
A Frictionless Bristle-Based Friction Model That

Exhibits Hysteresis and Stick-Slip Behavior✩
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Abstract

We investigate the origins of stick-slip friction by developing an asperity-
based friction model based on the frictionless and lossless contact between a
body and a row of rigid, rotating bristles attached to the ground by torsional
springs and dashpots. This model exhibits hysteresis and quasi-stick-slip
friction. The hysteretic energy-dissipation mechanism is the sudden release
of the compressed bristles, after which the bristles oscillate and the stored
energy is dissipated by the dashpot. The discontinuous rotating bristle model
is an approximation of the rotating bristle model that exhibits exact stick-
slip and hysteresis. We derive a single-state formulation of the discontinuous
rotating bristle model and investigate similarities to the LuGre model.
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1. Introduction

Modeling and control of systems with friction remains a challenging and
practically important problem in science and engineering [1–6]. Excessive
friction contributes to wasted energy measured in billions of dollars, whereas
insufficient friction contributes to accidents. In manufacturing applications,
friction is crucial to grinding and polishing, and it is a limiting factor in
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achieving precision motion control. In scientific applications, such as atomic
force microscopes and nano-scale devices, friction plays a crucial role [7]. A
better understanding of friction is essential for improved design, analysis,
and prediction.

Experimental observations provide the primary approach to understand-
ing how friction depends on material properties and the relative motion be-
tween contacting surfaces [8–10]. Based on these studies, various empirical
models have been developed to capture the macroscopic properties of friction
[2, 11–19]. These models can be fit to data for a specific application, or they
can be used for adaptive control, where parameters are identified and con-
troller gains are updated during operation [13, 20–22]. As discussed in [23],
empirical friction models are typically based on an internal state variable,
denoted by z, that reflects the internal friction mechanism.

The approach we take to modeling friction is motivated by bristle mod-
els [24–26], where the bristles represent the asperities, which determine the
macroscopic roughness of the contact surfaces. As the contacting surfaces
slide over each other, their asperities touch and are deformed due to shear
stresses. Energy is dissipated as the asperities deform and change the shape
of the contacting surfaces [2].

The unconventional aspect of the bristle model in the present paper is that
the interface between the bristles and the contacting body is frictionless and
lossless. The goal of this work is thus to discover how friction and the related
phenomenon of hysteresis can emerge from friction-free characteristics. To
do this, we construct a hysteretic dissipation mechanism without introducing
friction per se. In particular, we assume that each rigid bristle is connected
to a spring and a dashpot. As the moving body comes into contact with each
bristle, the bristle is deflected and reaction forces occur, but otherwise the
contact is lossless and thus frictionless. As the moving body passes beyond a
bristle, the bristle is suddenly released, and the potential energy stored in the
spring is dissipated by a dashpot regardless of how slowly the body moves.
The resulting model is thus hysteretic in the sense that energy dissipation
occurs under asymptotically slow motion [27].

In the present paper we analyze the stick-slip behavior of the bristle-
based model. We differentiate between exact stick-slip and quasi-stick-slip.
Exact stick-slip refers to motion in which a body attached to a compliance
periodically comes to rest. This kind of motion, which is reminiscent of a limit
cycle, occurs when the friction force drops as velocity increases from zero; the
LuGre model can reproduce stick-slip friction, as can other friction models
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[14, 28–34]. Quasi-stick-slip refers to a limit cycle in which forward movement
(that is, slip) is followed by a slight backward movement called quasi-slip.
Furthermore, we use the steady-state characteristics of the emergent friction
force to derive single-state friction models [35] that exhibit stick-slip friction.
In particular, we derive the LuGre model [14–17] by this approach.

The contents of the paper are as follows. In Section 2 we introduce the
rotating bristle model, derive the governing equations, and show that this
model exhibits quasi-stick-slip. In Section 3 we introduce the discontinuous
rotating bristle model and show that this model exhibits exact stick-slip and
hysteresis. In Section 4 we derive simplified versions of the discontinuous
rotating bristle model, including the LuGre model. A preliminary version of
some results from this paper is given in [36].

2. Rotating Bristle Model

In this section we describe and analyze the rotating bristle model and
demonstrate the emergence of quasi-stick-slip motion. The bristles represent
the microscopic roughness of the surface on which the body is sliding as shown
in Figure 1. The body of mass m and length d moves over an infinite row of
rigid bristles, each of which has length lb. The position of the center of mass
of the body is denoted by x. At the base of each bristle is a torsional spring
with stiffness coefficient κ and a torsional dashpot with damping coefficient c.
The damping coefficient provides viscous energy dissipation but is otherwise
negligible. The mass of each bristle is nonzero but negligible compared to
the mass of the body. Therefore, the interaction between each bristle and
the body is dominated by the stiffness of the torsional spring. The distance
between the bases of adjacent bristles is ∆, and the location of the base of the
ith bristle is denoted by xbi . Furthermore, we assume that the body moves
only horizontally, maintaining a constant height h above the ground. The
body is not allowed to rotate or move vertically. The distance h can be viewed
as the average height of the asperities, which determine the macroscopic

roughness of the contacting surfaces. The length d0
4

=
√

l2b − h2, and we
assume throughout this paper that d0

∆
> 1, so that at every instant there is

at least one bristle contributing to the friction force.
As the body moves, there is a frictionless reaction force between the bris-

tle and the body at the point of contact. This force is due to the torsional
spring at the base of each bristle. We assume that the force on the body due
to contact with the bristle is perpendicular to the direction of the bristle.
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Figure 1: Schematic representation of the body and bristle contact for the rotating bristle
model. The body of mass m slides over an infinite row of bristles with negligible mass and
length lb. Each bristle is attached to the ground at its base through a torsional spring with
stiffness coefficient κ and a torsional dashpot with damping coefficient c. The distance
between the bases of adjacent bristles is ∆, and the location of each bristle is denoted by
xbi . The frictionless reaction force at the point of contact between the body and the ith
bristle is Fi.

The sum of all horizontal forces exerted by the bristles at each instant is
defined to be the friction force. Since the bristle-body contact is frictionless,
the direction of the reaction force between the body and each bristle contact-
ing the lower surface of the body is vertical, and thus these bristles do not
contribute to the friction force. Only the bristles that are in contact with
the lower corners of the body contribute to the friction force.

For simplicity, we neglect the force due to the dashpot and the bristle
dynamics resulting from the impact between the body and the bristle. The
torsional dashpot and the bristle mass provide a mechanism for dissipation
of the energy stored in the torsional spring but otherwise play no role in the
bristle-body interaction. Modeling the impact between the body and each
bristle would result in the bristles bouncing off the mass and hitting each
other, thus significantly increasing the complexity of the model. Furthermore,
we neglect the dynamics of the bristles since they represent the asperities of
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the contacting surface, which can deform during the contact, but otherwise
exhibit no dynamics.

Furthermore, in simulations of the bristle model throughout this paper we
assign numerical values to the bristle-related parameters, such as lb, ∆, and
κ. However, these values do not necessarily represent physically meaningful
quantities, but rather serve only to illustrate the interaction between the
body and the asperities.

2.1. Bristle pivot angle

The pivot angle of each bristle depends on the position of the bristle
relative to the body. Since the body is not allowed to move vertically, the
distance h from the ground to the lower surface of the body is constant. The
maximum angle θmax that a bristle can pivot is given by

θmax = cos−1

(

h

lb

)

, (1)

and θmax <
π
2
.

If the ith bristle is pivoted less than θmax, then its pivot angle θi depends
on the distance from the position x of the center of the mass of the body to
the location xbi of the base of the ith bristle. If the bristle is in contact with
the right lower corner of the body, then θi = θri , where

θri = tan−1

(

x+ d
2
− xbi

h

)

≥ 0. (2)

If the bristle is in contact with the left lower corner of the body, then θi = θli,
where

θli = tan−1

(

x− d
2
− xbi

h

)

≤ 0. (3)

We use the pivot angle of each bristle to calculate its contribution to the
friction force.

2.2. Friction force

The friction force is equal to the sum of the horizontal components of all
of the contact forces between the body and the bristles that are pivoted less
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than θmax and thus are in contact with one of the lower corners of the body.
When the ith bristle is in contact with either the left or right lower corner of
the body and pivoted by the angle θi, the distance from the base of the ith
bristle to the point at which the contact force acts is

ri =
h

cos θi
, (4)

the contact force between the body and the ith bristle is

Fi =
κθi

ri
=

κθi cos θi
h

, (5)

and the horizontal component of the contact force (5) due to the ith bristle
is

Ffi = Fi cos θi =
κθi(cos θi)

2

h
. (6)

To describe the friction force that results from the interaction between
the bristles and the body, we define Θr ∈ R

n to be the vector whose entries
are the pivot angles θri of the bristles in contact with the right lower corner of
the body. Likewise, Θl ∈ R

n is the vector whose entries are the pivot angles
θli of the bristles in contact with the left lower corner of the body. We define
X r

b (x) to be the set of base positions xbi of the bristles in contact with the
right lower corner of the body and X l

b(x) to be the set of base positions xbi

of the bristles in contact with the left lower corner of the body. The pivot
angles θri and θli are calculated by using the elements of the sets X r

b (x) and
X l

b(x) in (2) and (3), respectively. The elements of X r
b (x) and X l

b(x) are
determined based on the position and velocity of the body by using the rules
outlined in Table 1, where xr− is the base position of the rightmost bristle
contacting the lower surface of the body at the instant the velocity changes
sign from negative to positive, and xr+ is the base position of the leftmost
bristle contacting the lower surface of the body at the instant the velocity
changes sign from positive to negative.

Figure 2 illustrates the bristle-body contact scenarios described in Table
1. Figure 2(a) shows the bristle-body interaction starting at the instant the
sign of the velocity changes from negative to positive. As the body moves, the
bristles that contribute to the friction force change, and so do the sets X r

b (x)
and X l

b(x). In Figure 2(a)-(1) the body starts moving to the right, and all the
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Velocity Position X r
b (x), X

l
b(x) Description

v ≥ 0

x+ d
2
≤ xr− +∆

X l
b = {xbi : x− d

2
≤ xbi < x− d

2
+ d0} Figure 2(a)-(1)

X r
b = ∅

xr− + 2∆ > x+ d
2
≥ xr− +∆

X l
b = {xbi : x− d

2
≤ xbi < x− d

2
+ d0} Figure 2(a)-(2)

X r
b = {xbi : xr− +∆ ≤ xbi < x+ d

2
}

x+ d
2
≥ xr− + 2∆ X l

b = {xbi : x− d
2
≤ xbi < x− d

2
+ d0} Figure 2(a)-(3)

xr− − d0 ≥ x− d
2

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

xr− ≥ x− d
2
> xr− − d0

X l
b = {xbi : x− d

2
≤ xbi ≤ xr−} Figure 2(a)-(4)

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

x− d
2
> xr−

X l
b = ∅ Figure 2(a)-(5)

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

v < 0

x− d
2
> xr+ −∆

X l
b = ∅ Figure 2(b)-(1)

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

xr+ − 2∆ < x− d
2
≤ xr+ −∆

X l
b = {xbi : x− d

2
< xbi ≤ xr+ −∆} Figure 2(b)-(2)

X r
b = {xbi : x+ d

2
− d0 ≤ xbi ≤ x+ d

2
}

x− d
2
≤ xr+ − 2∆ X l

b = {xbi : x− d
2
≤ xbi < x− d

2
+ d0} Figure 2(b)-(3)

xr+ + d0 ≤ x+ d
2

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

xr+ ≤ x+ d
2
< xr+ + d0

X l
b = {xbi : x− d

2
< xbi ≤ x− d

2
+ d0} Figure 2(b)-(4)

X r
b = {xbi : xr+ ≤ xbi ≤ x+ d

2
}

x+ d
2
< xr+

X l
b = {xbi : x− d

2
≤ xbi < x− d

2
+ d0} Figure 2(b)-(5)

X r
b = ∅

Table 1: The sets X r
b (x) and X l

b(x) as a function of the position and velocity.

bristles in contact with the body are pivoted counterclockwise, that is, θi < 0.
The resulting friction force causes the body to accelerate to the right while
x+ d

2
< xr− +∆. The body encounters the first bristle to its right in Figure

2(a)-(2). As the body continues to move to the right, its right lower corner
comes in contact with additional bristles since x+ d

2
≥ xr−+2∆, and bristles

push on both lower corners of the body as shown in Figure 2(a)-(3). In Figure
2(a)-(4) the left lower corner of the body is in contact with the only remaining
bristle with θi < 0, located at xr−. Finally, as the left lower corner of the
body passes the base of the bristle located at xr−, that is, x− d

2
> xr−, only

bristles with θi > 0 remain in contact with the body as shown in Figure 2(a)-
(5). Figure 2(b) shows the bristle-body interaction starting at the instant the
sign of the velocity changes from positive to negative. The direction reversal
described in Figure 2(b) is analogous to Figure 2(a).

All simulations start at t = t0 with the body position x = x0, and the
sets X l

b and X r
b are assumed to be empty at t = t0. That is, at the begin-
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Figure 2: Interaction of the body and bristles during reversals of the body’s motion. (a)
shows the bristle-body interaction as the sign of the velocity of the body changes from
negative to positive. Bristle-body interaction as the sign of velocity of the body changes
from positive to negative is shown in (b).

ning of all simulations, the only bristles contacting the body are the bristles
contacting the bottom surface of the body and supporting the weight of the
body. Therefore, no bristles are in contact with the right or left lower corners
of the body at t = t0. The friction force is thus zero and the body encounters
bristles according to the rules outlined in Table 2.

Once the sets X r
b (x) and X l

b(x) are known, the horizontal component of
the contact force due to all of the bristles in contact with the right lower
corner of the body is

F r
f =

κ

h
ΘT

r (cosΘr ◦ cosΘr) , (7)

where “◦” denotes component-wise vector multiplication and the function
cos(·) operates on each component of its vector argument. Likewise, the
horizontal component of the contact force due to all of the bristles in contact
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Velocity Position X r
b (x), X

l
b(x)

v ≥ 0
x < x0 + d0

X l
b = ∅

X r
b = {xbi : x0 +

d
2
< xbi ≤ x+ d

2
}

x ≥ x0 + d0
X l

b = ∅

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

v < 0
x > x0 − d0

X l
b = {xbi : x− d

2
≥ xbi < x0 −

d
2
}

X r
b = ∅

x ≤ x0 − d0
X l

b = {xbi : x− d
2
≥ xbi < x− d

2
+ d0}

X r
b = ∅

Table 2: Initialization of sets X r
b and X l

b .

with the left lower corner of the body is

F l
f =

κ

h
ΘT

l (cosΘl ◦ cosΘl) . (8)

The total friction force is thus

Ff = F l
f + F r

f , (9)

where X r
b (x) and X l

b(x) are determined from tables 1 and 2.
For illustration, consider the body moving with the prescribed position

x(t) = A sin(ωt) and velocity v(t) = Aω cos(ωt), where A = 5 m and ω = 0.1
rad/s. The remaining model parameters are m = 1 kg, d = 1 m, κ = 0.1
N-m/rad, ∆ = 0.002 m, lb = 0.1 m, h = 0.098 m, d0 = 0.0199 m. The
resulting friction force as a function of position is shown in Figure 3(a) and
as a function of velocity in Figure 3(b). The friction force is initially zero and
increases as the mass moves and encounters bristles. The friction force drops
slightly when a bristle reaches its maximum pivot angle θmax and increases
when a new bristle comes in contact with the right lower corner of the body.
The magnitude of the friction force oscillates around zero when a direction
reversal occurs, since bristles push simultaneously on both the right and left
lower corners of the body. In contrast with the Coulomb and LuGre friction
models [2, 13, 17], Figure 3(b) shows that, as the velocity crosses zero, the
friction force does not change sign.
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Figure 3: The friction force (7)-(9) of the rotating bristle model as a function of position
(a) and velocity (b). The position of the body is prescribed to be x(t) = A sin(ωt) and
velocity v(t) = Aω cos(ωt), where A = 5 m, ω = 0.1 rad/s.

2.3. Stick-slip behavior

To investigate stick-slip behavior, we simulate the system shown in Figure
4. The body of mass m is connected to a spring with stiffness K. The free
end of the spring moves at the constant speed vp. The equations of motion
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are

ẋ = v, (10)

v̇ =
1

m
(Kl − Ff ), (11)

l̇ = vp − v, (12)

where v is the velocity of the body relative to the ground, l is the length of
the spring, and Ff is the friction force described by (7)-(9).

Ff

v

K, l
vpm

Figure 4: Body-spring configuration used to investigate the stick-slip properties of the
rotating bristle model. The body of mass m is connected to a spring with stiffness K.
The free end of the spring moves at the constant speed vp. The friction force Ff is given
by (7)-(9).

The results of the simulation of the system (10)-(12) with friction force
described by (7)-(9) are shown in Figure 5. The velocity of the free end
of the spring is vp = 0.5 m/s, and the model parameters are κ = 0.5 N-
m/rad, m = 1 kg, K = 1 N/m, d = 1 m, ∆ = 0.01 m, d0 = 0.0199
m, lb = 0.1 m, and h = 0.098 m. The trajectories projected onto the l-v
plane form a limit cycle shown in Figure 5(a). The time histories of x, l, v,
and Ff are shown in Figure 5(b). As the free end of the spring moves, the
spring force overcomes the friction force and the mass accelerates to the right.
This is the slip phase. However, as the mass accelerates, the spring length
decreases and the friction force becomes larger than the spring force. The
body decelerates, momentarily comes to rest, and reverses its direction of
motion due to the bristles pushing on it from the right (see Figure 2(b)-(1)).
This phase is called quasi-stick since, unlike exact stick, the body does not
remain stationary. The body moves to the left, its left lower corner comes
in contact with bristles, and it continues moving to the left until the friction
force becomes negative, corresponding to Figure 2(b)-(5). At this instant,
the friction force and the spring force are pushing the body in the same
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direction, and the body accelerates to the right.
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Figure 5: Quasi-stick-slip limit cycle of the rotating bristle model. The limit cycle in the
l-v plane is shown in (a), and the time histories of x, l, v, and Ff are shown in (b).

3. Discontinuous Rotating Bristle Model

In this section, we introduce the discontinuous rotating bristle model
(DRBM), which is identical to the rotating bristle model except during di-
rection reversals. In particular, the details of the direction reversals arising in
the rotating bristle model are replaced by a simplified model in the DRBM.
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To construct the DRBM, we assume that when the velocity of the body
passes through zero and changes sign from positive to negative, the configu-
ration in which all of the bristles contacting the body are pivoted to the right,
θi ≥ 0, jumps discontinuously to a configuration in which all of the bristles
contacting it are pivoted to the left, θi ≤ 0. Similarly, when the velocity of
the body passes through zero and changes sign from negative to positive, the
configuration in which all of the bristles contacting the body are pivoted to
the left, θi ≤ 0, jumps discontinuously to the configuration in which all of
the bristles contacting it are pivoted to the right, θi ≥ 0. In figures 2(a) and
2(b) this is equivalent to an instantaneous transition from the configuration
in Figure 2(a)-(1) and 2(b)-(1) to the configuration in Figure 2(a)-(5) and
2(b)-(5), respectively, without passing through the configurations described
in figures 2(a)-(2), -(3), and -(4) and 2(b)-(2),-(3),-(4), respectively.

The DRBM friction force for v ≥ 0 is given by

Ff = F r
f , (13)

where F r
f is defined by (7) and the components of Θr are given by (2) with

xbi in the set

X r
b (x) = {xbi : x+

d

2
− d0 < xbi ≤ x+

d

2
}. (14)

Note that, for every value of x, the set X r
b (x) is nonempty and is initialized

from (14) based on the initial position x(t0). For v < 0, the DRBM friction
force is given by

Ff = F l
f , (15)

where F l
f is defined by (8) and the components of Θl are given by (3) with

xbi in the set

X l
b(x) = {xbi : x−

d

2
≤ xbi < x−

d

2
+ d0}, (16)

which, for all values of x, is nonempty and is initialized from (16) based on
the initial position x(t0).

Due to the discontinuous jump from a configuration in which all of the
pivot angles satisfy θi ≥ 0 to a configuration in which all of the pivot angles
satisfy θi ≤ 0, and vice versa, we compare the value of Ff as v → 0+ with
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the value of Ff as v → 0− in order to determine discontinuities of the friction
force at zero velocity. The value of θi given by (2) with xbi ∈ X r

b (x) defined
by (14) is in the range

0 ≤ θi < tan−1

(

d0

h

)

. (17)

Thus, it follows from (13) and (7) that Ff ≥ 0 for all v ≥ 0. However, since
d0
∆

> 1, X r
b (x) has at least one element, namely, the ith bristle with base at

xbi and θi > 0. The contribution of the ith bristle to the friction force Ff

is thus nonzero and therefore Ff > 0 for all v ≥ 0. On the other hand, the
value of θi given by (3) with xbi ∈ X l

b(x) defined by (16) satisfies

− tan−1

(

d0

h

)

< θi ≤ 0. (18)

It follows from (15) and (8) that Ff ≤ 0 for all v < 0. However, since d0
∆

> 1,
X l

b(x) has at least one element, namely, the ith bristle with base at xbi and
θi < 0. The contribution of the ith bristle to the friction force Ff is thus
nonzero and therefore Ff < 0 for all v < 0.

Since Ff > 0 for all v ≥ 0 and Ff < 0 for all v < 0, we look for the
minimum value of (13) and maximum value of (15). The minimum value of
Ff for v ≥ 0 occurs when only the ith bristle is contributing to the friction
force and thus xbi = x+ d

2
− d0+∆, xbi ∈ X r

b (x), and θi = tan−1
(

d0−∆
h

)

> 0.
At this instant the pivot angle of the (i − 1)th bristle reaches θmax and no
longer contributes to the friction force, that is, xbi−1

= x + d
2
− d0. Thus,

the ith bristle is the only bristle contributing to the friction force, and the
minimum value of Ff defined by (13) and (7) for v ≥ 0 is

Ff,min =
k

h
tan−1

(

d0 −∆

h

)

cos2
(

tan−1

(

d0 −∆

h

))

> 0. (19)

Similarly, the maximum value of Ff for v < 0 occurs when only the ith bristle
contributes to the friction force and thus xbi = x− d

2
+ d0 −∆, xbi ∈ X l

b(x),

and θi = − tan−1
(

d0−∆
h

)

< 0. At this instant, the pivot angle of the (i+1)th
bristle reaches θmax and no longer contributes to the friction force, that is
xbi+1

= x − d
2
+ d0. Thus, the ith bristle is the only bristle contributing to

the friction force, and the maximum value of Ff defined by (15) and (8) for
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v < 0 is

Ff,max = −
k

h
tan−1

(

d0 −∆

h

)

cos2
(

tan−1

(

d0 −∆

h

))

= −Ff,min < 0.

(20)

Comparing (19) with (20) shows that, for all v ≥ 0, Ff ≥ Ff,min > 0
whereas, for all v < 0, Ff ≤ Ff,max < 0, where Ff,max = −Ff,min. Therefore,

lim
v→0−

Ff < 0 < lim
v→0+

Ff , (21)

which implies that the DRBM friction force Ff defined by (13)-(16) is dis-
continuous at v = 0.

As in the previous section, we consider the body moving with the pre-
scribed position x(t) = A sin(ωt) and velocity v(t) = Aω cos(ωt), where
A = 1 m and ω = 0.01 rad/s. The resulting DRBM friction force as a
function of position is shown in Figure 6(a) and as a function of velocity
in Figure 6(b). In Figure 6(a), a drop in the friction force appears when
a bristle reaches the pivot angle θmax, making the friction force look like a
sawtooth function of position. The friction force of the DRBM does not os-
cillate around zero during direction reversals as in Figure 3(a). However, the
direction of the friction force instantaneously switches while the magnitude
remains unchanged, resulting in a discontinuity at v = 0 as shown in Figure
6(b). The velocity is zero at t1 = π

2ω
and t2 = 3π

2ω
, and thus, a discontinuity

in friction force is also visible in Figure 6(a) at x(t1) = 1 m and x(t2) = −1
m.

3.1. Switch Model

Due to the discontinuity of the DRBM friction force (13)-(16) at v = 0,
the integration of (10)-(12) with the friction force represented by the DRBM
(13)-(16) requires special numerical techniques. In this section we describe
the Switch Model [30, 37], which is a technique that smooths out the discon-
tinuous dynamics around the discontinuity v = 0. The modified equations
can then be integrated using standard numerical integration techniques.

To begin, we rewrite the equations of motion in which the friction force
is modeled by the DRBM as a differential inclusion [37]. Assume that the
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Figure 6: The DRBM friction force (13)-(16) as a function of position (a) and velocity (b).
The position of the body is prescribed to be x = A sin(ωt), and the velocity v = Aω cos(ωt),
where A = 1 m, ω = 0.01 rad/s. As shown in (b) the DRBM friction force is discontinuous
at v = 0.

motion of the body is described by

ẋ = f (x), (22)

where x ∈ R
m and f : V ⊂ R

m → R
m is a piecewise continuous vector field,

and Σ
4

= R
m\V is the set of points of discontinuity of f . We assume that

there exists a function g : Rm → R such that the discontinuity boundary Σ
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is given by the roots of g, that is

Σ = {x ∈ R
m : g(x) = 0}. (23)

We also define sets

V+
4

= {x ∈ R
m : g(x) > 0}, (24)

V−

4

= {x ∈ R
m : g(x) < 0}. (25)

With these definitions, (22) can be rewritten as the differential inclusion
[37, 38]

ẋ ∈











f+(x), x ∈ V+,

αf+(x) + (1− α)f−(x), x ∈ Σ, α ∈ [0, 1],

f−(x), x ∈ V−.

(26)

The direction of the flow given by the vector fields f+(x) and f−(x) can
lead to three types of sliding modes across Σ. If the flow is such that the
solutions of (26) are pushed to Σ in both V+ and V−, then the sliding mode
is attractive. If the solutions cross Σ, then the sliding mode is transversal.
Finally, if the solutions diverge from Σ, the sliding mode is repulsive [37].

The Switch Model smooths out the dynamics of the differential inclusion

(26) by constructing a stick band within the set G
4

= {x : |g(x)| ≤ η},
where η is a small positive constant. (Note that the term “stick band” is not
related to stick-slip friction.) The dynamics outside of the stick band remain
the same. The dynamics inside the stick band depend on the type of sliding
mode across the discontinuity boundary. If the sliding mode is attractive,
that is,

nTf−(x) > 0 and nTf+(x) < 0, x ∈ Σ, (27)

where n
4

= ∇g(x) is the normal to Σ, then the stick-band dynamics are given
by

ẋ = αf+(x) + (1− α)f−(x) , x ∈ G. (28)

The value of the parameter α is chosen such that it pushes the solutions of
(27) toward the middle of the stick band, that is, toward g(x) = 0. Thus,
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inside the stick band, g satisfies

ġ(x) = −τg(x), (29)

where τ > 0 is a time constant. Since

ġ(x) =
dg(x)

dx

dx

dt
= ∇gT ẋ (30)

= nT
(

αf+(x) + (1− α)f−(x)
)

, (31)

setting (29) equal to (31) and solving for α gives

α =
nTf−(x) + τ−1g(x)

nT (f−(x)− f+(x))
. (32)

If the sliding mode is transversal, that is,

(nTf−(x))(n
Tf+(x)) > 0, x ∈ Σ, (33)

then the stick-band dynamics are defined by

ẋ =

{

f−(x), if n
Tf−(x) < 0 and nTf+(x) < 0 , x ∈ G,

f+(x), if n
Tf−(x) > 0 and nTf+(x) > 0 , x ∈ G.

(34)

Finally, if the sliding mode is repulsive, that is,

nTf−(x) < 0 and nTf+(x) > 0, x ∈ Σ, (35)

than the dynamics are defined by

ẋ = f+(x) , x ∈ G. (36)

Outside of the stick band, the dynamics are defined by

ẋ =

{

f+(x), x ∈ G+,

f−(x), x ∈ G−,
(37)

where G+
4

= {x : g(x) > η} and G−

4

= {x : g(x) < η}. More details about
the Switch Model (27)-(37) and a pseudocode are given in [37].

18



3.2. Stick-slip behavior

We use the Switch Model (27)-(37) to simulate the system shown in Figure
4 and defined by (10)-(12) with friction force defined by the DRBM (13)-
(16). The system (10)-(12) with friction force modeled by (13)-(16) can be

formulated as a differential inclusion (26) with x
4

=
[

x v l
]T
, the set Σ

defined by the roots of the function g(x) = v, the normal to Σ defined by

n = ∇g(x) =
[

0 1 0
]T
, and the vector fields f+(x) and f−(x) defined

by

f+(x)
4

=





v
1
m
(Kl − Ff+)
vp − v



 , (38)

f−(x)
4

=





v
1
m
(Kl − Ff−)
vp − v



 , (39)

where Ff+ = F r
f is the DRBM friction force for v ≥ 0 defined by (13) and

Ff− = F l
f is the DRBM friction force for v < 0 defined by (15).

We use the Switch Model (27)-(37) to simulate the differential inclusion
(26) with f+(x) and f−(x) defined by (38) and (39) with m = 1 kg, K = 1
N/m, vp = 0.002 m/s, d = 0.5 N, κ = 0.1 N-m/rad, h = 0.0995 m, lb = 0.1 m,
d0 = 0.01 m, ∆ = 0.005 m, and η = 10−8. Part (a) of Figure 7 shows the limit
cycle obtained by projecting the trajectories onto the l-v plane, and Figure
7(b) shows the time histories of x, l, v, and Ff . The exact stick-slip motion
is represented by the limit cycle in the l-v plane. The quasi-stick phase of the
rotating bristle model shown in Figure 5(a) is replaced by sticking, indicated
by the line segment in which v = 0 and l̇ = vp. The exact stick-slip behavior
of the DRBM is a consequence of the drop in friction force that occurs when
the bristle pivot angle reaches θmax.

3.3. Hysteresis map

We consider the mass-spring system shown in Figure 8. The body of
mass m is attached to the wall by means of a spring with stiffness coefficient
K. A periodic force input u(t) acts on the body causing it to move over the
horizontal surface. The friction force between the body and the surface is
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Figure 7: The exact stick-slip limit cycle of (38)-(39) with friction force modeled by the
DRBM (13)-(16). (a) shows the stable limit cycle in the l-v plane. The trajectories starting
inside and outside of the limit cycle converge to it. (b) shows the time histories of x, l,
v, and Ff with zero initial conditions. The parameter values are m = 1 kg, K = 1 N/m,
vp = 0.002 m/s, d = 0.5 N, κ = 0.1 N-m/rad, h = 0.0995 m, lb = 0.1 m, d0 = 0.01 m,
∆ = 0.005 m, and η = 10−8.

represented by the DRBM (13) - (16). The equations of motion are

ẋ = v, (40)

v̇ =
1

m
(−Kx+ u− Ff ). (41)
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u

Ff

K
m

Figure 8: Body-spring configuration represented by (40)-(41). The body of mass m is
connected to the wall by a means of a spring with stiffness K and is acted on by an
external force input u.

To formulate (40)-(41) with Ff defined by (13)-(16) as a differential in-
clusion (26), we define vector fields f+(x) and f−(x) corresponding to (40),
(41) by

f+(x)
4

=

[

v
1
m
(−Kx+ u− Ff+)

]

, (42)

f−(x)
4

=

[

v
1
m
(−Kx+ u− Ff−)

]

, (43)

where x =
[

x v
]T
, Ff+ = F r

f is the DRBM friction force for v ≥ 0 defined

by (13), and Ff− = F l
f is the DRBM friction force for v < 0 defined by

(15). The set Σ is defined by the roots of the function g(x) = v, so that

n = ∇g(x) =
[

0 1
]T
.

We utilize the Switch Model (27)-(37) to simulate (26) with f+(x) and
f−(x) defined by (42), (43), and the force input u(t) = sin(ωt). The system
parameters used are m = 1 kg, K = 1 N/m, lb = 0.1 m, κ = 0.1 N-m/rad,
d = 1 m, h = 0.0995 m, ∆ = 0.01 m, and η = 10−6. The input-output map
of (42)-(43) with ω = 0.05 rad/s is shown in Figure 9(a) and with ω = 0.001
rad/s is shown in Figure 9(b). At low input frequencies, the input-output
map forms a loop, showing that the system is hysteretic. The input-output
map H, called the hysteresis map, is rate-dependent since its shape changes
with the frequency of the input [39]. The staircase shape of the hysteresis
map, also observed with the LuGre model, indicates exact stick-slip behavior
[11]. The time histories of x, v, u, and Ff for ω = 0.001 rad/s are shown in
Figure 9(c).

Since the input-output map of (42)-(43) is hysteretic, we can calculate the
energy dissipated during one cycle of operation. The area A of the hysteresis
map H shown in Figure 9(b) is equal to the energy loss during one cycle. To
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Figure 9: Simulation of (42)-(43) with friction force modeled by the DRBM with u(t) =
sin(ωt) N, m = 1 kg, K = 1 N/m, lb = 0.1 m, κ = 0.1 N-m/rad, d = 1 m, h = 0.0995 m,
∆ = 0.01 m, and η = 10−6. (a) shows the input-output map with ω = 0.05 rad/s and (b)
shows the input-output map with ω = 0.001 rad/s. The shape of the input-output map
at low frequencies indicates exact stick-slip behavior. The time histories of x, v, u, and
Ff with ω = 0.001 rad/s are shown in (c).

demonstrate, we begin with the expression for work done by the force u(t)
during one cycle and use Green’s theorem

E =

∮

H

udx =

∫ ∫

A

dudx = A (44)

to show that the work done E is equal to the area A of the hysteresis map.
The energy dissipated based on the area of the hysteresis loop shown in
Figure 9(b) is E = 0.35647 J.

Alternatively, we can calculate the dissipated energy by summing the
potential energy stored in each torsional spring during the motion of the
body. As each bristles pivots, energy is stored in its torsional spring, and
is subsequently dissipated by the dashpot after the body passes beyond the
bristle and the bristle is suddenly released. The total energy stored in the
bristles is

Estored =
1

2
Neκθ

2
max, (45)

where Ne is the number of bristles that the mass contacts during one cycle of
motion. Based on the minimum xmin and maximum xmax value of x during
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one cycle of motion and the spacing of the bristles, Ne is given by

Ne = 2

⌊

xmax − xmin

∆

⌋

, (46)

where b·c denotes integer part. The dissipated energy calculated from (45)
is Estored = 0.35566 J.

3.4. Approximation of the friction force

The calculation of the DRBM friction force (13)-(16) requires keeping
track of the position of each bristle relative to the body. In order to simplify
the calculation of Ff , we note that the friction force of the DRBM is a
function of position that resembles a sawtooth wave as shown in Figure 6(a).
Thus, the friction force (13)-(16) can be approximated by the sawtooth wave

Ff =

{

F r
f , v ≥ 0,

F l
f , v < 0,

(47)

F r
f ≈ Fmin +

Fmax − Fmin

∆
mod (x,∆) , (48)

F l
f ≈ −

(

Fmin +
Fmax − Fmin

∆
mod (−x,∆)

)

, (49)

so that

Ff ≈ sign(v)

(

Fmin +
Fmax − Fmin

∆
mod (sign(v)x,∆)

)

, (50)

where the constants Fmin and Fmax determine the minimum and maximum
magnitudes of the friction force. The force Ff given by (50) is shown as a
function of position in Figure 10(a) and as a function of velocity in Figure
10(b), where the position is prescribed to be x(t) = A sin(ωt) and the velocity
is v(t) = Aω cos(ωt), where A = 1 m and ω = 0.01 rad/s.

3.5. Equilibria map

In this section we determine the equilibria of (40)-(41) arising from the
friction force (47)-(49). The equilibria are found for each constant value ū of
the input u(t). Due to the discontinuity of the friction force for v = 0, we
use the approach of [38, 40] to analyze the equilibria.
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Figure 10: The approximation of the DRBM friction force (50) as a function of position
(a) and velocity (b). The position is prescribed to be x(t) = A sin(ωt) and velocity
v(t) = Aω cos(ωt), where A = 1 m and ω = 0.01 rad/s. The friction force parameters are
Fmin = 0.5 N, Fmax = 1 N, and ∆ = 0.033 m.

We reformulate (40)-(41) as a differential inclusion (26) with x =
[

x v
]T

and vector fields f+(x) and f−(x) defined by (42) and (43), respectively.
However, Ff+ = F r

f and Ff− = F l
f are defined by (48) and (49), respectively.

We set the input u(t) = ū and determine the equilibria in the sets V+, V−,
and Σ defined by (23), (24), and (25), respectively, with g(x) = v. The equi-

libria map E(ū) is the set of all points (ū, x̄) ∈ R
2, such that x̄ =

[

x̄ v̄
]T
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is an equilibrium of (26) corresponding to u(t) = ū.
To find equilibria in V+, we set f+(x) = 0, which yields

x̄ =
1

K
(ū− Ff+), (51)

v̄ = 0. (52)

However, since V+ = {(x, v) : x ∈ R, v > 0} and v̄ = 0, the equilibrium
(x̄, v̄) defined by (51) and (52) is not an element of V+, and thus there are
no equilibria in V+. To find the equilibria in V−, we set f−(x) = 0, which
yields

x̄ =
1

K
(ū− Ff−), (53)

v̄ = 0. (54)

However, since V− = {(x, v) : x ∈ R, v < 0} and v̄ = 0, the equilibrium
(x̄, v̄) defined by (53) and (54) is not an element of V−, and thus there are
no equilibria in V−. Finally, to find the equilibria in Σ, we set

0 = αf+(x) + (1− α)f−(x), (55)

for all α ∈ [0, 1], which yields

x̄ ∈ X̄ (ū)
4

=

{

ū− (αFf+ + (1− α)Ff−)

K
: α ∈ [0, 1]

}

, (56)

v̄ = 0. (57)

Since Σ = {(x, v) : x ∈ R, v = 0}, it follows that all of the equilibria of (26)
with f+(x) and f−(x) defined by (42) and (43), respectively, are elements
of Σ. The equilibria map E(ū) on the sliding manifold Σ is therefore given
by

E(ū)
4

= {(ū, x̄) : ū ∈ R, x̄ ∈ X̄ (ū)}, (58)

where X̄ (ū) is defined by (56). The equilibria (ū, x̄) in Σ are called pseudo-
equilibria for α ∈ (0, 1) and boundary equilibria for α = 0 or α = 1 [40].
The set E(ū) is shown in Figure 11. The shaded region represents the
pseudo-equilibria, and the black lines represent the boundary equilibria. For
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each constant input ū there is an infinite number of corresponding pseudo-
equilibria x̄ ∈ X̄ (ū). The hysteresis map is also shown in Figure 11. Except
for the vertical portions, the hysteresis map is a subset of the equilibria map.
The vertical portions of the hysteresis map, which correspond to the slip
phase, are not completely contained in the equilibria map since they occur
at the points of bifurcations. For more details, see [41].
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Figure 11: Equilibria and hysteresis maps of (40)-(41) with the friction force modeled by
(47)-(49). The shaded area represents the pseudo-equilibria of the system. The boundary
equilibria form the boundary of the shaded area. The hysteresis map, shown in black, is
a subset of the equilibria map. The parameters used are m = 1 kg, K = 1 N/m, ∆ = 0.1
m, Fmin = 0.5 N, and Fmax = 1 N.

4. DRBM-based single-state models

In this section we introduce two simplified versions of the DRBM, namely,
the friction-force-based model (FFBM) and the mean-pivot-angle-based model
(MPABM). These versions eliminate the need for the Switch Model and yet
capture the stick-slip behavior of the DRBM. The FFBM and MPABM are
both single-state models [6, 35], as described below.
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4.1. Single-state models

Single-state friction models such as the Dahl and LuGre model involve
a state variable z that represents the internal friction mechanism. These
models have the form

ż = v

(

1− α(v, z)sign(v)
z

zss(v)

)

, (59)

Ff = σ0z + σ1ż + σ2v, (60)

where σ0, σ1, σ2 are positive constants, z is the internal friction state, zss(v)
determines the shape of the steady-state z curve, and Ff is the friction force.
The function α(v, z) determines the presence and type of elastoplastic pres-
liding displacement [35, 42]. For simplicity, we set α(v, z) = 1 and rewrite
(59)-(60) as

ż = v −
|v|

zss(v)
z, (61)

Ff = σ0z + σ1ż + σ2v. (62)

Setting zss(v) to be

zss(v) =
1

σ0

(

Fc + (Fs − Fc)e
−(v/vs)2

)

, (63)

where Fc, Fs, and vs are constants, yields the LuGre model [14, 15], which
exhibits stick-slip, hysteresis, and the Stribeck effect.

In steady-state motion, ż = 0, and thus z = sign(v)zss(v). Furthermore,
if σ1 = σ2 = 0, then

Ff = σ0z = sign(v)σ0zss(v). (64)

4.2. Friction-force-based model (FFBM)

The friction-force-based model (FFBM) is formulated by using the ap-
proximation (50) of the DRBM friction force to define zss. Equating (50)
with (64) yields

zss(v, x) =
1

σ0

(

Fmin +
Fmax − Fmin

∆
mod (sign(v)x,∆)

)

, (65)
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and thus (61)-(62) become

ż = v − σ0
|v|

Fmin +
Fmax−Fmin

∆
mod(sign(v)x,∆)

z, (66)

Ff = σ0z. (67)

In this case, z has the units of force and can be viewed as the contribution
of one bristle to the total friction force, while the total number of bristles
contributes to the friction force through the parameter σ0. Note that, unlike
zss(v) in (61), the term zss(v, x) in (65) depends on both position and velocity.

We now consider the system shown in Figure 8 and described by (40)-(41)
with the external force u(t) and the friction force modeled by (66)-(67). The
complete system of equations is

ẋ = v, (68)

v̇ =
1

m
(−Kx+ u− Ff), (69)

ż = v − σ0
|v|

Fmin +
Fmax−Fmin

∆
mod(sign(v)x,∆)

z, (70)

Ff = σ0z. (71)

For each constant force input u(t) = ū the equilibria of (68)-(71) are

x̄ =
1

K
(ū− σ0z̄), (72)

v̄ = 0, (73)

z̄ = sign(0)
1

σ0

(

Fmin +
Fmax − Fmin

∆
mod (sign(0)x̄,∆)

)

. (74)

By viewing sign(0) as the interval [−1, 1] we rewrite (74) as

z̄ ∈ Z̄
4

=

{

(2α− 1)
1

σ0

(

Fmin +
Fmax − Fmin

∆
mod ((2α− 1)x̄,∆)

)

: α ∈ [0, 1]

}

.

(75)
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Note that (75) is equivalent to

z̄ ∈ Z̄
4

=

{

1

σ0

(

αF r
f + (1− α)F l

f

)

: α ∈ [0, 1]

}

, (76)

where F r
f and F l

f are defined by (48) and (49), respectively. Substituting
(76) into (72) gives the equilibria map of (68)-(71)

E(ū) = {(ū, x̄) : ū ∈ R, x̄ ∈ X̄ (ū)}, (77)

where

X̄ (ū) =

{

ū− (αF r
f + (1− α)F l

f)

K
: α ∈ [0, 1]

}

, (78)

which is identical to the equilibria set (58) for the DRBM on the sliding
manifold.

The equilibria set and the hysteresis map of (68)-(71) are shown in Fig-
ure 12. The system is hysteretic and exhibits exact stick-slip, where the
exact stick-slip is demonstrated by the staircase-shaped hysteresis map. The
parameters used are m = 1 kg, K = 1 N/m, Fmin = 1 N, Fmax = 1.5 N,
∆ = 0.05 m, u(t) = 2 sin(ωt) N, ω = 0.01 rad/s, σ0 = 105. The hysteresis
map is a subset of the equilibria set, except for the vertical portions, which
correspond to the slip phases and occur at bifurcation points [41].

4.3. Mean-pivot-angle-based model (MPABM)

We develop the mean-pivot-angle-based model (MPABM) by assuming
that the sum θs of the pivot angles θi of all of the bristles contributing to
the friction force can be approximated by its exponentially weighted moving
average (EWMA) θ [43, 44]. The goal is to express θ as a function of v, so
that setting zss(v) = θ(v) yields a single-state friction model.

To find θ at each discrete time step tj , we use

θ(tj) = βθs(tj) + (1− β)θ(tj − 1), (79)

where β ∈ [0, 1] is a constant, θ(0) = θs(0), and the weighting for the data
point θs(tj − i) is β(1 − β)i−1, that is, the weighting for prior data points
decreases exponentially [43, 44].
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Figure 12: Equilibria map and hysteresis map of (68)-(71) with force input u(t) = 2 sin(ωt)
with m = 1 kg, K = 1 N/m, Fmin = 1 N, Fmax = 1.5 N, ∆ = 0.05 m, ω = 0.01 rad/s, and
σ0 = 105.

Since θ can be interpreted as a pivot angle of a single bristle that is
contributing to the friction force, the vectors Θr and Θl used to calculate Ff

in (13) and (15) are replaced by θ, and (13) and (15) are replaced by

Ff =
κθ(cos θ)2

h
≈

κ

h
θ, (80)

for small angles θ.
We use (79) to find θ for the differential inclusion (26) with f+ and f−

defined by (38)-(39), respectively. The sum θs of all of the bristle pivot angles
is shown in Figure 13(a). The model parameters are m = 1 kg, K = 1 N/m,
vp = 0.002 m/s, d = 0.5 N, κ = 0.1 N-m/rad, h = 0.0995 m, lb = 0.1 m,
d0 = 0.01 m, ∆ = 0.005 m, and η = 10−8. Figure 13(b) shows θ(tj) found
from (79) with β = 0.05, as a function of time and Figure 13(c) as a function
of velocity. The two traces in Figure 13(c) represent θ(tj) corresponding to
increasing and decreasing velocity.

As shown by the dashed line in Figure 14, the dependence of θ on velocity
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Figure 13: Sum of the pivot angles θs of all of the bristles contributing to the friction force
(a), the EWMA of θs as a function of time (b) and as a function of velocity (c). The pivot
angle data are obtained from the simulation of (38) and (39) with parameters m = 1 kg,
K = 1 N/m, vp = 0.002 m/s, d = 0.5 N, κ = 0.1 N-m/rad, h = 0.0995 m, lb = 0.1 m,
d0 = 0.01 m, ∆ = 0.005 m, and η = 10−8. The EWMA is found from (79) with β = 0.05.
The two traces in (c) represent θ(tj) for increasing and decreasing values of velocity.

shown in Figure 13(c) can be approximated by

θ ≈ θ̂(v)
4

= sign(v)
(

θ̂min + (θ̂max − θ̂min)e
−(v/v̂s)2

)

, (81)

where θ̂min = 0.1 rad, θ̂max = 0.133 rad, and v̂s = 0.01 m/s. The parameters
θ̂max and θ̂min are determined by the values of θ for v = 0 m/s and v → ∞,
respectively. In addition, the parameter v̂s reflects the decay rate of θ, which
is determined by the choice of β. Combining (80) and (81) yields the mean
friction force expression

Ff =
κ

h
sign(v)

(

θ̂min + (θ̂max − θ̂min)e
−(v/v̂s)2

)

, (82)

so that

zss(v) =
1

σ

(

θ̂min + (θ̂max − θ̂min)e
−(v/v̂s)2

)

, (83)

and the single-state friction model equations are

ż = v − σ
|v|

θ̂min + (θ̂max − θ̂min)e−(v/v̂s)2
z, (84)

Ff = σ0z, (85)
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where σ0 =
κ
h
σ. The single-state friction model (84)-(85) is the LuGre model

(61)-(63) with σ = σ0, σ1 = 0, σ2 = 0. Note that, the Stribeck effect of the
MPABM is an artifact of the approximation of θs by its EWMA θ and is not
a property inherited from the DRBM.
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Figure 14: The EWMA θ (solid) of the sum of all pivot angles and its approximation θ̂

(dashed). The EWMA is found from (79) with β = 0.05 and can be approximated by

θ̂ = sign(v)
(

θ̂min + (θ̂max − θ̂min)e
−(v/v̂s)

2

)

, where θ̂min = 0.1 rad, θ̂max = 0.133 rad, and

v̂s = 0.01 m/s.

We use (84) and (85) to represent the friction force of the system shown
in Figure 8 and described by (40)-(41). The complete description is

ẋ = v, (86)

v̇ =
1

m
(−Kx + u− Ff), (87)

ż = v − σ
|v|

θ̂min + (θ̂max − θ̂min)e−(v/v̂s)2
z, (88)

Ff = σ0z, (89)

and, for each constant value of the input u(t) = ū, the equilibria of this
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system are

x̄ =
1

K
(ū− σ0z̄), (90)

v̄ = 0, (91)

z̄ = sign(0)
1

σ
θ̂max. (92)

By viewing sign(0) as the interval [−1, 1], the equilibria map of (86)-(89) is
the set

E(ū) = {(ū, x̄) : ū ∈ R, x̄ ∈ X̄ (ū)}, (93)

where

X̄ (ū) =

{

1

K

(

ū−
κ

h
(2α− 1)θ̂max

)

: α ∈ [0, 1]

}

. (94)

The equilibria set (93) and the hysteresis map of the system (86)-(89) are
shown in Figure 15 with parameters u(t) = 2 sin(ωt), m = 1 kg, K = 2
N/m, θmin = 0.5 rad, θmax = 0.75 rad, ω = 0.01 rad/s, σ0 = 105 N/rad,
σ = 105, and vs = 0.001 m/s. The equilibria set is the region shaded gray.
For each constant force input ū there is an infinite number of corresponding
equilibria points. Thus, the system is hysteretic and the hysteresis map is
a subset of the equilibria map. Furthermore, the staircase-shaped hysteresis
map indicates exact stick-slip motion.

5. Conclusions

In this paper we developed an asperity-based friction model. The friction
model is based on the frictionless and lossless interaction of a body with a
row of rigid bristles that represent the roughness of the contacting surfaces.
Each bristle in the rotating bristle model is attached to the ground through
a torsional spring and a dashpot. As the body moves, the bristles pivot and
counteract its motion, and energy is used to compress the spring at the base
of each bristle. As the body passes over each bristle, it is suddenly released,
and the energy stored in its spring is dissipated by a dashpot. The resulting
energy loss occurs regardless of how slowly the mass moves. Consequently,
the bristle model is hysteretic.
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Figure 15: Equilibria map and hysteresis map of (86)-(89) with force input u(t) = 2 sin(ωt)
with m = 1 kg, K = 2 N/m, θl = 0.5 rad, θh = 0.75 rad, ω = 0.01 rad/s, σ0 = 105 N/rad,
σ = 105, and vs = 0.001 m/s. The equilibria map forms a continuum shown in gray shade
and the hysteresis map is shown in thick black.

The rotating bristle model exhibits quasi-stick-slip, similar to exact stick-
slip but where the stick phase is replaced by reverse motion. Thus, we
introduce the discontinuous rotating bristle model (DRBM), which exhibits
exact stick-slip and hysteresis and is identical to the rotating bristle model
except during direction reversals.

We then simplify the DRBM to obtain single-state friction models that
are continuous and have the same stick-slip properties as the DRBM. For
the FFBM single-state model, the internal friction state represents the con-
tribution of each bristle to the friction force. For the MPABM, the internal
friction state is given by the exponentially weighted moving average of the
sum of the pivot angles of all of the bristles contributing to the friction force.
The FFBM and MPABM models exhibit exact stick-slip and hysteresis and
are closely related to the LuGre model. Thus, we show that the frictionless
interaction of the bristles and a body results in the friction force that has
the properties of experimentally based friction models such as LuGre.
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