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Abstract This paper analyzes energy equipartition in linear Hamiltonian systems
in a deterministic setting. We consider the group of phase space symmetries of a stable
linear Hamiltonian system, and characterize the subgroup of symmetries whose ele-
ments preserve the time averages of quadratic functions along the trajectories of the
system. As a corollary, we show that if the system has simple eigenvalues, then every
symmetry preserves averages of quadratic functions. As an application of our results
to linear undamped lumped-parameter systems, we provide a novel proof of the virial
theorem, which states that the total energy is equipartitioned on the average between
the kinetic energy and the potential energy. We also show that under the assumption
of distinct natural frequencies, the time-averaged energies of two identical substruc-
tures of a linear undamped structure are equal. Examples are provided to illustrate the
results.
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1 Introduction

Undamped and thus conservative mechanical systems are Lyapunov stable, and thus
have no steady-state energy distribution. The simplest example of an undamped
single-degree-of-freedom oscillator shows that the system’s energy is periodically
converted from purely kinetic to purely potential and then back to purely kinetic.
A two-degree-of-freedom system consisting of an interconnected pair of undamped
oscillators exhibits similar behavior, with the energy alternately possessed by one oscil-
lator and then the other. Yet, in classical statistical thermodynamics, a crystalline solid
is modeled as a lattice of identical molecules undergoing undamped vibrations, whose
degrees of freedom are assumed to satisfy the principle of equipartition of energy.
Thus, despite the lack of a steady-state energy distribution in undamped systems, lat-
tice models with a large number of oscillators provide the conceptual foundation for
macroscopic energy transfer.

A model of the macroscopic dynamics is provided by the laws of thermodynamics,
which govern the dynamics of heat. The laws of thermodynamics are inherently empir-
ical, and the development of these laws and associated concepts has had a long and
tortuous history, see [9,20]. From a systems perspective, thermodynamics is a theory
of large scale systems, whose properties, in modern terminology, are a manifestation
of emergent behavior.

Statistical mechanics has been very successful at predicting the macroscopic prop-
erties of a large-scale system from those of its microscopic constituents. However,
statistical mechanics possesses two features that systems theorists and dynamicists
have repeatedly attempted to understand rigorously [2,4,8,10,17,18,21,22]. The first
is the use of stochastics to deduce the macroscopic properties of a system from the
deterministic dynamics of its microscopic constituents. The second is the assumption
of a large number of microscopic constituents. While the assumption of a large num-
ber of constituents is related to the use of asymptotic approximations like the Stirling
approximation [19] or the central limit theorem [13], the use of stochastics arises from
assuming the initial states to be random variables distributed according to canoni-
cal ensembles or distributions that remain invariant under the collective, conservative
dynamics of the microscopic constituents.

The principle of equipartition of energy is a well-known result of classical statisti-
cal mechanics. It states that the average energies in any two degrees of freedom of a
large-scale system in thermal equilibrium are equal, where the averages are ensemble
averages taken with respect to one of the canonical ensembles on the state space. Under
the assumption of ergodicity, the principle of equipartition of energy also implies that
the time averages of the energies in any two degrees of freedom are equal. Physically,
the principle of equipartition of energy implies that the temperature of each subsystem
converges to the same value, thus underpinning the zeroth law of thermodynamics,
i.e., that heat flows from hot to cold. The objective of this paper is to investigate
equipartition in a deterministic setting for linear undamped systems whose number of
degrees of freedom is not necessarily large.

In [7] a deterministic averaging approach was used to analyze equipartition in
collections of identical, undamped coupled oscillators. It was shown that equipartition
of energy holds for a pair of identical, coupled oscillators with distinct coupled
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frequencies. This result shows that, with time averaging, energy flows from the initially
higher energy oscillator to the initially lower energy oscillator, thereby verifying the
zeroth law of thermodynamics for a pair of coupled oscillators. In addition, numerical
evidence was presented to suggest that an analogous result holds for a collection of
coupled oscillators.

Reference [16] adopted a deterministic averaging approach in a behavioral frame-
work to analyze equipartition in an oscillatory system comprised of two identical
subsystems coupled together in a symmetric manner. It was shown that if the coupling
renders the motion of each of the two subsystems observable through the variables
of the other, then, along every motion of the coupled system, the time average of any
given quadratic functional of the variables of one subsystem equals the time average of
the same functional of the variables of the other subsystem. In particular, it follows that
the energies of the two subsystems are equal on the average. An equipartition result in
a time-averaged sense is also given in [1, Sec. 3.7] under the assumption of ergodicity.
Reference [10] contains results which show that compartmental systems modeled in
terms of energy exchange satisfying natural axioms exhibit energy equipartition in the
steady state (but not necessarily in a time-averaged sense).

Intuitively, one expects a system composed of coupled subsystems to exhibit
equipartition of energy only if the subsystems are symmetrically related, i.e., the
state variables of one subsystem transform to those of the other subsystem under
a state-space symmetry S that leaves the dynamics of the overall coupled system
unchanged. Moreover, the energies of such symmetrically related subsystems, which
are quadratic functions on the full state space, transform into one another under the
symmetry transformation S. Hence, the average energies of the two identical sub-
systems are equal if the symmetry S that relates the two subsystems also preserves
averages of all quadratic functions.

To formalize the above ideas we consider the Lie group GA of phase space sym-
metries of a linear Hamiltonian system ẏ = Ay. Thus GA is the set of all symplectic
transformations that leave the dynamics of the system invariant. As expected from
Noether’s theorem [3, Appendix 5], the Lie algebra of GA is the set of all linear
Hamiltonian systems whose Hamiltonian functions are the quadratic integrals of
motion of the original system ẏ = Ay.

In Sect. 4, we consider averages of quadratic functions along the solutions of a sta-
ble Hamiltonian system. In Sect. 5, we identify symmetries of the Hamiltonian system
that preserve averages of quadratic functions. Our main result says that the symmetries
in GA that preserve the average of every quadratic function form the subgroup GA of
GA whose elements are also symmetries of every linear Hamiltonian system whose
Hamiltonian function is an integral of motion of the original system.

In Sect. 6, we characterize the groups GA and GA along with their Lie algebras
and describe their structure in terms of the eigenstructure of A. In particular, we show
that the subgroup GA of average-preserving symmetries is the center subgroup of GA

consisting of those symmetries of the system that commute with every other symmetry
of the system. As a corollary of our characterization, we show that if the system has
distinct eigenvalues, then GA = GA, i.e., every symmetry preserves averages. This
corollary partly justifies the assumption of distinct coupled natural frequencies used
in [7].
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In Sect. 7, we apply our main result to undamped linear lumped-parameter sys-
tems. We show that the kinetic and potential energies of such a system, considered
as quadratic functions on the phase space, transform into one another under a phase
space symmetry of the system that also commutes with every other phase space sym-
metry. An application of our main result thus yields a novel proof of the virial theorem
for linear systems, which states that the average kinetic and potential energies of an
undamped linear mechanical system are equal. We also specialize our main result to
configuration space symmetries, i.e., orthogonal transformations on the configuration
space that leave the mass and stiffness matrices invariant. We show that under the
assumption of distinct natural frequencies, every configuration-level symmetry pre-
serves the average of a quadratic function of positions or velocities. We provide an
example to illustrate how this corollary can be used to deduce equipartition among
identical subsystems of an undamped system. We also provide an example to show
that equipartition does not necessarily hold when the assumption of distinct natural
frequencies fails.

2 Preliminaries

We begin by reviewing some terminologies and notions from symplectic geometry.
The reader may refer to [3, Sec. 41] and [14, Ch. II] for further details.

For each positive integer n, we let In denote the identity matrix of size n × n, and
let

J2n
def=

[
0 In

−In 0

]
.

Given n, the canonical symplectic form on R
2n is the nondegenerate, skew-symmetric,

bilinear form given by (x, y) �→ xT J2ny. For every n, R
2n together with the canonical

symplectic form is a symplectic space [14, Ch. II].
Two subspaces V1 and V2 of R

2n are skew-orthogonal if xT
1 J2nx2 = 0 for all

x1 ∈ V1 and x2 ∈ V2.
A symplectic subspace of R

2n is a linear subspace W of R
2n such that, for every

nonzero x ∈ W, there exists y ∈ W such that xT J2ny �= 0. Every symplectic subspace
of R

2n has even dimension [14, p. 43].
Suppose V is a 2r -dimensional symplectic subspace of R

2n . A basis {x1, . . . ,x2r }
for the subspace V is a symplectic basis if xT

i J2nx j = (J2n)i j for all i, j ∈ {1, . . . , 2r}.
The standard basis is a symplectic basis for R

2n . Every symplectic subspace of R
2n

has a symplectic basis [14, Cor. II.B.2].
A matrix S ∈ R

2n×2n is symplectic if ST J2n S = J2n , and Hamiltonian if J2n S is
symmetric. We denote by Sp(n) the set of all 2n × 2n symplectic matrices. Sp(n) is a
n(2n + 1)-dimensional Lie group [15, p. 8]. The Lie algebra of Sp(n) is the set sp(n)

of 2n × 2n Hamiltonian matrices [5, Prop. 11.5.5]. A matrix B ∈ sp(n) is stable if
every eigenvalue of B is semisimple and has zero real part.

For every n, we denote the 1
2 n(n + 1)-dimensional real vector space of all n ×

n real symmetric matrices by Sym(n), the set of all n × n real special orthogonal
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matrices by SO(n), and the 1
2 n(n − 1)-dimensional real vector space of all n × n real

skew-symmetric matrices by so(n). SO(n) is a 1
2 n(n − 1)-dimensional Lie group, and

has the Lie algebra so(n) [5, Prop. 11.5.5].
Two groups G1 and G2 are isomorphic if there exists a bijection ϕ : G1 → G2

such that ϕ(S1S2) = ϕ(S1)ϕ(S2) for all S1, S2 ∈ G1.
The center subgroup of a group G is the set of elements in G that commute

with all other elements of G under the group operation. The center subalgebra of
a Lie algebra g is the set of elements in g that commute with all other elements of
g [15, p. 40] under the Lie bracket.

Later in this paper, we will have to consider the group Sp(n) ∩ SO(2n) of all sym-
plectic, special orthogonal matrices. Sp(n) ∩ SO(2n) is a closed subgroup of the Lie
group Sp(n), and hence a Lie group [15, Thm. 2.3.6]. It is easy to show that the Lie
algebra of Sp(n) ∩ SO(2n) is the set sp(n) ∩ so(2n) of Hamiltonian, skew-symmetric
matrices. It is also easy to show that S ∈ Sp(n) ∩ SO(2n) if and only if S ∈ Sp(n)

and S J2n = J2n S. Similarly, B ∈ sp(n) ∩ so(2n) if and only if B ∈ sp(n) and
B J2n = J2n B. It follows that, if S, B ∈ R

2n×2n are partitioned as

S =
[

R1 R2
−R2 R1

]
, B =

[
G P

−P G

]
, (1)

where R1, R2, G, P ∈ R
n×n , then S ∈ Sp(n)∩SO(2n) if and only if RT

1 R1 + RT
2 R2 =

In and RT
2 R1 − RT

1 R2 = 0, while B ∈ sp(n) ∩ so(2n) if and only if G ∈ so(n) and
P ∈ Sym(n). This last fact allows us to conclude that sp(n) ∩ so(2n) is a n2-dimen-
sional Lie algebra. Consequently, Sp(n) ∩ SO(2n) is a n2-dimensional Lie group.

Our first result characterizes the center subgroup of Sp(n) ∩ SO(2n) for later use.
The proof is given in Appendix.

Proposition 2.1 The following statements are equivalent.

(i) S belongs to the center subgroup of Sp(n) ∩ SO(2n).
(ii) S ∈ Sp(n) and SB = BS for all B ∈ sp(n) ∩ so(2n).

(iii) There exists t ∈ R such that S = eJ2n t .

Proposition 2.1 implies that the center subgroup of Sp(n) ∩ SO(2n) is the
one-parameter subgroup generated by J2n . Our next result shows that the center sub-
algebra of sp(n) ∩ so(2n) is span{J2n}. The proof is given in Appendix.

Proposition 2.2 The center subalgebra of sp(n) ∩ so(2n) is span{J2n}.
Our last two results of this section characterize the center subgroup and subalgebra

of Sp(n) and sp(n), respectively. The proofs of both results are given in Appendix.

Proposition 2.3 The following statements are equivalent.

(i) S belongs to the center subgroup of Sp(n).
(ii) S ∈ Sp(n) and SB = BS for all B ∈ sp(n).

(iii) S ∈ {I2n,−I2n}.
Proposition 2.4 The center subalgebra of sp(n) is {0}.
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Given subsets G1, . . . , Gk of R
n×n , we use

⊗k
i=1 Gi to denote the set {S1 · · · Sk :

Si ∈ Gi, i = 1, . . . , k} of all possible ordered products formed by taking exactly one
element from each Gi. If V1, . . . , Vk are linear subspaces of R

2n such that Vi ∩V j =
{0} for all distinct i, j ∈ {1, . . . , k}, then we denote the direct sum of V1, . . . , Vk by⊕k

i=1 Vi.
Finally, given square matrices A1, . . . , Ak , we denote by diag(A1, . . . , Ak) the

block diagonal matrix

⎡
⎢⎣

A1 · · · 0

0
. . . 0

0 · · · Ak

⎤
⎥⎦ .

3 Integrals of motion and symmetries of linear Hamiltonian systems

In this paper, we consider a linear Hamiltonian system, i.e., a system having the
state-space description

ẏ(t) = Ay(t), (2)

where y(t) ∈ R
2n and A ∈ sp(n). The Hamiltonian function of the system (2) is the

quadratic function x �→ xT Hx, where the matrix H
def= −J2n A = J−1

2n A = AT J2n is
symmetric.

Next, define LA : Sym(2n) → Sym(2n) by

LA(P)
def= AT P + P A.

For each P ∈ Sym(2n), the quadratic function x �→ xTLA(P)x is the Lie derivative of
the quadratic function x �→ xT Px along trajectories of (2), i.e., for every solution y(·)
of (2) and for every P ∈ Sym(2n), it follows that d

dt y
T(t)Py(t) = yT(t)LA(P)y(t)

for all t ∈ R. If P ∈ kernel LA, then AT P + P A = 0, and thus the quadratic function
x �→ xT Px is an integral of motion for the system (2).

Next, we introduce the set GA
def= {S ∈ Sp(n) : S−1 AS = A} of linear symplectic

transformations with respect to which the dynamics (2) are invariant in the sense that
z(·) = S−1y(·) satisfies (2) for every S ∈ GA and every y(·) satisfying (2). It will be
convenient to refer to each element of GA as a symmetry of (2). It is easy to show that
GA = {S ∈ Sp(n) : ST H S = H} so that GA is also the set of symplectic transfor-
mations that leave the quadratic Hamiltonian function x �→ xT Hx invariant. GA is
clearly a group. Our next result asserts that GA is a Lie group. Furthermore, the Lie
algebra of GA is the Lie algebra of linear Hamiltonian systems ẋ = Bx on R

2n , each
of whose quadratic Hamiltonian function xT J−1

2n Bx is a quadratic integral of motion
of (2).
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Proposition 3.1 GA is a closed Lie subgroup of Sp(n), and its Lie algebra is gA
def=

{B ∈ sp(n) : AB = B A}. Furthermore,

gA = {J2n P : P ∈ kernel LA}.

Proof The first statement follows from (1) of Theorem I.1.2.1 of [15] by noting that
GA is the stabilizer of A under the action of the group Sp(n) on R

2n×2n given by
(S, B) �→ S−1 BS. The second statement follows from the fact that B ∈ sp(n) satis-

fies AB = B A if and only if P
def= J−1

2n B ∈ kernel LA. ��
Remark 3.1 The relationship between the symmetries and the integrals of motion
of (2) pointed out in Proposition 3.1 is a restatement of the Hamiltonian version of
Noether’s theorem (see, for instance, [3, Appendix 5], [14, Thm. V.D.1]).

4 Time-averages of quadratic functions

In this section, we investigate time-averages of quadratic functions along the solutions
of (2).

Henceforth, we assume that the Hamiltonian matrix A is stable. Thus all eigen-
values of A are semisimple and imaginary, and every solution of (2) is bounded.
In particular, the matrix exponential t �→ eAt is a bounded function.

Next, we define AA : Sym(2n) → Sym(2n) by

AA(Q)
def= lim

t→∞
1

t

t∫
0

eATτQeAτ dτ. (3)

For x ∈ R
2n and Q ∈ Sym(2n), xTAA(Q)x is the average over [0,∞) of the quadratic

function z �→ zTQz evaluated along the solution y(·) of (2) satisfying y(0) = x. Thus
the elements of kernel AA represent quadratic functions that have zero average along
trajectories of (2).

The next result relates the property of having zero average along trajectories of (2)
to the property of being an integral of motion of (2). More specifically, equation (4)
below asserts that a quadratic function is an integral of motion of (2) if and only if it
is the average of some quadratic function along the solutions of (2), while (5) asserts
that a quadratic function has zero average along trajectories of (2) if and only if it is
the Lie derivative of some quadratic function along the trajectories of (2). Equation (4)
is also given as Proposition 15 in [16].

Proposition 4.1

kernel LA = range AA, (4)

kernel AA = range LA. (5)
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Proof Let Q ∈ Sym(2n) and consider P = AA(Q). We have

LA(P) = lim
t→∞

1

t

t∫
0

(
ATeATτQeAτ + eATτQeAτ A

)
dτ

= lim
t→∞

1

t

t∫
0

d
dτ

eATτQeAτ dτ = lim
t→∞

1

t

[
eATtQeAt − Q

]
= 0.

Thus range AA ⊆ kernel LA. To show the reverse inclusion, let Q ∈ kernel LA. Then
eATτQeAτ = Q for τ = 0 and d

dτ
eATτQeAτ = eATτLA(Q)eAτ = 0 for all τ ≥ 0,

so that eATτQeAτ = Q for all τ > 0. Hence AA(Q) = Q so that Q ∈ range AA.
Equation (4) now follows.

It is easy to verify by direct substitution that LA ◦AA = AA ◦LA, while (4) implies
that LA ◦ AA = 0. Hence, it follows that range LA ⊆ kernel AA. To show that equal-
ity holds, we note that dim(range LA) = n(2n + 1) − dim(kernel LA) = n(2n +
1) − dim(range AA) = dim(kernel AA), where we have used (4). Since range LA is
contained in kernel AA and has the same dimension as kernel AA, (5) follows. ��

5 Average-preserving symmetries

In this section, we identify symmetries of (2) that preserve time averages of qua-
dratic functions along solutions of (2). Specifically, we show that the set of average-

preserving symmetries of (2) is the set GA
def= ∩B∈gA GB . Note that every element of

GA is a symmetry of (2) that is also a symmetry of every linear Hamiltonian system
ẋ = Bx whose quadratic Hamiltonian function x �→ xT J−1

2n Bx is an integral of
motion of (2).

Recall that the center subalgebra of gA is the set gA
def= {C ∈ gA : C B =

BC for all B ∈ gA} of elements in gA that commute with every element of gA. The
center subalgebra gA is a commutative Lie subalgebra of gA. It is easy to show that
gA = ∩B∈gA gB . The next result states that GA is a Lie subgroup of Sp(n), and that
the Lie algebra of GA is gA.

Proposition 5.1 GA is a Lie subgroup of Sp(n), and its Lie algebra is gA.

Proof The result follows from Proposition 3.1 and Theorem I.1.4.2 of [15]. ��
The following theorem, which is our main result, asserts that two quadratic func-

tions related by a symmetry of (2) have equal averages along every solution of (2) if
and only if the symmetry relating the two quadratic functions is contained in GA.

Theorem 5.1 Suppose S ∈ GA. Then AA(STQS) = AA(Q) for every Q ∈ Sym(2n)

if and only if S ∈ GA.

Proof We begin by noting that, since SeAt = eAt S for every t , it follows that
AA(STQS) = STAA(Q)S for every Q ∈ Sym(2n).
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To show sufficiency, suppose S ∈ GA and let Q ∈ Sym(2n). Proposition 4.1 implies
that AA(Q) ∈ kernel LA, so that J2nAA(Q) ∈ gA by Proposition 3.1. It now follows
by the definition of GA that S ∈ GJ2nAA(Q), i.e., STAA(Q)S = AA(Q). Hence, it
follows that AA(STQS) = AA(Q).

Next, to prove necessity, suppose AA(STQS) = AA(Q) for every Q ∈ Sym(2n),

and let B ∈ gA. Define Q
def= J−1

2n B ∈ Sym(2n). Proposition 3.1 implies that Q ∈
kernel LA, so that eATτQeAτ = Q for all τ ≥ 0, and hence AA(Q) = Q. We now have
STQS = STAA(Q)S = AA(STQS) = AA(Q) = Q, which implies that SB = BS,
i.e., S ∈ GB . Since B ∈ gA was chosen arbitrarily, it follows that S ∈ GA. ��

6 Structure of the Lie groups GA and GA

In this section, we characterize the Lie groups GA and GA as well as their Lie algebras.
Let ±jβ1, . . . ,±jβr be the distinct nonzero eigenvalues of the stable Hamilto-

nian matrix A, and let m1, . . . , mr be the corresponding algebraic multiplicities. Let

2m0 ≥ 0 be the algebraic multiplicity of the zero eigenvalue β0
def= 0 of A, so that

2(m0 + · · · + mr ) = 2n.

For every i ∈ {0, . . . , r}, let Vi
def= {x ∈ R

2n : A2x = −β2
i x}. For every i ∈

{1, . . . , r}, the subspace Vi is the real eigenspace of A associated with the eigenvalue
pair ±jβi. Since A is stable, each of its eigenvalues is semisimple, and hence, for
every i ∈ {1, . . . , r}, the subspace Vi has dimension 2mi. The subspace V0, which is
the eigenspace associated with the zero eigenvalue, has dimension 2m0. It is easy to
show that each of the subspaces V0, . . . , Vr is an invariant subspace of every element
of GA and gA. Given distinct i, j ∈ {0, . . . , r}, the subspaces Vi and V j are skew
orthogonal, i.e., xT J2ny = 0 for every x ∈ Vi and every y ∈ V j [14, Lem. II.D.1].
Consequently, each of these subspaces is a symplectic subspace of R

2n [14, Prop.
II.B.4]. Finally, R

2n = ⊕r
i=0 Vi.

Next, for each i = 0, 1, . . . , r , we define Gi
def= {S ∈ GA : Sx = x for every x ∈

V j and every j �= i} and gi
def= {B ∈ gA : Bx = 0 for every x ∈ V j and every j �=i}.

Note that Gi ∩ G j = {I2n} and gi ∩ g j = {0} for every i �= j . For each i ∈ {0, . . . , r},
we also let Gi and gi denote the center subgroup and center subalgebra of Gi and gi,
respectively.

Lemma 6.1 Let H0
def= Sp(2m0) and h0

def= sp(2m0). Further, for each i ∈ {1, . . . , r},
let Hi

def= Sp(2mi)∩SO(2mi) and hi
def= sp(2mi)∩ so(2mi). There exists an invertible

matrix U ∈ R
2n×2n such that the following statements hold.

(i) Suppose i ∈ {0, . . . , r}. Then S ∈ Gi if and only if there exists Si ∈ Hi such that
U−1SU = diag(S0, . . . , Sr ), where S j = I2m j for every j �= i.

(ii) Suppose i ∈ {0, . . . , r}. Then B ∈ gi if and only if there exists Bi ∈ hi such that
U−1 BU = diag(B0, . . . , Br ), where B j = 0 ∈ R

2m j ×2m j for every j �= i.

Proof Since every eigenvalue of A is semisimple and imaginary, there exists a basis

B={x1, . . . ,x2n} for R
2n such that, for every i∈ {0, . . . , r},Bi

def={x2mi−1+1, . . . ,x2mi}
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is a symplectic basis for the symplectic subspace Vi, and the matrix representation of
the linear map x �→ Ax in the basis B is Â = diag( Â1, . . . , Âr ), where Âi = βi J2mi

for every i ∈ {0, . . . , r} (see Lemma II.C.5 of [14]). Define U
def= [x1, . . . ,x2n] ∈

R
2n×2n . Then it follows that Â = U−1 AU . Since the bases Bi, i ∈ {0, . . . , r}, are sym-

plectic bases for mutually skew-orthogonal subspaces, it follows that Ĵ
def= U T J2nU =

diag(J2m0 , . . . , J2mr ).
To prove necessity in (i), choose i ∈ {0, . . . , r} and consider S ∈ Gi. Since the lin-

ear map x �→ Sx restricts to the identity map on each subspace V j , j �= i, and leaves
the subspace Vi invariant, it follows that the matrix representation of the map x �→ Sx

in the basis B is given by Ŝ
def= U−1SU = diag(S0, . . . , Sr ), where S j = I2m j for each

j �= i. ST J S = J implies that ŜT Ĵ Ŝ = Ĵ , from which it follows that Ŝi ∈ Sp(mi).
Thus necessity in (i) follows for the case i = 0.

Next, S A = AS implies that Ŝ Â = ÂŜ, from which it follows that βiSi J2mi =
βi J2mi Si. It immediately follows that, if i �= 0, then Si J2mi = J2mi Si, so that Si ∈
Sp(mi) ∩ SO(2mi). Thus necessity in (i) follows for the case i ∈ {1, . . . , r}.

To show sufficiency in (i), let i ∈ {0, . . . , r} and choose Si ∈ Hi. Define Ŝ
def=

diag(S0, . . . , Sr ) with S j = I2m j for every j �= 0. Then Ŝ satisfies ŜT Ĵ Ŝ = Ĵ and

Ŝ Â = ÂŜ, so that S
def= U ŜU−1 ∈ GA. To show that S ∈ Gi, let j �= i, and choose

x ∈ V j . Then U−1x is the representation of x in the basis B. Since x ∈ V j , those
elements of U−1x which correspond to the components of x in the bases Bk , k �= j ,
are zero. Consequently, ŜU−1x = U−1x. It now follows that Sx = x. Since j �= i
and x ∈ V j were chosen arbitrarily, it follows that S ∈ Gi.

The proof that (ii) holds is similar, and left to the reader. ��
Using Lemma 6.1 it is easy to show that, if i �= j and S1 ∈ Gi, S2 ∈ G j , B1 ∈ gi

and B2 ∈ g j , then S1S2 − S2S1 = S1 B2 − B2S1 = B1 B2 − B2 B1 = 0.
The next result lists some properties of the Lie groups Gi, Gi, and Lie algebras gi,

gi, i = 0, . . . , r .

Proposition 6.1 The following statements hold.

(i) For every i ∈ {0, . . . , r}, Gi is a Lie subgroup of GA and its Lie algebra is gi.
Moreover, Gi is a normal subgroup of GA while gi is an ideal of gA for every
i ∈ {0, . . . , r}.

(ii) G0 is isomorphic to Sp(m0), while, for every i ∈ {1, . . . , r}, Gi is isomorphic
to Sp(mi) ∩ SO(2mi).

(iii) The Lie subalgebra g0 is isomorphic to the 1
2 m0(m0+1)-dimensional Lie algebra

sp(m0), while, for every i ∈ {1, . . . , r}, gi is isomorphic to the m2
i -dimensional

Lie algebra sp(mi) ∩ so(2mi).
(iv) G0 is isomorphic to the discrete group {1,−1}, while, for every i ∈ {1, . . . , r},

Gi is isomorphic to the one-parameter subgroup of Sp(mi) generated by J2mi .
(v) For every i ∈ {1, . . . , r}, gi is isomorphic to the one-dimensional Lie algebra

span{J2mi}, while g0 = {0}.
Proof (i) Each Gi is a closed subgroup of GA, and hence a Lie subgroup of GA

[15, Thm. I.2.3.6]. The proof that the Lie algebra of Gi is gi is straightforward
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and left to the reader. To show that Gi is a normal subgroup of GA, let j �= i
and consider S ∈ Gi, T ∈ GA and x ∈ V j . Since V j is invariant under T , it
follows that ST x = T x, so that T −1ST x = x. Thus, T −1ST ∈ Gi, and hence
Gi is a normal subgroup of GA. It now follows immediately that gi is an ideal
in gA.

(ii) The proof of (ii) follows directly from (i) of Lemma 6.1.
(iii) The proof of (iii) follows directly from (ii) of Lemma 6.1.
(iv) The proof that G0 is isomorphic to the discrete group {1,−1} follows from

Proposition 2.3 and (ii) of Proposition 6.1. The proof that Gi is isomorphic to
{eJ2mi t : t ∈ R} for every i ∈ {1, . . . , r} follows from Proposition 2.1 and (ii)
of Proposition 6.1.

(v) The proof that gi is isomorphic to span{J2mi} for every i ∈ {1, . . . , r} follows
from Proposition 2.2 and (iii) of Proposition 6.1. The proof that g0 = {0} follows
from Proposition 2.4 and (iii) of Proposition 6.1. ��

The next result completely characterizes the groups GA and GA along with their
respective Lie algebras gA and gA.

Theorem 6.1 The following statements hold.

(i) GA = ⊗r
i=0 Gi and gA = ⊕r

i=0 gi. Consequently, the dimensions of the sub-
spaces gA and kernel LA are both equal to 1

2 m0(m0 + 1) + m2
1 + · · · + m2

r .
(ii) GA is the center subgroup of GA and equals

⊗r
i=0 Gi. Moreover, gA = ⊕r

i=1 gi.
Consequently, the dimension of the Lie algebra gA equals r , i.e., half the number
of distinct nonzero eigenvalues of A.

Proof (i) To prove GA = ⊗r
i=0 Gi, it suffices to show that GA ⊆ ⊗r

i=0 Gi. Consider
S ∈ GA. For every i ∈ {0, . . . , r}, there exists a matrix Si ∈ R

2n×2n such that Six = x
for every j �= i and every x ∈ V j , while Six = Sx for all x ∈ Vi.

We claim that Sk is symplectic for every k. Let i, j, k ∈ {0, . . . , r} and consider
x ∈ Vi and y ∈ V j . If i = j = k, then xTST

k J2n Sky = xTST J2n Sy = xT J2ny.
If i = j �= k, then xTST

k J2n Sky = xT J2ny. If i �= j , then the fact that Vi and V j

are skew-orthogonal, invariant subspaces of Sk implies that xTST
k J2n Sky and xT J2ny

are both zero and hence equal. We have shown that, for every i, j ∈ {0, . . . , r},
xTST

k J2n Sky = xT J2ny for all x ∈ Vi and y ∈ V j . Since R
2n is the direct sum of the

subspaces V0, . . . , Vr , it follows that xT ST
k J2n Sky = xT J2ny for all x, y ∈ R

2n . We
conclude that ST

k J2n Sk = J2n , and Sk ∈ Sp(n).
Next, to show that Si ∈ Gi, let j ∈ {0, . . . , r}, and consider x ∈ V j . If j �= i,

then Si Ax = Ax and Six = x, so that Si Ax = ASix. If j = i, then Si Ax =
S Ax = ASx = ASix. Since R

2n is a direct sum of the subspaces V j , j = 0, . . . r ,
it follows that Si A = ASi, i.e., Si ∈ GA. Our construction of Si now implies that
Si ∈ Gi for every i. It is easy to check that, for every i ∈ {0, . . . , r} and every x ∈ Vi,
Sx = S0S1S2 . . . Srx. Since R

2n = ⊕r
i=0 Vi, it follows that S = S0S1S2 . . . Sr . Thus

GA ⊆ ⊗r
i=0 Gi.

The proof that gA = ⊕r
i=0 gi is similar, and left to the reader. The assertion about

the dimension of gA follows from (iii) of Proposition 6.1.
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(ii) We prove the first part of (ii) by showing that
⊗r

i=0 Gi ⊆ C ⊆ GA ⊆ ⊗r
i=0 Gi,

where C is the center subgroup of GA.
Consider S ∈ ⊗r

i=0 Gi. We wish to show that S commutes with every element of
GA. In light of (i) of Theorem 6.1, it suffices to prove that, for every i, S commutes
with every element of Gi. Hence consider i ∈ {0, . . . , r} and let T ∈ Gi. T clearly
commutes with those factors of S that do not lie in Gi. T also commutes with that
factor of S which lies in Gi, since Gi is the center subgroup of Gi. Thus it follows
that S and T commute. Since i ∈ {0, . . . , r} and T ∈ Gi were chosen arbitrarily, it
follows that S ∈ C.

Next, consider S ∈ C and B ∈ gA. Since B commutes with A, it follows that, for
every t , the symplectic matrix eBt commutes with A, i.e., eBt ∈ GA. Since S ∈ C,
it follows that SeBt = eBt S for all t . Differentiation yields SB = BS, i.e., S ∈ GB .
Since B ∈ gA was chosen arbitrarily, it follows that S ∈ GA.

Now consider S ∈ GA. By (i) of Theorem 6.1, there exist Si ∈ Gi, i ∈ {0, . . . , r},
such that S = S0 . . . Sr . First consider i ∈ {1, . . . , r}. Since S ∈ GA and gi ⊆ gA,
it follows that S commutes with every element of gi. For every j �= i, the matrix
S j ∈ G j commutes with every matrix in gi. Hence it follows that Si commutes with
every matrix in gi. Lemma 6.1 implies that, for each i ∈ {1, . . . , r}, there exists a
map βi : R

2n×2n → R
2mi×2mi such that the restriction of βi to Gi is a group isomor-

phism between Gi and Sp(mi) ∩ SO(2mi), the restriction of βi to gi is a Lie-algebra
isomorphism between gi and sp(mi) ∩ so(2mi), and βi(T B) = βi(T )βi(B) for every
T, B ∈ Gi ∪ gi. Since Si commutes with every matrix in gi, it follows that βi(Si)

commutes with every matrix in sp(mi) ∩ so(2mi). Proposition 2.1 now implies that
βi(Si) belongs to the center subgroup of Sp(mi) ∩ SO(2mi). Since βi is a group iso-
morphism, it follows that Si ∈ Gi. A similar argument along with Proposition 2.3
shows that S0 ∈ G0. Thus, S ∈ ⊗r

i=0 Gi, and the conclusion follows.
Using similar arguments, it can be shown that gA = ⊕r

i=1 gi. The assertion about
the dimension of gA now follows from (v) of Proposition 6.1. ��

The dimension of the space of quadratic integrals of motion of (2) given in
Theorem 6.1 above is also given in Proposition 12 of [16] for the special case where
m0 = 0. The following corollary, which is given as Corollary 12 in [16], specializes
Theorem 6.1 to the case where the matrix A is simple, i.e., every eigenvalue of A has
algebraic multiplicity equal to unity.

Corollary 6.1 The following statements are equivalent.

(i) A is simple.
(ii) GA = GA.

(iii) GA is commutative.

Furthermore, if A is simple, then gA = gA, and gA and kernel LA are n-dimensional
subspaces of sp(n) and Sym(2n), respectively.

Proof The result follows from Theorem 6.1 by noting that if A is simple, then r = n,
m0 = 0 and mi = 1 for every i ∈ {1, . . . , n}. ��
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7 Undamped lumped-parameter systems

In this section, we apply Theorem 5.1 to the undamped lumped-parameter mechanical
system described by

Mq̈(t) + K q(t) = 0, (6)

where q ∈ R
n , and M, K ∈ Sym(n) are the positive-definite mass and stiffness

matrices, respectively.
As a first application of Theorem 5.1, we prove the classical virial theorem as

applied to (6) which states that the time-averaged potential and kinetic energies of the
system (6) are equal. Our proof is novel in that it relies on ideas of symmetry.

Defining the state vector y =
⎡
⎣ M

1
2 q

M
1
2 q̇

⎤
⎦ ∈ R

2n yields the state space description

(2) of the system (6) with

A =
[

0 In

−M− 1
2 K M− 1

2 0

]
.

The matrix A is Hamiltonian. Consequently, the system (6) is Hamiltonian with the
Hamiltonian function x �→ xT Hx, where

H =
[

M− 1
2 K M− 1

2 0
0 In

]
.

Under our assumptions on the mass and stiffness matrices, the matrix A is Lyapunov
stable [6, Cor. 2] and has only nonzero eigenvalues [6, Lem. 4].

On letting

Q1 = 1

2

[
M− 1

2 K M− 1
2 0

0 0

]
, Q2 = 1

2

[
0 0
0 In

]
,

it follows that xTQ1x = 1
2 qT K q and xTQ2x = 1

2 q̇T Mq̇ are the potential and kinetic
energies, respectively, of the system (6). It is a simple matter to verify that the matrix

S =
⎡
⎣ 0 −(M− 1

2 K M− 1
2 )

− 1
2

(M− 1
2 K M− 1

2 )
1
2 0

⎤
⎦

is symplectic and satisfies

(i) ST H S = H , i.e., S ∈ GA, and
(ii) STQ2S = Q1.
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We claim that S ∈ GA. To show this, consider T ∈ GA, so that T satisfies AT =
T A. If T is partitioned as

T =
[

T1 T12
T21 T2

]
,

where T1, T12, T21, T2 ∈ R
n×n , then it follows from AT = T A that T1 = T2,

T21 = −T12(M− 1
2 K M− 1

2 ) and that T1, T12, T21, T2 commute with M− 1
2 K M− 1

2 .
These properties of the submatrices T1, T12, T21 and T2 can be used to show that S
commutes with T . Since T ∈ GA was chosen arbitrarily, it follows from (ii) of Theo-
rem 6.1 that S ∈ GA. Theorem 5.1 now leads to the virial theorem, which we state as
the following corollary.

Corollary 7.1 Along every solution of (6), the time averages of the kinetic and poten-
tial energies over [0,∞) are equal.

The interested reader may refer to Section 3.7 of [1] for an alternative treatment
of the virial theorem in a general setting. It should be emphasized that the traditional
proof of the virial theorem is extremely direct and simple, and applies to a larger
class of systems than (6) (see, for instance, [11]). However, the interesting aspect of
our proof is that it reveals an unexpected connection between the virial theorem and
phase-space symmetries.

Next, a configuration symmetry of (6) is an orthogonal matrix R ∈ R
n×n such that

RT M R = M and RT K R = K . A configuration symmetry thus represents an orthog-
onal change of position coordinates that leaves the dynamical equation (6) invariant.

Our next result considers symmetries of (2) that arise from configuration symme-
tries of (6).

Corollary 7.2 Suppose the system (6) has distinct natural frequencies, and let R ∈
R

n×n be a configuration symmetry. Then, for every matrix P ∈ Sym(n), the time
averages over [0,∞) of t �→ qT(t)Pq(t) and t �→ qT(t)RT P Rq(t) are equal along
every solution of (6). Likewise, the time averages over [0,∞) of t �→ q̇T(t)Pq̇(t) and
t �→ q̇T(t)RT P Rq̇(t) are equal along every solution of (6).

Proof First, note that qT Pq = xTQ1x and q̇T Pq̇ = xTQ2x, where Q1,Q2 ∈
Sym(2n) are given by

Q1 = 1

2

[
M− 1

2 P M− 1
2 0

0 0

]
, Q2 = 1

2

[
0 0

0 M− 1
2 P M− 1

2

]
.

Next, consider the matrix

S =
[

R 0
0 R

]
.

It is easy to verify that S is symplectic and satisfies
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i) ST H S = H , i.e., S ∈ GA, and
ii) qT RT P Rq = xTSTQ1Sx and q̇T RT P Rq̇ = xT STQ2Sx.

Since the natural frequencies of the system are distinct, Corollary 6.1 implies that
S ∈ GA. The result now follows from Theorem 5.1 by first letting Q = Q1 and then
letting Q = Q2. ��

If P and RT P R represent the stiffness (mass) matrices of two subsystems of (6),
with R a configuration symmetry of (6), then Corollary 7.2 implies that the two subsys-
tems have the same potential (kinetic) energies on average. Thus Corollary 7.2 allows
us to assert that symmetrically related subsystems of the system (6) have the same
energy on average. Proposition 3.7.26 of [1] gives a general result on the equality of
time averages of functions in a nonlinear Hamiltonian setting, which is then applied
to conclude equality of average kinetic energies of a symmetric second-order system.
However, the treatment in [1] relies on the assumption of ergodicity and thus differs
significantly from our approach.

The following example illustrates an application of Corollary 7.2.

m 2 m 31m

k 1 k12

k13

k 2

k 23 k 3

Example 7.1 The undamped three-degree-of-freedom system depicted in the figure
above has the mass and stiffness matrices

M =

⎡
⎢⎢⎣

m1 0 0

0 m2 0

0 0 m3

⎤
⎥⎥⎦ , K =

⎡
⎢⎢⎣

k1 + k12 + k13 −k12 −k13

−k12 k12 + k2 + k23 −k23

−k13 −k23 k13 + k23 + k3

⎤
⎥⎥⎦ .

Let m1 = m2, k13 = k23 and k1 = k2. Then, the orthogonal permutation matrix

R =
⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦ (7)

satisfies RT M R = M and RT K R = K . In other words, (6) remains unchanged when
q1 and q2 are interchanged.
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The potential energies in the springs k1 and k2 are equal to 1
2 qT P1q and 1

2 qT P2q,
where

P1 =
⎡
⎣ k1 0 0

0 0 0
0 0 0

⎤
⎦ , P1 =

⎡
⎣ 0 0 0

0 k2 0
0 0 0

⎤
⎦ .

It is easy to verify that, under the assumptions k13 = k23 and k1 = k2, RT P1 R = P2.
An elementary analysis of the characteristic polynomial of the system shown in
the figure reveals that the system has distinct natural frequencies for values of the
parameters m1, m3, k12, k13, k1 and k3 that lie in an open dense subset of R

6.
Hence it follows from Corollary 7.2 that, generically, the average potential energy
in the spring k1 equals the average potential energy in the spring k2 along any given
solution of (6).

Our next example shows that the assertion in Corollary 7.2 may not hold when the
parameter values are such that the system (6) has repeated natural frequencies.

Example 7.2 Consider the undamped three-degree-of-freedom system introduced in
Example 7.1, with all masses and spring stiffnesses set to unity. In this case, the mass
matrix is the identity, while the stiffness matrix is given by

K =
⎡
⎣ 3 −1 −1

−1 3 −1
−1 −1 3

⎤
⎦ .

It is easy to verify that (6) remains unchanged under orthogonal permutations that
interchange q1 with q2, q2 with q3, and q3 with q1. Example 7.1 may thus lead one
to expect the potential energies in the springs k1, k2 and k3, which transform into
one another under these permutations, to be equal. However, the orthogonal permu-
tations that interchange q1 with q2, q2 with q3, and q3 with q1 do not commute and
thus the group of symmetries of the system is not commutative. Therefore, Corollary
6.1 implies that the system has a repeated natural frequency. Indeed, for our choice
of the masses and stiffnesses, the system has only two distinct natural frequencies,
namely 2 rad/s and 1 rad/s, with the larger natural frequency being repeated twice.
However, since the structure is stable, the eigenvalue associated with the repeated nat-
ural frequency is semisimple (see Lemma 3 in [6]), and the system has three linearly
independent eigenvectors given by

v1 =
⎡
⎣ 1

−1
0

⎤
⎦ , v2 =

⎡
⎣ 1

0
1

⎤
⎦ , v3 =

⎡
⎣ 1

1
1

⎤
⎦ ,

with v1 and v2 corresponding to the repeated natural frequency.
A general solution of (6) is given by

q(t) = a1 sin(2t + φ1)v1 + a2 sin(2t + φ2)v2 + a3 sin(t + φ3)v3, (8)
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where the amplitudes a1, a2 and a3 as well as the phases φ1, φ2 and φ3 can be assigned
arbitrary values by an appropriate choice of initial conditions on q and q̇ .

The average energies in the springs k1, k2 and k3 along the solution (8) can easily
be calculated to be 1

4 [a2
1 +a2

2 +a2
3 +2a1a2 cos(φ1 −φ2)], 1

4 (a2
1 +a2

3) and 1
4 (a2

2 +a2
3),

respectively. It is clear that the average energies in the springs k1, k2 and k3 are not
equal along every solution of (6). Note that unlike in Example 7.1, the average energies
in the springs k1 and k2 are not equal along every solution, even though the configu-
ration symmetry that transforms the energy in k1 to the energy in k2 is the same as in
Example 7.1. This case illustrates that the assertion in Corollary 7.2 does not generally
hold for systems having repeated natural frequencies.

Remark 7.1 Examples 7.1 and 7.2 indicate that, for values of the parameters k12 and
k3 that yield arbitrarily close but distinct natural frequencies, the average energies in
the springs k1 and k2 are equal. Yet, the average energies in the same two springs are
unequal for values of the parameters k12 and k3 that lead to repeated natural frequen-
cies. The examples thus imply that the average energies in k1 and k2 are discontinuous
functions of the parameters k12 and k3. On the other hand, standard results on dif-
ferential equations such as [12, Thm. V.2.1] state that solutions of linear differential
equations depend continuously on parameters. This apparent contradiction is resolved
by noting that the averaging operation in (3) involves integration on [0,∞) along
solutions that are guaranteed to depend continuously on parameters uniformly in time
over bounded time intervals but not necessarily over [0,∞).

8 Conclusion

We have explored the connections between the group of phase space symmetries of
a stable linear Hamiltonian system, the set of its quadratic integrals of motion, and
the operation of taking the average of a quadratic function along the trajectories of
the system. Our main result is that elements of the center subgroup of the group of
symmetries preserve the time averages of quadratic functions along the trajectories
of the system. In the special case where the system has unrepeated eigenvalues, the
group of symmetries of the system is commutative, and therefore every symmetry
preserves averages of quadratic functions. These results are used to provide a novel
symmetry-based proof of the virial theorem, and obtain a equipartition result for
undamped linear lumped-parameter systems.

Acknowledgments The authors would like to thank Paolo Rapisarda and Jan Willems for helpful discus-
sions.

A Appendix

The proof of Proposition 2.1 requires the following lemma.

Lemma A.1 Suppose R ∈ R
n×n commutes with all matrices in Sym(n) and so(n).

Then there exists α ∈ R such that R = α In.
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Proof For each i ∈ {1, . . . , n}, let ei ∈ R
n denote the ith column of In . Choose

i, j ∈ {1, . . . , n} such that i �= j . Since R commutes with all real, symmetric and
skew-symmetric matrices, it follows that R commutes with all matrices in R

n×n . In
particular,

Reie
T
j = eie

T
j R. (9)

Pre-multiplying and post-multiplying (9) by eT
i and ei, respectively, yields eT

j Rei = 0,

i.e., R ji = 0. Next, pre-multiplying and post-multiplying (9) by eT
i and e j , respec-

tively, yields eT
i Rei = eT

j Re j , i.e., Rii = R j j . Since i and j were chosen arbitrarily,
we conclude that R is diagonal and all its diagonal entries are equal. The result now
follows. ��
Proof of Proposition 2.1. To show that (i) implies (ii), suppose S belongs to the cen-
ter subgroup of Sp(n) ∩ SO(2n), and consider B ∈ sp(n) ∩ so(2n). Then eBt ∈
Sp(n) ∩ SO(2n) for all t ∈ R. Hence SeBt − eBt S = 0 for all t ∈ R. Differentiating
and letting t = 0 yields SB − BS = 0.

To show that (ii) implies (iii), suppose S ∈ Sp(n) satisfies SB = BS for all
B ∈ sp(n)∩so(2n). Since J2n ∈ sp(n)∩so(n), it follows that S J2n = J2n S, so that S ∈
SO(n). There exist R1, R2 ∈ R

n×n such that RT
1 R1 + RT

2 R2 = In , RT
2 R1 − RT

1 R2 = 0,
and S is given by (1). Choose G ∈ so(n) and P ∈ Sym(n). Then, the matrices

B1
def=

[
G 0
0 G

]
, B2

def=
[

0 P
−P 0

]

are contained in sp(n) ∩ so(2n), so that SB1 = B1S and SB2 = B2S. It can be easily
verified that SB1 = B1S and SB2 = B2S imply that R1G − G R1 = R1 P − P R1 =
R2G −G R2 = R2 P − P R2 = 0. Since the matrices G ∈ so(n) and P ∈ Sym(n) were
chosen to be arbitrary, it follows that R1 and R2 commute with all skew-symmetric
and symmetric matrices. Lemma A.1 now implies that there exist αi ∈ R, i ∈ {1, 2},
such that Ri = αi In , i ∈ {1, 2}. Since RT

1 R1 + RT
2 R2 = In , it follows that there exists

t ∈ R such that α1 = cos t and α2 = sin t . It is now a simple matter to verify that
S = eJ2n t . Thus (ii) implies (iii).

Finally, since J2n commutes with all T ∈ Sp(n) ∩ SO(2n), it follows that eJ2n t

commutes with all T ∈ Sp(n) ∩ SO(2n) for all t ∈ R. Thus (iii) implies (i). ��
Proof of Proposition 2.2. As noted earlier, J2n commutes with every matrix in sp(n)∩
so(2n). Hence span{J2n} is contained in the center subalgebra of sp(n) ∩ so(2n).
To show the reverse inclusion, suppose B is contained in the center subalgebra of
sp(n) ∩ so(2n). There exist G ∈ so(n) and P ∈ Sym(n) such that B is given by (1).
Choose G1 ∈ so(n) and P1 ∈ Sym(n). The matrices

B1
def=

[
G1 0
0 G1

]
, B2

def=
[

0 P1
−P1 0

]

are contained in sp(n)∩ so(2n), so that B B1 = B1 B and B B2 = B2 B. It can be easily
verified that B B1 = B1 B and B B2 = B2 B imply that GG1 −G1G = PG1 −G1 P =
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G P1 − P1G = P P1 − P1 P = 0. Since the matrices G1 ∈ so(n) and P1 ∈ Sym(n)

were chosen to be arbitrary, it follows that G and P commute with all skew-symmetric
and symmetric matrices. Lemma A.1 now implies that there exist αi ∈ R, i ∈ {1, 2},
such that G = α1 I and P = α2 I . However, G ∈ so(n) implies that α1 = 0, so that
B ∈ span{J2n}. The result now follows. ��
Proof of Proposition 2.3. The proof that (i) implies (ii) is the same as the proof that
(i) implies (ii) in Proposition 2.1.

To show that (ii) implies (iii), suppose S ∈ Sp(n) satisfies SB = BS for all
B ∈ sp(n). Since J2n ∈ sp(n), it follows that S J2n = J2n S, Thus S ∈ Sp(n)∩SO(2n).
Moreover, S clearly commutes with all B ∈ sp(n)∩so(n) ⊆ sp(n). Hence Proposition
2.1 implies that there exists t ∈ R such that

S = eJ2n t =
[

(cos t)In (sin t)In

−(sin t)In (cos t)In

]
.

It is easy to verify that the matrix

B
def=

[
0 In

In 0

]

is contained in sp(n), so that SB = BS. The equality SB − BS = 0 yields sin t = 0,
so that cos t ∈ {1,−1}. Hence it follows that S ∈ {In,−In}.

The implication (iii) implies (i) is obvious. ��
Proof of Proposition 2.4. Choose G1 ∈ so(n) and P1 ∈ Sym(n), and suppose B is
contained in the center subalgebra of sp(n). Then B commutes with the Hamiltonian
matrices

B1
def= J2n, B2

def=
[

0 In

In 0

]
, B3

def=
[

G1 0
0 G1

]
, B4

def=
[

0 P1
−P1 0

]
.

B B1 = B1 B implies that B ∈ sp(n) ∩ so(n), so that there exist G ∈ so(n) and
P ∈ Sym(n) such that B is given by (1). It is easy to verify that B B2 − B2 B = 0
implies that P = 0, while B B3 − B3 B = B B4 − B4 B = 0 implies that GG1 −G1G =
G P1 − P1G = 0. Since G1 ∈ so(n) and P1 ∈ Sym(n) were chosen arbitrarily, it fol-
lows that G commutes with all matrices in so(n) and Sym(n). By Lemma A.1, there
exists α ∈ R such that G = α In . However, G ∈ so(n) implies that α = 0. Thus
B = 0, and the result follows. ��
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