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Abstract

In this paper we investigate the origin of the Stribeck effect. We develop an
asperity-based friction model and show that the vertical motion of a sliding
body leads to a dynamic Stribeck effect. The friction model is hysteretic, and
the energy-dissipation mechanism is the sudden release of the compressed
bristles. We relate this model to the LuGre model.
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1. Introduction

Friction is a widespread phenomenon in many control and modeling appli-
cations as well as in everyday life [1–3]. Too little friction can be hazardous,
while too much friction wastes energy. In both cases, a better understanding
of friction is essential for improved design, analysis, and prediction.

Experimental observations provide the primary approach to understand-
ing how friction depends on material properties and the relative motion be-
tween the contacting surfaces [4–6]. For example, the classic paper [4] mea-
sures the effect of relative speed, contact pressure, and surface separation
on the friction force. Experimental observations lead to the development of
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empirical models that capture the macroscopic properties of friction [2, 7–
13]. The LuGre model captures stick-slip friction when a sliding object is
connected to a stiffness. The LuGre model also exhibits the Stribeck effect
[9, 11], which predicts a drop in the friction force as the speed increases.

The approach we take to modeling friction is neither experimental nor em-
pirical, but rather is motivated by asperity-based mechanistic models [14–17],
in which the asperities represent the microscopic roughness of the contacting
surfaces. In this conceptual approach, the goal is to postulate a model con-
sisting of many degrees of freedom (for example, bristle deflections), where
each component has precisely defined mechanical properties. The analysis
and simulation of this model then gives rise to an emergent macroscopic
friction force whose properties can be traced back to the properties of the
components.

An advantage of this approach is that the hysteretic energy-dissipation
mechanism is exposed. For example, in the compressed bristle model pre-
sented here, energy dissipation at asymptotically low frequency [18] is due to
the sudden release of the compressed bristles, just as in the rotating bristle
model discussed in [19, 20]. As the body encounters each bristle, energy is
stored in the compressed spring and is subsequently dissipated by the dash-
pot due to the post-release oscillation of the bristle. Although the LuGre
model [13] is hysteretic, the hysteretic mechanism is not exposed. Addi-
tionally, since the bristles represent the asperities of the contacting surface,
the compression of the bristles is analogous to plastic deformation of the
asperities, which also results in the loss of energy.

The goal of the present paper is to construct a bristle model that exhibits
both stick-slip behavior and the Stribeck effect. Stick-slip behavior is exhib-
ited by the rotating bristle model given in [19, 20]; however, the Stribeck
effect was not found to be a property of that model.

The Stribeck effect is the apparent drop in the friction force as the ve-
locity increases. In wet friction, the Stribeck effect can be attributed to the
phenomenon of planing [21–23], where the friction between a tire and a wet
surface decreases with velocity, resulting in a dangerous situation. For a
boat on water, the same phenomenon is more apparent since the boat rises
as its speed increases, thus reducing its contact area, which in turn reduces
the drag due to the water, that is, the viscous friction force. For a vehicle
immersed in a fluid, such as an aircraft, however, we would not expect to
see the Stribeck effect. The Stribeck effect thus depends on contact at the
boundary of a fluid and motion orthogonal to the surface of the fluid.
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In modeling dry friction, which is the objective of a bristle model, it
seems plausible in analogy with wet friction that the Stribeck effect would
be observed as long as the body posesses a vertical degree of freedom. In
particular, by extending the bristle model in [19, 20] to include a vertical
degree of freedom, we would expect to observe the Stribeck effect due to
the fact that the moment arm is increased—and thus the friction force is
decreased—as the height of the mass above the contacting surface increases.

Rather than revisit the rotating bristle model of [19, 20], in the present
paper we develop an alternative bristle model in which each bristle has a
vertical degree of freedom rather than a rotational degree of freedom. This
model gives rise to the Stribeck effect. Somewhat surprisingly, and unlike
the Stribeck effect captured empirically by the LuGre model [19, 20], the
Stribeck effect captured by this bristle model is dynamic in the sense that
the speed/friction-force curve forms a loop. We call this the dynamic Stribeck

effect.
The contents of the paper are as follows. In Section 2 we introduce the

compressed bristle model, derive the governing equations, and show that
the compressed bristle model exhibits stick-slip, hysteresis, and the dynamic
Stribeck effect. Based on the observations in Section 2, we capture the steady-
state characteristics of the compressed bristle model in the form of a single-
state friction model in Section 3. We show that a simplified version of the
compressed bristle model is equivalent to the LuGre model.

2. Compressed Bristle Model

In this section we present the compressed bristle model, which is based
on the frictionless contact between a body and a row of bristles. The friction
force of the bristle model is generated through the frictionless interaction
between a body and bristles as shown in Figure 1. We assume that the body
has mass m, length d, and thickness w, and that its front end is slanted from
the vertical by the angle α. The body is allowed to move in the horizontal
and vertical directions, but it does not rotate. The horizontal position of the
midline of the body is denoted by x, and the vertical position of the midline
of the body is denoted by y. The bristles consist of a frictionless roller, a
spring with stiffness coefficient k, and a dashpot with damping coefficient
c. The damping coefficient provides viscous energy dissipation but negligible
force. The mass of the roller is assumed to be negligible compared to the
mass of the body. Therefore, the interaction between each bristle and the
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body is dominated by the stiffness of the bristle. The distance between
adjacent bristles is ∆, the position of the ith bristle is denoted by xbi , and its
length is hi. Each bristle has length h0 when relaxed. As the body moves,
the bristles are compressed, which results in a reaction force at the point of
contact between the bristle and the body. The friction force is the sum of all
horizontal components of the forces exerted by all of the bristles contacting
the slanted surface of the body. The vertical components of the forces exerted
by the bristles contacting the body affect the vertical motion of the body.
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Figure 1: Schematic representation of the compressed bristle model. Each bristle consists
of a frictionless roller of negligible mass, a linear spring with stiffness coefficient k, and a
dashpot with damping coefficient c (not shown). As the body moves over the bristles, the
bristle springs are compressed, and a reaction force occurs at the point of contact between
each roller and the body.

As the body moves, there is a frictionless reaction force between each
bristle and the body at the point of contact. This force is due to the com-
pression of the bristle. We assume that the force on the body due to contact
with the bristle is perpendicular to the surface of the body. The sum of all
horizontal forces exerted by the bristles at each instant is defined to be the
friction force. Since the bristle-body contact is frictionless, the direction of
the reaction force between the body and each bristle contacting the horizon-
tal surface of the body is vertical, and thus these bristles do not contribute
to the friction force. Only the bristles that are in contact with the slanted
surface of the body contribute to the friction force.
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The force between the body and each bristle is calculated based on the
position of the bristle relative to the body and the resulting length of the
compressed bristle. The reaction forces due to the dashpot are neglected.
The dashpots and mass of the bristles provide the mechanism for dissipating
the energy stored in the compressed springs, but otherwise play no role in
the bristle-body interactions.

In simulations of the bristle model we assign numerical values to the
bristle-related parameters, such as ∆ and k. However, these values do not
necessarily represent physically meaningful quantities, but rather serve only
to illustrate the interaction between the body and the asperities.

2.1. Friction Force

In this section we analyze the interaction between the body and the bris-
tles, and we derive equations for the friction force of the compressed bristle
model. For simplicity, we assume that at the instant the velocity of the body
passes through zero, the body instantaneously rotates about the vertical axis
that defines the horizontal position x of the body, so that its slanted sur-
face always points in the direction of motion and such that x and y remain
constant during the direction reversal.

The length hi of the ith bristle contacting the slanted surface of the
body is a function of the horizontal position x and velocity v of the body as
described by

hi(x, v, y)
4

=

{

hi+(x, y), v ≥ 0,

hi−(x, y), v < 0,
(1)

where

hi+(x, y) = y −
w

2
+

w

d1

(

xbi −

(

x+
d

2
− d1

))

, (2)

hi−(x, y) = y −
w

2
+

w

d1

(

x−
d

2
+ d1 − xbi

)

, (3)

and d1
4

= w tan(α) as shown in Figure 1. The magnitude of the force due to
the ith bristle is

Fi(x, v, y) = k(h0 − hi(x, v, y)). (4)
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The magnitude of the horizontal component of the reaction force due to the
ith bristle is

Fix(x, v, y) = k cos(α)(h0 − hi(x, v, y)), (5)

while the magnitude of the vertical component of reaction force due to the
ith bristle is

Fiy(x, v, y) = k sin(α)(h0 − hi(x, v, y)). (6)

The friction force is the sum of all of the horizontal components of the
reaction forces between the bristles and the body. Only the bristles that
are in contact with the slanted surface of the body exert a force with a
horizontal component. The base positions xbi of the bristles that contribute
to the friction force for v ≥ 0 are in the set

Xb+(x) = {xbi : x+
d

2
− d1 ≤ xbi ≤ x+

d

2
}, (7)

and, for v < 0, are in the set

Xb−(x) = {xbi : x−
d

2
≤ xbi ≤ x−

d

2
+ d1}. (8)

Thus, for v ≥ 0, the friction force is

Ff (x, v, y) = Ff+(x, y), (9)

where

Ff+(x, y) = k cos(α)

n+
∑

i=1

(h0 − hi+(x, v, y)), (10)

and n+ is the number of elements of Xb+(x). For v < 0, the friction force is

Ff (x, v, y) = Ff−(x, y), (11)
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where

Ff−(x, y) = −k cos(α)

n−
∑

i=1

(h0 − hi−(x, v, y)), (12)

where n− is the number of elements of Xb−(x). Expressions (9) and (11) can
be combined, so that Ff (x, v, y) is given by

Ff (x, v, y) = sign(v)k cos(α)
n

∑

i=1

(h0 − hi(x, v, y)), (13)

where n is the number of elements of Xb+(x) for v ≥ 0 and of Xb−(x) for
v < 0. Note that, due to the function sign(v), (13) is discontinuous at v = 0.

The vertical force due to the bristles contacting the slanted surface of the
body is equal to the sum of all of the vertical components of the reaction
forces between the body and the bristles contacting the slanted surface of
the body. We define the vertical force due to bristles contacting the slanted
surface of the body as

Fys(x, v, y) =

{

Fys+(x, y), v ≥ 0,

Fys−(x, y), v < 0,
(14)

where

Fys+(x, y) = k sin(α)

n+
∑

i=1

(h0 − hi+(x, v, y)), (15)

Fys−(x, y) = k sin(α)

n−
∑

i=1

(h0 − hi−(x, v, y)). (16)

The magnitude of the vertical force due to the bristles contacting the
horizontal surface of the body is

Fyb(y) =
N
∑

i=1

k
(

h0 −
(

y −
w

2

))

= Nk
(

h0 − y +
w

2

)

, (17)

where N
4

= d−d1
∆

+ 1 is the number of bristles that are in contact with the
horizontal surface of the body.
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2.2. Equations of motion

The goal is to investigate the stick-slip and input-output properties of
the compressed bristle model. To investigate the emergence of stick-slip, we
consider the system shown in Figure 2. The body of mass m is connected to a
spring with stiffness K, and the free end of the spring moves at the constant
speed vp. The equations of motion describing the mass-spring system in
Figure 2 are

ẋ(t) = v(t), (18)

v̇(t) =
1

m
(Kl(t)− Ff (x, v, y)), (19)

l̇(t) = vp − v(t), (20)

where l is the length of the spring and Ff (x, v, y) is the friction force (13).
Since the compressed bristle model accounts for horizontal and vertical

motion of the body, we augment (18)-(20) with vertical-direction equations
of motion. The vertical motion of the body is described by

mÿ = −mg + Fy(x, v, y), (21)

Fy(x, v, y) = Fys(x, v, y) + Fyb(y), (22)

where Fys and Fyb are defined by (14) and (17), respectively. Note that
(21)-(22) can be rewritten as

mÿ(t) + kuoy(t) = f(t), (23)

where, for v ≥ 0, kuo = Nk + n+k sinα and

f = Nk(h0 +
w

2
)−mg

+ k sinα

n+
∑

i=1

(

h0 +
w

2
−

w

d1

(

xbi − x−
d

2
+ d1

))

, (24)
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and, for v < 0, kuo = Nk + n−k sinα and

f = Nk(h0 +
w

2
)−mg

+ k sinα

n−
∑

i=1

(

h0 +
w

2
−

w

d1

(

x−
d

2
+ d1 − xbi

))

. (25)

Thus (21)-(22) describe an undamped oscillator.

Ff

v

K, l
vpm

Figure 2: Schematic representation of the mass-spring system used to investigate the stick-
slip properties of the bristle model. The body of mass m is connected to a spring with
stiffness K. The free end of the spring moves at the constant speed vp. The friction force
Ff is given by (13).

To investigate the input-output properties and the emergence of hystere-
sis, we consider the mass-spring system shown in Figure 3. The body of mass
m is connected to a wall by means of a spring with stiffness K and acted on
by the force input u(t). The equations of motion are

ẋ(t) = v(t), (26)

v̇(t) =
1

m
(−Kx(t) + u(t)− Ff (x, v, y)), (27)

where Ff (x, v, y) is the bristle model friction force (13). Furthermore, the
vertical motion of the body is described by (21)-(22).

2.3. Switch Model

Due to the discontinuity of the bristle model friction force (13) at v = 0,
numerical integration of (18)-(27) with the friction force represented by the
compressed bristle model (13) requires special techniques. In this section
we describe the Switch Model [24, 25], which is a technique that smooths
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Figure 3: Body-spring configuration used to investigate the input-output properties of the
bristle model. The body of mass m is connected to the wall by a means of a spring with
stiffness K and is acted on by the force input u(t). The friction force Ff is given by (13).

out the discontinuous dynamics around the discontinuity v = 0. The mod-
ified equations can then be integrated using standard numerical integration
techniques.

To begin, we rewrite the equations of motion in which the friction force
is modeled by the compressed bristle model as a differential inclusion [25].
Assume that the motion of the body is described by

ẋ = f (x), (28)

where x ∈ R
m, f : V ⊂ R

m → R
m is a piecewise continuous vector field,

and Σ
4

= R
m\V is the set of points of discontinuity of f . We assume that

there exists a function g : Rm → R such that the discontinuity boundary Σ
is given by the roots of g, that is,

Σ = {x ∈ R
m : g(x) = 0}. (29)

We also define sets

V+
4

= {x ∈ R
m : g(x) > 0}, (30)

V−

4

= {x ∈ R
m : g(x) < 0}. (31)

With these definitions, (28) can be rewritten as the differential inclusion
[25, 26]

ẋ ∈











f+(x), x ∈ V+,

αf+(x) + (1− α)f
−
(x), x ∈ Σ, α ∈ [0, 1],

f
−
(x), x ∈ V−.

(32)
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The direction of flow given by the vector fields f+(x) and f
−
(x) can

lead to three types of sliding modes across Σ. If the flow is such that the
solutions of (32) are pushed to Σ from both V+ and V−, then the sliding mode
is attractive. If the solutions cross Σ, then the sliding mode is transversal.
Finally, if the solutions diverge from Σ, the sliding mode is repulsive [25].

The Switch Model smooths out the dynamics of the differential inclusion

(32) by constructing a stick band within the set G
4

= {x : |g(x)| ≤ η},
where η is a small positive constant. (Note that the term “stick band” is not
related to stick-slip friction.) The dynamics outside of the stick band remain
the same. The dynamics inside the stick band depend on the type of sliding
mode across the discontinuity boundary. If the sliding mode is attractive,
that is,

nTf
−
(x) > 0 and nTf+(x) < 0, x ∈ Σ, (33)

where n
4

= ∇g(x) is the normal to Σ, then the stick-band dynamics are given
by

ẋ = αf+(x) + (1− α)f
−
(x) , x ∈ G. (34)

The value of the parameter α is chosen such that it pushes the solutions of
(33) toward the middle of the stick band, that is, toward {x : g(x) = 0}.
Thus, inside the stick band, g satisfies

ġ(x) = −τg(x), (35)

where τ > 0 is a time constant. Since

ġ(x) =
dg(x)

dx

dx

dt
= ∇gT ẋ (36)

= nT
(

αf+(x) + (1− α)f
−
(x)

)

, (37)

setting (35) equal to (37) and solving for α gives

α =
nTf

−
(x) + τ−1g(x)

nT (f
−
(x)− f+(x))

. (38)
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If the sliding mode is transversal, that is,

(nTf
−
(x))(nTf+(x)) > 0, x ∈ Σ, (39)

then the stick-band dynamics are defined by

ẋ =

{

f
−
(x), if nTf

−
(x) < 0 and nTf+(x) < 0 , x ∈ G,

f+(x), if n
Tf

−
(x) > 0 and nTf+(x) > 0 , x ∈ G.

(40)

Finally, if the sliding mode is repulsive, that is,

nTf
−
(x) < 0 and nTf+(x) > 0, x ∈ Σ, (41)

then the dynamics are defined by

ẋ = f+(x) , x ∈ G. (42)

Outside of the stick band, the dynamics are defined by

ẋ =

{

f+(x), x ∈ G+,

f
−
(x), x ∈ G−,

(43)

where G+
4

= {x : g(x) > η} and G−

4

= {x : g(x) < η}. More details about
the Switch Model (33)-(43) and a pseudocode are given in [25].

2.4. Stick-slip behavior

In this section we consider the stick-slip behavior of the bristle model (13)
by investigating the existence of a stable limit cycle when the bristle model
is used to represent the friction force in the system (18)-(20) shown in Figure
2 with the vertical motion described by (21)-(22).

We use the Switch Model (33)-(43) to simulate the system (18)-(22) with
friction force defined by (13). The system (18)-(22) can be formulated as the

differential inclusion (32) with x =
[

x v l y ẏ
]T
, the set Σ defined by

the roots of the function g(x) = v, the normal to Σ defined by n
4

= ∇g(x) =

12



[

0 1 0 0 0
]T
, and the vector fields f+(x) and f

−
(x) defined as

f+(x)
4

=













v
1
m
(Kl − Ff+(x, y))

vp − v

ẏ

−mg + Fy+(x, y)













, (44)

f
−
(x)

4

=













v
1
m
(Kl − Ff−(x, y))

vp − v

ẏ

−mg + Fy−(x, y)













, (45)

where Ff+(x, y) and Ff−(x, y) are defined by (10) and (12), respectively, and

Fy+(x, y)
4

= Fys+(x, y) + Fyb(y), (46)

Fy−(x, y)
4

= Fys−(x, y) + Fyb(y), (47)

where Fys+(x, y) is defined by (15) and Fys−(x, y) by (16).
Figure 4(a) shows the projection of the trajectories of (44)-(45) onto the

l-v plane, obtained by using the Switch Model (33)-(43), with parameter
values m = 1 kg, w = 1 m, d = 2 m, α = 15◦, K = 5 N/m, N = 500,
k = 0.01 N/m, h0 = 2.69 m, η = 10−6, and vp = 0.1 m/s. In this plane, the
trajectory converges to a stable limit cycle that includes a line segment on
which the motion is given by v = 0 and l̇ = vp. This segment corresponds
to the “stick” phase, during which the body is stationary. The “slip” phase
corresponds to the curved part of the limit cycle for which v 6= 0. The time
histories of the spring length, velocity, height, and position of the body are
shown in Figure 4(b). Note that the velocity is characterized by segments in
which the velocity is zero and segments in which velocity quickly increases.
This behavior is typical for stick-slip motion.

The time history of the friction force and plots of the friction force versus
height y and versus velocity v are shown in Figure 5. This figure also shows
the relationship between the height y and velocity v. The friction force is
a decreasing function of height, which is consistent with the experimental
results presented in [2, 4, 5] as well as the expression (13). In the bristle
model, as the height increases, compression of the bristles from their relaxed
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Figure 4: The stick-slip limit cycle and time histories of the spring length l, velocity v,
position x, and height y for the system (44)-(45) with Ff modeled by (13). (a) shows the
limit cycle and (b) shows the time histories of the states. The trajectories projected onto
the l-v plane form a stable limit cycle.

length h0 decreases. Thus, the friction force decreases also. Furthermore, the
friction force decreases as the velocity increases. The velocity/friction-force
curve forms a loop, which we refer to as the dynamic Stribeck effect. The
height versus velocity plot in Figure 5 shows that the velocity increases with
height. That is, the body moves higher as it speeds up, and it moves lower
as it slows down. This is planing.
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Figure 5: The friction force of the compressed bristle model. The figure shows the depen-
dence of the friction force on time t, height y, and velocity v. The lower left plot shows
the dynamic Stribeck effect, while the lower right plot shows the velocity-height curve.

2.5. Physical mechanism that leads to the dynamic Stribeck effect

In the vertical direction, the system consisting of the body and the bristles
described by (21)-(22) represents an undamped oscillator. Thus, if the body
is initially not in a vertical equilibrium or if it is slightly disturbed from an
equilibrium position, then it oscillates vertically whether or not it is moving
horizontally. Since the friction force (13) depends linearly on the height y

through hi(x, v, y), the vertical oscillation of the body results in oscillation of
the magnitude of the friction force Ff defined by (13). The oscillations in Ff

are visible in Figure 5. The horizontal velocity increases with y because the
friction force Ff decreases as y increases, and thus the horizontal acceleration
of the body increases. The opposite happens when y decreases.

Furthermore, as seen in Figure 5, the drop in the friction force that occurs
when a single bristle transitions from contacting the slanted surface of the
body to contacting the horizontal surface of the body is small compared to
the amplitude of oscillation of the friction force due to vertical oscillation of
the body. As the amplitude of the vertical oscillation of the body decreases,
the change in friction force due to a bristle transition from contacting the
slanted surface of the body to contacting the horizontal surface of the body
becomes the mechanism that leads to stick-slip. In comparison with the
discontinuous rotating bristle model [19, 20], the individual bristles do not
have a visible effect on the stick-slip behavior or the dynamic Stribeck effect
of the compressed bristle model.
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To demonstrate, we simulate (18)-(20) with the friction force (13). How-
ever, in the vertical direction we assume that the body oscillates according
to y(t) = A sin(ωt). We use the Switch Model (33)-(43), and reformulate
(18)-(20) as a differential inclusion with f+ and f

−
defined by

f+(x)
4

=





v
1
m
(Kl − Ff+(x, y))

vp − v



 , (48)

f
−
(x)

4

=





v
1
m
(Kl − Ff−(x, y))

vp − v



 , (49)

where Ff+(x, y) is defined by (10) and Ff−(x, y) is defined by (12).
The results are shown in Figure 6 for A = 0.3 m and A = 1.3 m and

for ω = 6.8 rad/s. This frequency of oscillation is approximately equal to
the natural frequency of the vertical oscillations of the body shown in Figure
4(b). The parameter values used are m = 1 kg, K = 2 N/m, w = 1 m,
d = 2 m, α = 15◦, N = 100, k = 0.05 N/m, and h0 = 4.46 m. Note that the
dynamic Stribeck effect as well as the dependence of velocity on the height y
of the body are more prominent for larger values of A. Also, once the body
begins moving horizontally, the friction force becomes less smooth, that is,
there are small drops in the friction force that correspond to the transition
of a bristle from contacting the slanted surface of the body to contacting the
horizontal surface of the body.

2.6. Hysteresis map

In this section we analyze the input-output properties of the bristle model.
We consider the mass-spring configuration shown in Figure 3 and described
by (21)-(27). We use the Switch Model (33)-(43) to smooth out the discon-
tinuity in the bristle model friction force (13).

The system (21)-(27) can be formulated as a differential inclusion (32)

with x =
[

x v y ẏ
]T
, the set Σ defined by the roots of function g(x) =

v, the normal to Σ defined by n
4

= ∇g(x) =
[

0 1 0 0
]T
, and vector
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Figure 6: Simulations of (44)-(45) with the prescribed height trajectory y(t) = A sin(ωt),
where A = 0.3 m and A = 1.3 m and for ω = 6.8 rad/s and Ff modeled by (13). The
dynamic Stribeck effect can be seen in the lower left plot. This effect is more pronounced
for the vertical oscillation with the larger amplitude.

fields f+(x) and f
−
(x) defined as

f+(x)
4

=









v
1
m
(−Kx+ u− Ff+(x, y))

ẏ

−mg + Fy+(x, y)









, (50)

f
−
(x)

4

=









v
1
m
(−Kx+ u− Ff−(x, y))

ẏ

−mg + Fy−(x, y)









, (51)

where Ff+(x, y) and Ff−(x, y) are defined by (10) and (12), respectively, and
Fy+(x, y) and Fy−(x, y) are defined by (46) and (47), respectively.

The input-output map of (50)-(51), obtained from the Switch Model (33)-
(43), with parameter values m = 1 kg, K = 2 N/m, w = 1 m, d = 2 m,
α = 15◦, g = 10 m/s2, N = 500, ∆ = 0.0035 m, h0 = 1.65 m, k = 0.01
N/m, η = 10−6, and u(t) = 2 sin(0.01t) N is shown in Figure 7(a). The
time histories of the states and the friction force are shown in Figure 7(b).
Since the plot of the input u(t) versus position of the body x forms a loop
at a low frequency of the input, the system (50)-(51) with friction force
described by (13) is hysteretic [18]. During the motion, the energy is stored
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in the bristles and dissipated by the oscillation of the bristles once the mass
passes over them. The energy dissipation is manifested in the force-position
hysteresis loop, whose area 2.384 J is equal to the amount of dissipated
energy. Note that the hysteresis map has a staircase shape typical of stick-
slip motion. Furthermore the time history of the velocity shows jumps in the
velocity, which means that the body goes through periods of sticking, where
the velocity is zero, followed by slipping, where the velocity is nonzero.

The plots in Figure 8 show the height and velocity versus the friction
force. In accordance with [4] the magnitude of the friction force decreases
with height. Furthermore, the magnitude of the friction force drops with
an increase in velocity, and the friction force-velocity curve forms a loop as
shown in Figure 8, which indicates the presence of the dynamic Stribeck
effect.

3. Simplified Bristle Model

In this section we introduce a simplified version of the bristle model,
which eliminates the need for the Switch Model. The simplified bristle model
(SBM) is a single-state model [3, 27–29] that captures the stick-slip properties
and the characteristics of the friction force-height, friction force-velocity, and
velocity-height relationships of the compressed bristle model.

3.1. Single-state friction models

Single-state friction models such as the Dahl and LuGre model involve
a state variable z that represents the internal friction mechanism. These
models have the form

ż = v

(

1− α(v, z)sign(v)
z

zss(v)

)

, (52)

Ff = σ0z + σ1ż + σ2v, (53)

where σ0, σ1, σ2 are positive constants, z is the internal friction state, zss(v)
determines the shape of the steady-state z curve, and Ff is the friction force.
The function α(v, z) determines the presence and type of elastoplastic pres-
liding displacement [27, 28]. For simplicity, we set α(v, z) = 1 and rewrite
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Figure 7: The input-output map and time histories of the position x, velocity v, height y,
and friction force Ff of the mass-spring system shown in Figure 3 with the friction force
modeled by (13). The input-output map is hysteretic due to the energy dissipated in order
to compress the bristle springs. The energy dissipated is equal to the area of the hysteresis
map.

(52)-(53) as

ż = v −
|v|

zss(v)
z, (54)

Ff = σ0z + σ1ż + σ2v. (55)
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Figure 8: Dependence of friction force on height and velocity. The magnitude of the
friction force decreases with increasing height and velocity. The drop in friction force with
increased velocity is the Stribeck effect.

Setting zss(v) to be

zss(v) =
1

σ0

(

Fc + (Fs − Fc)e
−(v/vs)2

)

, (56)

where Fc, Fs, and vs are constants, yields the LuGre model [10, 11], which
exhibits stick-slip, hysteresis, and the Stribeck effect.

In steady-state motion, ż = 0, and thus z = sign(v)zss(v). Furthermore,
if σ1 = σ2 = 0, then

Ff = σ0z = sign(v)σ0zss(v). (57)

3.2. Mean friction force

The goal in formulating the SBM is to capture the characteristics of the
friction force-height, friction force-velocity, and velocity-height relationships
of the bristle model, while redefining the bristle model equations as a con-
tinuous model. As shown in Figure 5, the friction force-velocity and height-
velocity curves form loops. To model these loops, we fit a function to the
mean values of each loop and then reformulate the compressed bristle model
equations in the form of a single-state friction model.

First, we find the mean value of the friction force as a function of height
y. For all v ≥ 0, the bristle height hi+(x, y) is calculated from (2), and the
ith bristle contributes to the friction force if xbi ∈ Xb+(x) defined by (7), that
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is,

x+
d

2
− d1 ≤ xbi ≤ x+

d

2
. (58)

Thus, over all relevant values of xbi , hi+(x, y) takes on the maximum and
minimum values

hi+,max(x, y) = y −
w

2
+

w

d2

(

x+
d

2
− d1 −

(

x+
d

2
− d1

))

= y −
w

2
, (59)

hi−,min(x, y) = y −
w

2
+

w

d2

(

x+
d

2
−

(

x+
d

2
− d1

))

= y +
w

2
. (60)

Similarly, for all v < 0, the bristle height hi−(x) is found from (3), and the
ith bristle contributes to the friction force if xbi ∈ Xb−(x) defined by (8), that
is,

x−
d

2
≤ xbi ≤ x−

d

2
+ d1. (61)

Thus, over all relevant values of xbi , hi−(x, y) takes on the maximum and
minimum values

hi−,max(x, y) = y −
w

2
+

w

d

(

x−
d

2
+ d1 −

(

x−
d

2
+ d1

))

= y −
w

2
, (62)

hi−,min(x, y) = y −
w

2
+

w

d

(

x−
d

2
+ d1 −

(

x−
d

2

))

= y +
w

2
. (63)

Thus, for all v ∈ R, the mean value of the ith bristle height hi(x, v, y) is

hi(y) =
1

2

(

y +
w

2
+ y −

w

2

)

= y, (64)

and the mean value of the friction force is

Ff(x, v, y) =

{

k cos(α)
∑n+

i=1 h0 − hi = n+k cos(α)(h0 − hi), if v ≥ 0,

−k cos(α)
∑n−

i=1 h0 − hi = −n−k cos(α)(h0 − hi), if v < 0.

(65)
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where h0 − hi denotes the mean value of h0 − hi. To find h0 − hi, we use

h0 − hi =

∑n
i=1(h0 − hi)

n
= h0 −

∑n
i=1 hi

n
= h0 − hi = h0 − y, (66)

so that

Ff (y, v) = sign(v)kn cos(α)(h0 − y) = sign(v)k̃(h0 − y), (67)

where k̃ = kn cos(α) and we assume that n+ = n− = n. Equation (67)
describes the friction force as a function of height.

3.3. Velocity-height curve fits

In order to obtain an expression for friction force as a function of velocity
we now formulate the height y as a function of velocity v. We can then use
y(v) in (67) to obtain Ff(v).

Instead of a function that approximates the velocity-height loop, we find
a function that approximates the mean value of y as a function of velocity.
The actual and mean values of the height y shown in Figure 9 are obtained
from simulating (44)-(45) with the Switch Model (33)-(43) and parameters
m = 1 kg, K = 5 N/m, w = 1 m, d = 2 m, α = 15◦, g = 10 m/s2, N = 500,
k = 0.01 N/m, ∆ = 0.0035 m, h0 = 1.65 m, η = 10−6, and vp = ±0.1 m/s.
Note that y is limited to the range 0 ≤ y ≤ h0 since the bristles do not
stretch beyond their relaxed length h0 or compress beyond the level of the
ground.
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Figure 9: The velocity-height curve and its mean value. The mean value is shown by the
solid line, and the simulation result is shown by the dashed line.
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To approximate the mean value of the velocity-height curve, we choose
two different functions, namely, hyperbolic secant and exponential. The hy-
perbolic secant expression is

y(v) = y1 − y2sech

(

v

vs

)

, (68)

where y1 and y2 determine the maximum and minimum values of y and vs is
the velocity at which the height increases from y1 to y2. If y(v) is defined by
(68), then the approximation of the mean friction force is

Ff(v) = sign(v)k̃

(

h0 − y1 + y2sech

(

v

vs

))

. (69)

Figure 10(a) shows the approximation of the mean height y as the function
of velocity defined by (68), while Figure 10(b) shows the approximation of
the mean friction force Ff as the function of velocity defined by (69) with
the parameter values y1 = 0.4 m, y2 = 0.3 m, vs =

0.6
2π

m/s, k̃ = 0.75 N/m,
and h0 = 1.64 m. Figure 10 also shows the actual and mean values of the
height y and the friction force Ff obtained from simulating (44)-(45) with
parameters m = 1 kg, K = 5 N/m, w = 1 m, d = 2 m, α = 15◦, g = 10
m/s2, N = 500, k = 0.01 N/m, ∆ = 0.0035 m, h0 = 1.65 m, η = 10−6, and
vp = ±0.1 m/s

Alternatively, we can approximate the mean height by the exponential
function of velocity

y(v) = y1 − y2e
−(v/vs)2 , (70)

where y1 and y2 are the maximum and minimum values of mean height,
respectively, and vs is the velocity at which the mean height increases from
y2 to y1. If y is defined by (70), then the approximation of the mean friction
force is

Ff(v) = sign(v)k̃
(

h0 − y1 + y2e
−(v/vs)2

)

. (71)

Figure 11(a) shows the approximation of the mean height y as the function
of velocity defined by (70), while Figure 11(b) shows the approximation of
the mean friction force Ff as the function of velocity defined by (71) with
parameters y1 = 0.4 m, y2 = 0.3 m, vs = 0.1 m/s, k̃ = 0.75 N/m, and
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Figure 10: Approximation of the mean height (68) and mean friction force (69) of the SBM
friction model (dash-dot) obtained by approximating the mean height by the hyperbolic
secant function of velocity. (a) shows the approximation of the mean height y as the
function of velocity defined by (68), while (b) shows the approximation of the mean friction
force Ff as the function of velocity defined by (69). The actual and mean values of the
height y and friction force Ff are also shown by the dotted and solid lines, respectively.

h0 = 1.7 m. Figure 10 also shows the actual and mean values of the height y
and the friction force Ff obtained from simulating (44)-(45) with parameters
m = 1 kg, K = 5 N/m, w = 1 m, d = 2 m, α = 15◦, g = 10 m/s2, N = 500,
k = 0.01 N/m, ∆ = 0.0035 m, h0 = 1.65 m, η = 10−6, and vp = ±0.1 m/s
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Figure 11: Approximation of the mean height (70) and mean friction force (71) of the SBM
friction model (dash-dot) obtained by approximating the mean height by an exponential
function of velocity with parameters y1 = 1 m, y2 = 0.5 m, vs = 0.1 m/s, k̃ = 1 N/m, and
h0 = 2 m. (a) shows the approximation of the mean height y as the function of velocity
defined by (70), (b) shows the approximation of the mean friction force Ff as the function
of velocity defined by (71). The actual and mean values of the height y and friction force
Ff are also shown by the dotted and solid lines, respectively.

Combining (57) and (69) yields

zss(v) =
k̃

σ0

(

h0 − y1 + y2sech

(

v

vs

))

, (72)
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and the single-state friction model

ż = v − σ0
|v|

k̃
(

h0 − h1 + h2sech
(

v
vs

))z, (73)

Ff = σ0z. (74)

Furthermore, combining (57) and (71) gives the alternative expression

zss =
k̃

σ0

(

h0 − y1 + y2e
−(v/vs)2

)

, (75)

and the alternative single-state friction model

ż = v − σ0
|v|

k̃ (h0 − y1 + y2e−(v/vs)2)
z, (76)

Ff = σ0z. (77)

The equations (76)-(77) are identical to the LuGre equations (54)-(56) with
σ1 = σ2 = 0, k̃(h0 − y1) = Fc, and k̃y2 = Fs − Fc. In order to further
demonstrate the similarity of the LuGre model and the simplified bristle
model, we simulate the systems of equations (18)-(20) and (26)-(27) with
the friction force (76)-(77). The output of the system (18)-(20) with the
friction force (76)-(77) and input velocity vp = 0.1 m/s is shown in Figure
12(a). The parameter values are m = 1 kg, K = 1 N/m, y1 = 1 m, y2 = 0.5
m, vs = 0.1 m/s, k̃ = 1 N/m, σ = 105, and h0 = 2 m. The results of
simulating (26)-(27) with the friction force (76)-(77) and input defined by
u(t) = 5 sin(0.01t) N, are shown in Figure 12(b). The stick-slip behavior
is visible in both simulations, and the system is hysteretic as shown by the
hysteretic input-output map.

4. Conclusions

In this paper we developed the compressed bristle model, an asperity-
based friction model in which the friction force arises through the frictionless
and lossless interaction of a body with an endless row of bristles that represent
the microscopic roughness of the contacting surfaces. The bristles consist of
a frictionless roller attached to the ground through a spring. The body is
allowed to move horizontally and vertically over the bristles, which are com-
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Figure 12: The stick-slip limit cycle of (18)-(20) and the hysteresis map of (26)-(27) with
friction force modeled by (76)-(77). The stick-slip limit cycle in the l-v plane is shown in
(a). (b) shows the hysteresis map with staircase shape typical of stick-slip motion.

pressed and thus apply a reaction force at the point of contact. The friction
force is the sum of all horizontal components of the contact forces between all
of the bristles and the body. As the body passes over the compressed bristles,
they are suddenly released, and the energy stored in each spring is dissipated
by viscous dashpot regardless of how slowly the body moves. Thus, energy
is dissipated in the limit of DC operation and the system is hysteretic.

In the vertical direction, the body and the bristles form an undamped
oscillator. The body oscillates vertically regardless of whether it is moving
horizontally or not. During the vertical oscillations, as the body rises, the
friction force decreases, and the body speeds up. This mechanism gives rise
to the dynamic Stribeck effect, which refers to the fact that the friction
force-velocity curve forms a loop.

Furthermore, we showed that the compressed bristle model exhibits stick-
slip friction and that the bristle model equations can be simplified to give
a single-state friction model. The simplified bristle model (SBM) retains
the stick-slip and hysteresis properties of the original model. The internal
friction state of the SBM can be interpreted as the average deflection of the
bristles from their relaxed length. The simplified bristle model is equivalent
to the LuGre model.
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