As an alternative proof of necessity, note that it follows from

Eq. (25) using v of Lemma 1 that

0 � eT1 Ie2 � eT1O1�a�O1�b�O1�c�O1�d�e2 � eT1O1�b�O1�c�e2
� �cos b� sin c

Hence, either b ≡�π∕2, c ≡ 0, or c ≡ π.
Cases i and ii: b ≡�π∕2. In this case, it follows from Eq. (25)

using v, viii, and ix of Lemma 1 that

I � O1�a�O2��π∕2�O3�c�O2�d�
� O1�a�O2��π∕2�O3�c�O2�∓π∕2�O2��π∕2�O2�d�
� O1�a�O1�∓c�O2��π∕2�O2�d�
� O1�a∓c�O2�d� π∕2�

and thus Proposition 2 implies that a ≡�c and d ≡ ∓π∕2.
Case iii: c ≡ 0. In this case, it follows from Eq. (25) using ix of

Lemma 1 that

I � O1�a�O2�b�O2�d� � O1�a�O2�b� d�

and thus Proposition 2 implies that a ≡ 0 and b ≡ −d.
Case iv: c ≡ π. In this case, it follows from Eq. (25) using iii, vi,

and ix of Lemma 1 that

I � O1�a�O2�b�O3�π�O2�d�
� O1�a�O1�π�O1�−π�O2�b�O1�π�O2�π�O2�d�
� O1�a� π�O2�−b�O2�d� π�O1�a� π�
� O1�a� π�O2�d� π − b�

and thus Proposition 2 implies that a ≡ π and b ≡ d� π. □

The following result considers the case where a 1-2-3 product of

Euler rotation matrices is equal to a 2-axis Euler rotation matrix.
Corollary 1: a, b, c, d ∈ R satisfy

O2�d� � O1�a�O2�b�O3�c� (26)

if and only if either i) a ≡ c and b ≡ d ≡ π∕2, ii) a ≡ −c and

b ≡ d ≡ −π∕2, iii) a ≡ c ≡ 0 and b ≡ d, or iv) a ≡ c ≡ π
and b ≡ π − d.
The following result considers the case of a 1-2-1-2 product. The

proof is similar to the proof of Proposition 4 and thus is omitted.
Proposition 5: Let a, b, c, d ∈ R. Then,

O1�a�O2�b�O1�c�O2�d� � I (27)

if and only if either i)b ≡ d ≡ 0 anda ≡ −c, ii)a ≡ c ≡ 0 andb ≡ −d,
iii) b ≡ d ≡ π and a ≡ c, or iv) a ≡ c ≡ π and b ≡ d.
The following result considers the case where a 1-2-1 product of

Euler rotation matrices is equal to a 2-axis rotation.
Corollary 2: Let a, b, c, d ∈ R. Then,

O2�d� � O1�a�O2�b�O1�c� (28)

if and only if either i)b ≡ −d ≡ 0 anda ≡ −c, ii)a ≡ c ≡ 0 andb ≡ d,
iii) b ≡ −d ≡ π and a ≡ c, or iv) a ≡ c ≡ π and b ≡ −d.
Proposition 5 yields the following result on commuting Euler

rotation matrices.
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Corollary 3: Let a, b ∈ R. Then,

O1�a�O2�b� � O2�b�O1�a� (29)

if and only if either a ≡ 0, b ≡ 0, or a ≡ b ≡ π.

VI. Extensions to Products of Five or More Euler
Rotation Matrices

For the purpose of characterizing closed rotation sequences of a
given length, it suffices to consider permutationally distinct products,
which accounts for axis relabeling, cycling, and reversal. It has been
shown that there is one permutationally distinct product of two Euler
rotation matrices whose product is the identity; one permutationally
distinct product of three Euler rotation matrices whose product is the
identity; and two permutationally distinct products of four Euler
rotation matrices whose product is the identity. Products of five or
more Euler rotationmatrices can be considered. For example, there is
one permutationally distinct product of five Euler rotation matrices
whose product is the identity, namely, 1-2-1-2-3; there are four
permutationally distinct products of six Euler rotation matrices
whose product is the identity, namely, 1-2-1-2-1-2, 1-2-1-2-1-3, 1-2-
1-3-2-3, and 1-2-3-1-2-3; and there are three permutationally distinct
products of seven Euler rotation matrices whose product is the
identity, namely, 1-2-1-2-1-2-3, 1-2-1-2-3-1-3, and 1-2-1-3-2-1-3.
Hence, Eq. (5) is one of three permutationally distinct products
of seven Euler rotation matrices, in particular, 1-2-1-3-2-1-3.
Furthermore, there are eight permutationally distinct products of
eight Euler rotation matrices whose product is the identity.
For a rotation sequence of arbitrary length n, the number of

permutationally distinct products of n Euler rotation matrices is
given by sequence A114438 of the On-line Encyclopedia of Integer
Sequences (OEIS). It can be shown that the number of
permutationally distinct products of n Euler rotation matrices with
or without allowing reversals is the same for all n ≤ 8 [12].

VII. Feasible Euler Angles for Aircraft Frames

This section considers sequences of body, aerodynamic, and
navigation angles that satisfy Eq. (5). Simplification arises from the
repeated axes in Eq. (5). In particular, by setting certain angles to
zero, rotations about the same axis become adjacent in Eq. (5) and
thus can be combined into a single rotation, thereby reducing the
number of factors. For example, by settingΦ ≡ 0 (wings-level flight),
Eq. (5) can be written as

O2�−γ�O1�−μ�O3�β�O2�Θ − α�O3�Ψ − η� � I (30)

and thus the effective number of angles is five rather than six.Because
Eq. (30) involves five angles, setting one of these to zero yields a
product of four Euler rotation matrices, which is amenable to either
Proposition 4 or Proposition 5. This can be done in five different
ways. For example, setting either Θ ≡ α orΨ ≡ η yields a product of
three Euler rotation matrices. These cases are considered below by
conditions i and ii of Corollary 5, respectively.
More generally, by setting three of the seven angles in Eq. (5) to

zero, which can be done in
�
7
3

� � 35 different ways, the remaining

four angles can be determined by Proposition 4 and Proposition 5.
For example, assuming that all angles are constant with Φ � γ �
β � 0 yields wings-level, horizontal, zero-sideslip, straight-line
flight. This case is typically considered when linearizing the aircraft
equations of motion [10]. With these values of γ, Φ, and β, Eq. (5)
specializes to

O1�−μ�O2�Θ − α�O3�Ψ − η� � I (31)

and thus the effective number of angles is three. The case where all
angles are constant, Φ � β � 0, and γ ≠ 0 yields wings-level,
zero-sideslip, straight-line flight with a nonzero flight-path angle.

The following result considers various special cases of Eq. (5) that
entail two undetermined angles. These cases are thus consequences
of Proposition 2.
Corollary 4: Let Ψ, Θ, Φ, α, β, η, γ, μ satisfy Eq. (5). Then, the

following statements hold:
i) Assume that α ≡ β ≡ 0. Then, the following statements are

equivalent:
a) Φ ≡ μ.
b) Ψ ≡ η.

If these conditions hold, then Θ ≡ γ.
ii) Assume that Ψ ≡ η. Then, the following statements are

equivalent:
a) Φ ≡ 0 and Θ ≡ α� γ.
b) μ ≡ β ≡ 0.

iii) Assume that Ψ ≡ η and β � 0. Then, the following statements
are equivalent:

a) Φ ≡ 0.
b) μ ≡ 0.

If these conditions hold, then Θ ≡ α� γ.
iv) Assume that Ψ� β ≡ η. Then, the following statements are

equivalent:
a) Φ ≡ 0 and Θ ≡ α.
b) μ ≡ γ ≡ 0.

v) Assume that Φ ≡ μ ≡ 0. Then, the following statements are
equivalent:

a) Ψ ≡ η.
b) β ≡ 0.

If these conditions hold, then Θ ≡ α� γ.
vi) Assume that Φ ≡ μ ≡ 0. Then, the following statements are

equivalent:
a) Θ ≡ α.
b) γ ≡ 0.

If these conditions hold, then Ψ� β ≡ η.
vii) Assume thatΘ ≡ α ≡ γ ≡ 0. Then, the following statements are

equivalent:
a) Φ ≡ 0.
b) μ ≡ 0.

If these conditions hold, then Ψ� β ≡ η.
viii) Assume that Θ ≡ α ≡ γ ≡ 0. Then, the following statements

are equivalent:
a) Ψ ≡ η.
b) β ≡ 0.

If these conditions hold, then Φ ≡ μ.
The following result considers various special cases of Eq. (5) that

entail three undetermined angles. These cases are thus consequences

of Proposition 3.
Corollary 5: The following statements hold:
i) Assume thatΦ ≡ 0 andΘ ≡ α. Then,Ψ, β, η, γ, μ satisfy Eq. (5) if

and only if either γ ≡ μ ≡ β� Ψ − η ≡ 0 or γ ≡ μ ≡ β� Ψ − η ≡ π.
ii) Assume thatΦ ≡ 0 andΨ ≡ η. Then,Θ, α, β, γ, μ satisfy Eq. (5)

if and only if either μ ≡ β ≡ Θ − α − γ ≡ 0 or μ ≡ β ≡ Θ − α − γ ≡ π.
iii) Assume that Φ ≡ 0, Θ ≡ α, and Ψ ≡ η. Then, β, γ, μ satisfy

Eq. (5) if and only if either β ≡ γ ≡ μ ≡ 0 or β ≡ γ ≡ μ ≡ π.
iv) Assume thatΘ ≡ γ andΨ ≡ η. Then,Φ, α, β, μ satisfy Eq. (5) if

and only if either Φ − μ ≡ α ≡ β ≡ 0 or Φ − μ ≡ α ≡ β ≡ π.
v) Assume that Φ ≡ Θ� γ ≡Ψ − η ≡ 0. Then, α, β, μ satisfy

Eq. (5) if and only if either μ ≡ α ≡ β ≡ 0 or μ ≡ α ≡ β ≡ π.
vi) Assume that Φ ≡ Θ� γ ≡ β ≡ 0. Then, Ψ, α, η, μ satisfy

Eq. (5) if and only if either μ ≡ γ ≡Ψ ≡ 0 or μ ≡ γ ≡ Ψ ≡ π.
vii) Assume that Φ ≡ α ≡ γ ≡Ψ ≡ 0. Then, Θ, β, η, μ satisfy

Eq. (5) if and only if either μ ≡ Θ ≡ β ≡ 0 or μ ≡ Θ ≡ β ≡ π.
viii) Assume that Φ ≡ Θ ≡ γ ≡ β ≡ 0. Then, Ψ, α, η, μ satisfy

Eq. (5) if and only if either μ ≡ α ≡Ψ − η ≡ 0 or μ ≡ α ≡ Ψ − η ≡ π.
ix) Assume that Φ ≡ α ≡ γ ≡ β ≡ 0. Then, Ψ, Θ, η, μ satisfy

Eq. (5) if and only if either μ ≡ Θ ≡Ψ − η ≡ 0 or μ ≡ Θ ≡ Ψ − η ≡ π.
x) Assume that μ ≡ α� γ ≡ Ψ ≡ 0. Then, Θ, Φ, β, η satisfy

Eq. (5) if and only if either Φ ≡ Θ ≡ β ≡ 0 or Φ ≡ Θ ≡ β ≡ π.
xi) Assume that μ ≡ α� γ ≡ β ≡ 0. Then,Ψ,Θ,Φ, η satisfy Eq. (5)

if and only if either Φ ≡ Θ ≡Ψ − η ≡ 0 or Φ ≡ Θ ≡Ψ − η ≡ π.
xii) Assume that μ ≡ Θ ≡ α ≡ β ≡ 0. Then, Ψ, Φ, η, γ satisfy

Eq. (5) if and only if eitherΦ ≡ γ ≡ Ψ − η ≡ 0 orΦ ≡ γ ≡ Ψ − η ≡ π.
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xiii) Assume that μ ≡ Θ ≡ α ≡Ψ − η ≡ 0. Then, Φ, β, γ satisfy
Eq. (5) if and only if either Φ ≡ γ ≡ β ≡ 0 or Φ ≡ γ ≡ β ≡ π.
xiv) Assume that μ ≡ Θ ≡ γ ≡ β ≡ 0. Then, Ψ, Φ, α, η satisfy

Eq. (5) if and only if eitherΦ ≡ α ≡ Ψ − η ≡ 0 orΦ ≡ α ≡Ψ − η ≡ π.
Propositions 3 and 4 can be applied to various special cases of

Eq. (5) that entail four undetermined angles. For example,
setting either Φ � γ � 0, Φ � β � 0, μ � γ � 0, μ � β � 0,
μ � Ψ − η � 0, α � β � 0, or α � Ψ − η � 0 yields a product of
four Euler rotations that is amenable to Proposition 4. Likewise,
setting either Φ � μ � 0 or β � Ψ − η � 0 yields a product of four
Euler rotations that is amenable to Proposition 5. Two of these nine
cases are given by the following two results. In particular, the next
result considers wings-level, zero-sideslip flight with possibly
nonzero flight path angle.
Corollary 6:Assume thatΦ ≡ β ≡ 0. Then,Ψ,Θ, α, η, γ, μ satisfy

Eq. (5) if and only if i) μ ≡ 0,Ψ ≡ η, andΘ ≡ α� γ, ii) μ ≡Ψ − η ≡ π
and −γ ≡ Θ − α� π, iii) γ ≡ Θ − α ≡ π∕2 and μ ≡Ψ − η, or
iv) γ ≡ Θ − α ≡ −π∕2 and −μ ≡Ψ − η. If, in addition, γ ≡ 0, thenΨ,
Θ, α, η, μ satisfy Eq. (5) if and only if i) μ ≡Ψ − η ≡ 0 and Θ ≡ α,
ii)μ ≡Ψ − η ≡ π andΘ − α ≡ π, iii)Θ − α ≡ π∕2 ≡ 0 andμ ≡ Ψ − η,
or iv) Θ − α ≡ π∕2 and −μ ≡ Ψ − η.
Proof: The result follows by applying Proposition 4 to

O2�−γ�O1�−μ�O2�Θ − α�O3�Ψ − η� � I □

Next,we consider the case ofwings-tilted, zero-sideslip flight with
possibly nonzero flight path angle.
Corollary 7:Assume thatΨ ≡ η and β ≡ 0. Then,Θ, α, γ, μ satisfy

Eq. (5) if and only if either i) α ≡ 0, Θ ≡ γ and μ ≡Φ, ii) μ ≡Φ ≡ 0
and α ≡ Θ − γ, iii) α ≡ Θ − γ ≡ π and −μ ≡Φ, or iv) μ ≡Φ ≡ π
and −α ≡ Θ − γ.
Proof: The result follows by applying Proposition 5 to

O1�−μ�O2�−α�O1�Φ�O2�Θ − γ� � I □

Finally, sufficiency of condition i of the following result coincides
with necessity in condition iii of Corollary 5.
Corollary 8: Assume that either μ ≡ γ ≡ β ≡ 0 or μ ≡ γ ≡ β ≡ π.

Then, Ψ, Θ, Φ, α, η satisfy Eq. (5) if and only if i) Φ ≡ Ψ − η ≡ 0
and Θ ≡ α, ii) Φ ≡Ψ − η ≡ π and −α ≡ Θ� π, iii) Θ ≡ α ≡ π∕2
and Φ ≡ η −Ψ, or iv) Θ ≡ α ≡ −π∕2 and Φ ≡Ψ − η.
Proof: The result follows by applying Proposition 4 to

O2�−α�O1�Φ�O2�Θ�O3�Ψ − η� � I □

VIII. Conclusions

A complete characterization was given of products of two, three,
and four Euler rotation matrices equal to the identity matrix. These
results were used to characterize feasible values of the body,
aerodynamic, and navigation angles relating aircraft frames. For

constant Euler angles, these results were used to determine Euler
angles for various special cases of straight-line flight. Products of
5, 6, and 7 Euler rotation matrices can be considered to provide a
more complete solution of all possible feasible Euler angles. The
relationships among these angles are remarkably intricate, and this
paper is only a first step toward fully elucidating these relationships.
Beyond aircraft dynamics, these results are applicable to the Euler
angles that relate spacecraft attitude and orbital frames [3].
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