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Optimal reduced-order state estimation for unstable plants

DENNIS S. BERNSTEINt and WASSIM M. HADDADt

The problem of optimal reduced-order steady-state state estimation is considered
for the case in which the plant has unstable poles. In contrast to the standard full­
order estimation problem involving a single algebraic Riccati equation, the solution
to the reduced-order problem involves one modified Riccati equation and one
Lyapunov equation coupled by a projection matrix. This projection is completely
distinct from the projection obtained by Bernstein and Hyland (1985) for stable
plants.

Notation and definitions

Note: All matrices have real entries

IR, lR"s, IR', IE real numbers, r x s real matrices, IR" 1, expected value
In' ( )T,0"" 0, n x n identity matrix, transpose, r x s zero matrix, 0",
n, I, ne> n., n., q positive integers

x, y, X e, xu, X S ' Ye n, I, ne' n.." nn q-dimensional vectors
A, C II x n, I x n matrices

Au, Au... , As nu x niH flu X "S1 n, x ns matrices
C., c. I x n., I x ns matrices

L, L., L, q x n, q x n., q x n, matrices
R q x q positive-definite matrix

A., Be> C., Den. x n., ne x I, q x n., q x I matrices
t, k t E [0, CXJ), discrete-time index I, 2, 3, ...

[
In ]A A- .. BC

On" x n... C

WI ( '), W 2( .) n, I-dimensional continuous-time or discrete-time white noise
processes

VI n x n non-negative-definite intensity or covariance of W, ( • )

V2 I x I positive-definite intensity or covariance of w2 ( .)

V, 2 n x I cross-intensity or cross-covariance of WI ( -}, w 2 ( .)

w(') WI(')-[On~:JB'W2(')

V V, - VI 2 B; [J ".. On .. xnJ - [0 In.. ] B. VT2
ns)( n..

+ [o:'n:JBe V2B; [J n.. On .. xnJ
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1260 D. S. Bernstein and W. M. Haddad

I. Introduction
It has recently been shown that optimal reduced-order, steady-state state esti­

mators can be characterized by means of an algebraic system of equations consisting
of one modified Riccati equation and two modified Lyapunov equations coupled by a
projection matrix. The solution given by Bernstein and Hyland (1985), however, was
confined to problems in which the plant is asymptotically stable, while in practice it is
often necessary to obtain estimators for plants with unstable modes. The purpose of
the present paper is to obtain results similar to those of Bernstein and Hyland (1985)
for unstable plants.

Intuitively, it is clear that finite, steady-state state-estimation error for unstable
plants is achievable only when the estimator retains, or duplicates in some sense, the
unstable modes. Roughly speaking, the solution given by Bernstein and Hyland
( 1985), is inapplicable to the unstable problem for the simple reason that the range of
the projection matrix may not fully encompass the unstable subspace. Hence, in the
present paper we derive a new reduced-order solution which is constrained to estimate
all of the unstable states. Specifically, for a plant with an unstable subspace of
dimension nu , we characterize the optimal estimator of order nu which observes all of
the unstable states.

As in Bernstein and Hyland (1985), the solution is given in terms of an oblique
projection (denoted in the present paper by /1) which characterizes the optimal
estimator gains. Again in contrast to the one observer Riccati equation of the
standard full-order theory, the optimal reduced-order estimator gains for an unstable
plant are given by an algebraic system which, in the present case, consists of one modi­
fied Riccati equation and one Lyapunov equation coupled by the projection matrix u.

It is important to stress that the solution derived in the present paper is
fundamentally different from the solution obtained by Bernstein and Hyland (1985),
for two reasons. First, the estimator obtained by Bernstein and Hyland (1985) was
characterized by three matrix equations (in variables Q, Qand P) while the solution
obtained herein involves two matrix equations (in variables Q and Pl. And, second,
since the projection (l arising in the present paper depends upon P, it is completely
distinct from the projection r given by Bernstein and Hyland (1985), which depends
upon Q and P. Hence the results of the present paper neither generalize, nor are a
special case of, the results of Bernstein and Hyland (1985).

In applying the results of the present paper we note that the solution is applicable
to problems in which the unstable subspace also includes additional stable modes.
Indeed, the only constraint in applying the theory is that the observed subspace
includes all the unstable poles. To clarify this point (see § 2 and § 3 for notation), we
note that all unstable poles of A must becontained in Au, but Au may also contain an
arbitrary number of selected stable poles. Thus, the estimator derived in the present
paper can be viewed as a subspace-constrained observer-estimator.

Finally, the result given herein is only a partial solution to the reduced-order
estimation problem. Specifically, a reduced-order estimator which includes all of the
unstable modes and optimal combinations of a fixed number of stable modes should
involve both projections rand {l and four matrix equations in variables Q, P, Qand P.
This problem is addressed in Haddad and Bernstein (1989). When this result is
specialized to the full-order case the two projections merge to form the identity and
the four matrix equations collapse to the single observer Riccati equation. A third
projection v due to singular measurement noise and static estimation can also be in­
corporated (Haddad and Bernstein 1987, Halevi 1989). This general solution remains
the subject of current research.
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Reduced-order state estimation for unstable plants 1261

We consider the reduced-order estimation problem for continuous-time plants in
§ 2. In § 3 the corresponding discrete-time problem is considered. For stable plants the
reduced-order discrete-time solution was given by Bernstein et al. (1986).

2. Problem statement and main theorem

Reduced-order state-estimation problem

Given the nth-order observed system

x(t) = Ax(t) + WI (I)

y(t) = Cx(t) + w2(t)

design an neth-order state estimator

xe(t) = Aexe(t) + Bey(t)

Ye(t) = Cexe(t)

which minimizes the state-estimation error criterion

J(Ae> Be> Ce);' lim IE[Lx(t) - Ye(tW R[Lx(t) - Ye(t)]

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

In this formulation the plant is partitioned into possibly unstable and stable
subsystems. Thus, letting x(t) = [xJ(t) X;(t)]T and w, (t) =[wi.(t) wi,(t)]T, (2.1)
can be written as

[
x . ( t)] [A.
x,(t) = O",X""

A.,] [x.(t)] + [w,)t)]
A, x,(t) wl,(t)

(2.6)

where A. E IR"" X"" is possibly unstable, A, E IR"' x", is asymptotically stable, and the
measurement equation (2.2) becomes

[
x. (t)]

y(t) = [C. C,] + w2(t)
x,(t)

Furthermore, the matrix L, which is partitioned as

L= [L. L,]

(2.7)

(2.8)

identifies the states or linear combinations of states whose estimates are desired. The
dimension ne of the estimator state Xe is fixed to be equal to the order of the unstable
part of the system, i.e. ne =nu- Thus, the goal of the Reduced-Order State-Estimation
Problem is to design an estimator of order n. which yields quadratically optimal
estimates of specified linear combinations of states of the system. As mentioned in § 1,
A. includes all unstable modes of A as well as an arbitrary number of selected stable
modes of A.

Since A. may contain unstable modes, define the error state z( t) ~ x.( t) - xe( t)
satisfying

itt) = (A. - BeC.)x.(t) - A.xe(t) + (A., - BeC,)xs(t) + wtu(t) - Bew2(t) (2.9)

Note that the explicit dependence of the error states z(t) on the unstable states x.(t)
can be eliminated by constraining

(2.10)
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1262 D. S. Bernstein and W. M. Haddad

so that (2.9) becomes

i(t) = (A. - BeC.)z(t) + (A., - BeCs)xs(t) + w,.(t) - Bew2(t) (2.11)

Similarly, the explicit dependence of the estimation error (2.5) on the unstable states
x.(t) can be eliminated by setting

Now (2.9)-(2.11) yield

~(t) = Ai(t) + w(t)

where

[
Z(t)] _ [A. - BeC.

i(t) ~ , A ~

x,(t) Oo,xo.

(2.12)

(2.13)

and w(r) and its intensity Ii are given in § I.
To guarantee that J is finite, consider the set of asymptotically stable reduced­

order estimators

S ~ {(Ae> Be> Ce): Ae = A. - BeC. is asymptotically stable}

so that A is asymptotically stable. Of course, S is non-empty if (A., Cul is detectable.
Furthermore, for non-degeneracy we restrict our attention to the set of admissible
estimators

s' ~ {(Ae> Be> Ce) E S: (Ae> Ce) is observable}

where Ae and C, are given by (2.10) and (2.12). Also, for arbitrary Q E IRO x 0 define the
notation

Theorem 2.1

Suppose (Ae> Be> Ce) E S+ solves the Reduced-Order State-Estimation Problem
with constraints (2.10) and (2.12). Then there exist n x n non-negative-definite
matrices Q, P such that Ae> Be> C, are given by

Ae = t1>(A - Qa Vi"' C)FT (2.14)

Be= t1>Qa Vi"' (2.15)

Ce=LFT (2.16)

and such that Q, P satisfy

O=AQ+QAT + V, -QaVi"lQJ +/l~QaVi"'Q~/lI (2.17)

0= (A - /lQa Vi"' ClT P + P(A - /lQa Vi"' Cl+ LT RL (2.18)

where

P.,] E IR(n .. + n,,) x ('Ito + tis)

Ps

(2.19)

(2.20)
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Reduced-order state estimation for unstable plants 1263

(2.21)

Furthermore, the minimal cost is given by

J(A" B" Ce ) = tr QU RL

Proof
See Appendix A.

(2.22)

Remark 2.1
Note that since <t> P = I nu the n x n matrix Jl which couples the modified Riccati

equation (2.17) and the Lyapunov equation (2.18) is idempotent, i.e. Jl2 = u. Note also
that rank Jl = nu ' This projection is completely distinct from the projection r given by
Bernstein and Hyland (1985).

Remark 2.2
In the full-order case n. = n, Theorem 2.1 corresponds to the standard steady-state

Kalman filter result. To see this, formally set <t> = F = Jl = Inand Jl~ = On so that (2.18)
is superfluous and (2.17) specializes to the standard observer Riccati equation.

Remark 2.3

Note that (2.14) and (2.16) are merely restatements of (2.10) and (2.12).
Furthermore, (2.15) implies that Ii = A - JlQa V2' C so that the coefficient of P in
(2.18) is asymptotically stable.

3. Discrete-time formulation
Discrete-time reduced-order state-estimation problem

Given the nth-order observed system

x(k + I) = Ax(k) + w, (k)

y(k) = Cx(k) + w2 (k)

design an ne th-order state estimator

x.(k + I) = Aexe(k) + Bey(k)

Ye(k) = Cexe(k) + Dey(k)

which minimizes the discrete-time state-estimation error criterion

(3.1)

(3.2)

(3.3)

(3.4)

j(A" B" C" Del ~ lim IE[Lx(k) - Ye(kWR[Lx(k) - y.(k)] (3.5)
k-oo

Because of the discrete-time setting it is now possible as in Bernstein et al. (1986), to
permit a static feedthrough term De in the estimator design. The gain De represents a
static least squares estimator in conjunction with the dynamic estimator (A" B" Ce)'

As in the continuous-time case, the plant is partitioned into stable and possibly un­
stable subsystems according to (2.6). Furthermore, an error state z(k) ~ x.(k) - x.(k)
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1264 D. S. Bernstein and W. M. Haddad

is defined, Ae is constrained as in (2.10), and C, is constrained to be L. - DeCa- Thus,
the augmented system consisting of the error states z(k) and the stable states x,(k)
becomes

x(k + I) = Ax(k) +w(k) (3.6)

where x(k) ~ [zT(k) X;(k)JT.
To guarantee that J is finite and to obtain closed-form expressions for the

estimator gains we restrict our attention to the sets

S~ {(A., B., C., De): Ae= A. - BeC. is asymptotically stable}

S+ ~ {(A., Be> C., De) E S: (A e, Ce) is observable}

Also, for arbitrary QE IR" X" define the notation

Q. ~ AQC T+ V12 , V2 ~ V2 + CQC

Theorem 3.1

Suppose (A., Be' C., De) E S+ solves the Discrete-Time Reduced-Order State­
Estimation Problem. Then there exist n x n non-negative-definite Q, P such that
A., B., C., De are given by

Ae = C1>(A - Q. Vi"' C)FT

Be = C1>Q.iii" \

Ce= (L - DeC)FT

De= LQCTVi" ,

(3.7)

(3.8)

(3.9)

(3.10)

and such that Q, P satisfy

Q=AQA T+ V\-Q.v,'QJ +1l.cQ.vi"'QJIlI (3.11)

P = (A -IlQ. Vi"' C)T PIA -IlQ. Vi"' C) + (L - DeC)TR(L - DeC) (3.12)

where F, C1>, Il and Il.c are defined by (2.19)-(2.21). Furthermore, the minimal cost is
given by

(3.13)

Proof

See Appendix A.

Remark 3.1

If a strictly proper estimator is desired, then delete De in (3.9), (3.12) and (3.13).

Appendix A
Proof of Theorems 2.1 and 3.1

To analyse (2.13) define the second-moment matrix

Q(t) ~ IE [x(t)xT(t)] (A I)
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Reduced-order state estimation for unstable plants

which satisfies

Q(t) = AQ(t) + Q(t)AT+ V, t ~ 0

Since (Ae> Be> Ce) E S, A is asymptotically stable and

Q~ lim lE[x(t)xT (t)]

exists and satisfies

0= AQ + QAT + ji

Next note that (2.5) can be written as

J(A e, Be> Ce) = tr QLTRL

1265

(A 2)

(A 3)

(A 4)

To minimize (A 4) over the open set S+ subject to the constraint (A 3), form the
lagrangian

(A 5)

where the Lagrange multipliers A. ~ 0 and P E IRn
x n are not both zero. Setting 0ff' /

oQ = 0, A. = 0 implies P = 0 since A is asymptotically stable. Hence, without loss of
generali ty set A. = I.

Now partition n x n Pinto n. x n., n. x n, and n, x n, sub-blocks as

P.,]
P,

(A 6)

Thus the stationarity conditions are given by

off' -T - T-=A P+PA+L RL=O
oQ

Expanding the n. x n. sub-block of (A 7) yields

0= (A. - BeC.)T p. + P.(A. - BeC.) + L~RL.

which, using (2.10) and (2.12), is equivalent to

0= A; r, + P.Ae+ C; RC e

(A 7)

(A 8)

(A 9)

(A 10)

Thus, since (Ae> Be> Ce) E S+, (Ae> Ce) is observable and it follows from (A 10) that p.
is positive-definite. Since p. is invertible, define the n. x n matrices

FB![inu 0nuxn,], <IJ~[inu p;IP.,] (A II)

and the n x n matrix Jl ~ FT<IJ. Note that since <lJFT = I nu ' Jl is idempotent, i.e. Jl2 =u.
Next note that (A 8) and (A II) imply (2.15). Similarly, (2.14) is equivalent to

(2.10) with Be given by (2.15). Finally, (2.16) is a restatement of (2.12). Now, using the
expression for Be> A and ji become

A=A-JlQ.ViIC (A 12)

ji = VI - VI2Vi I Q~ JlT - JlQ.Vi I Vi 2 + JlQ.Vi I Q~ Jl T (A 13)

Finally, (2.17) and (2.18) follow from (A 3) and (A 7) using (A 12) and (A 13).
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1266 Reduced-order state estimation for unstable plants

For the discrete-time problem define the second-moment matrix

Q(k) ~ 1E[.i(k);i'T(k)]

which satisfies

Q(k + 1) = AQ(k),.4T + Ii

Since A is asymptotically stable

Q~ lim lE[i(k)iT(k)]

k- 00

exists and satisfies

The remainder of the proof follows as above for the continuous-time case.
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