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Energy flow models are derived for interconnected structures in tems of both modal and
structural subsystems. The principal goal of this analysis is to develop a deterministic
foundation for energy flow analysis that clarifies assumptions under which statistical energy
analysis (SEA) predictions are valid. Three sources of error involving modal incoherence,
pairwise coupling loss factor and blocked modal energy are identified. Assumptions under
which these terms are negligible are identified and compared to standard SEA assumptions.
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1. INTRODUCTION

The analysis of complicated structures comprised of multiple substructures remains one of
the most challenging problems in structural dynamics. As with the analysis of complex
systems in general, it is highly desirable to analyze the overall system in terms of the
interaction of system components. The underlying idea is to use insight into the interaction
of a small number of subsystems to predict the behavior of a large-scale system with
numerous interacting components. In the area of structural dynamics, energy flow methods
such as statistical energy analysis (SEA) [1-26] seek to predict vibration levels of complicated
structures in terms of the energy flow interaction of pairs of modes. For high-dimensional
problems with significant uncertainty, these methods complement finite element modelling
techniques.

As may be expected, the ability to predict the behavior of a complicated system in terms
of the pairwise interaction of subsystems is limited by the extent to which the interaction
of a pair of subsystems is affected by the presence of additional subsystems. Fortunately,
in many large-scale structural vibration problems, such extraneous interactions are small due
to weak coupling and other effects. It is these effects that SEA exploits to facilitate the
analysis of complex structures.
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The early work on SEA is based on the classical papers [1-7] as well as many others. In
more recent work researchers have calculated energy flow between two interconnected
structures using deterministic methods. In particular, Pan £7 4L. [24] calculated the energy
flow between a rigid body and supporting panel by using a modal approach, Mace [22]
calculated the energy flow between two interconnected beams by using wave functions, and
Keane and Price [15,20] obtained SEA-type relations for a pair of interconnected structures.
However, the deterministic energy flow models derived in references [22,24] are different
from the fundamental equations used in SEA which characterize energy flow in terms of
energy differences.

For multiple interconnected substructures there have been several attempts to reconcile
the differences between deterministic approaches and SEA [9,11,13,14,17]. For example,
Maidanik [9] developed a theoretical foundation for SEA by using an energy flow model,
Hodges and Woodhouse [14] explained SEA properties from a physical point of view, and
Langley [17] provided a general development of SEA relations. Nevertheless, there does not
yet exist a complete theory of SEA that rigorously clarifies the assumptions that underlie
the methodology. The goal of this paper is thus to make progress in clarifying the precise
assumptions under which SEA predictions are valid.

To this end, we extend our previous work [27], which was motivated by reference [28],
to obtain energy flow models for interconnected structures. In particular, we derive two
distinct energy flow models, namely, the modal subsystem model (section 3), which views
each mode as a subsystem, and the structural subsystem model (section 4), which views each
structure as a subsystem. These energy flow models predict energy flow among modes or
structures independently of the number of interconnected structures and the coupling
strength. These results are based on the thermodynamic energy flow relationship given by
Theorem 3.2 of reference [27], which is analogous to the corresponding result given by
equation (37) of reference [17] involving subsystem kinetic energy.

Crucial features of our development include the exclusive use of a deterministic structural
model and a localized stochastic disturbance. This formulation stands in contrast to
treatments that invoke stochastic structural uncertainty models and spatially distributed
disturbances to justify energy flow relationships [8,29-31]. We believe that energy flow
predictions based on deterministic modelling leave less ambiguity with regard to the meaning
of the results than predictions based on stochastic modelling that invoke the notion of an
ensemble or statistical population of structures. For this reason our derivation of SEA results
intentionally seeks to de-emphasize the statistical aspect of the theory.

In developing a rigorous foundation for SEA-type predictions, we consider three sources
of error, namely, modal incoherence, the pairwise coupling coefficient, and the use of blocked
modal energy. SEA often invokes a modal incoherence assumption so that energy flow
among structures can be represented by a modal flow model. Modal incoherence, however,
occurs when the disturbances are spatially distributed “‘rain on the roof’ [9,14,26] or when
the covariance is averaged over an uncertainty distribution [32]. Our analysis shows that
modal incoherence is responsible for discrepancies between energy flow predictions based
on the modal subsystem model and energy flow predictions based on the structural
subsystem model. Furthermore, in SEA the coupling coefficient is derived from the pairwise
interaction of modes in isolation from other modes. As in reference [27], however, the
coupling coefficients are influenced by the presence of other modes. In our development, the
coupling coefficients are decomposed into pairwise interaction terms as well as error terms.
Finally, as shown in reference [27], energy actually flows according to thermodynamic energy
and not according to blocked energy. Although thermodynamic energy coincides with
uncoupled energy for second order subsystems, there is a significant difference between
thermodynamic energy and blocked energy. Consequently, SEA inevitably incurs errors due
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to all these effects. In this paper we quantify these error terms and consider limiting
conditions under which these error terms vanish. For cases in which the error terms are small,
the results thus predict that energy flow is proportional to blocked energy, as in classical
SEA theory. A numerical example involving a pair of cantilevered beams is used to illustrate
these results.

2. STRUCTURAL MODEL

We consider r one- or two-dimensional structures under vibration by means of pointwise
external disturbance forces. Each pair of structures is assumed to be mutually interconnected
by means of conservative couplings. For convenience, we make the simplifying assumption
that all couplings to a given structure are connected to a single point on that structure. The
case of structures interconnected at multiple points is more complicated and is outside the
scope of this paper.

The partial differential equation for the displacement response y:(&,¢) of the ith structure
is given by

P70 1 0y = (03— E) &) (1)

where £eQ; denotes the spatial co-ordinate defined on a region Q; for the ith structure.
Furthermore, p;(£) is the mass density of the ith structure, .Z; is the self-adjoint stiffness
operator for the ith structure, and w;(z) is the external disturbance force acting on the ith
structure at the point &. We assume that ,(¢), i=1,...,r, are mutually uncorrelated white
noise disturbances with unit intensity. Additionally, the coupling effect 4,(&,&.,7) at the
coupling position &, is given by

h(&.E, 1) £ fi(1) (€ —&o), 2
for an interaction force fi(¢) and
hi(&,&e,0) 2 ()0 (€ =&, 3)

for an interaction torque g;(¢), where 6’(x) is the doublet (derivative of the delta function).
We consider a modal decomposition of the ith structure of the form

HEN=S a0 @, i1, @)

where ¢;(¢) and ;(£) denote the model co-ordinates and normalized eigenfunctions,
respectively, and the double subscript ij denotes the jth mode of the ith structure. The
normalized eigenfunctions y;(£) satisfy the orthogonality properties

f Pi(é)lﬁi/(f)lﬁw (f)df = 5/‘k, f $,-1//,_-,-(éf)l//,-k(é)df = wi2/5/'k> (5)

where w,, is the uncoupled natural frequency of the jth mode of the ith structure and J is
the Kronecker delta. From equations (4), (5) and appropriate boundary conditions, it
follows that the modal co-ordinates ¢;(#) satisfy

G (1) 4 253G (1) + 07q; (1) = agi(t) — by, (1), (6)
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where v;(¢) is the coupling interaction and the modal damping term 2{;w;¢;(?) is now
included. In equation (6), the modal coefficient a; is defined by

a; £ W:‘/(Ei), (7
while
by & y(&), NOETION ®)
for force interaction and
b a2, ©)

for torque interaction.
The modal velocity y;(#) of the jth mode of the ith structure and the velocity y,(¢) of the
ith structure at the coupling point are given by

Vi) =byqy(1), yi(t)= iyii([)a (10,11)

j=1

where n; is the number of modes of the ith structure in the frequency range of interest.
Henceforth we consider stiffness coupling in which case the coupling interaction v;(¢) is
given by

Ui(l) = Z K,,,|: Zbiiqii(t) - 2 bﬁqq,')q(l):|a (12)
p=1 j=1 g=1
p#i

where K, is the stiffness of the coupling between the ith and the pth structures. The results
of this paper can be extended to the case of dissipative coupling by applying the results of
reference [33].

For later use, note that the modal impedance z;(s), i=1,...,r, j=1,...,n,;, is given by

z;(8) = (s + 2L mys + 0F) /5. (13)

In the following two sections we derive two distinct energy flow models based upon
equation (6).

3. ENERGY FLOW MODELLING: MODAL SUBSYSTEMS

First, we obtain the modal subsystem model by treating each mode as a subsystem. Let
w;(t) denote the disturbance force exciting the jth mode of the ith structure, that is,

wi(£) £ apvi(1), i=1,...,r,j=1,...,n, (14)

and let L(s) denote the r x r stiffness coupling transfer function given by

L(s):%CL, (15)
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where

ZKI/’ _KIZ _Klr
p=2
N —K12 ZKZF —Kz,-
ey =1
CL_ Z#z > (16)
r—1
~K, —K» .. YK,

p=1

so that from equations (10)—(12) the coupling interaction v;(¢) and the structural velocity y:(z)
are related by

vs=L(s)ys, (17)

where py(0)£[yi(1)--y.(0]" and vy(0) £ [oi(1)- 0, (1)]".
To obtain a feedback representation of the interconnected modal subsystems, we define
the modal impedance matrix

Zn(8) 2 diag(z1i(s), .. Zin(8)s -2 Z1(8), 220, (5)), (18)
and the vectors
Yu() 21 (0)qun ()G (t) G, (O], (19)
Wan ) £ w1 (1) Wi () Wi (1) W, (D], (20)
Un(0) £ [brvi (1) bravi(2) b, (1) by v, (D], (21)
WO £ ()W (0] (22)

Note that w(1) = DuWw(?), y(t) = Ef yu(t) and v,(t) = E,v,(t), where the matrices D,, and E,,
are defined by

_a” a0 0 o - 0 0 - 0 9T

pya | v 0 @ i 0 000 (23)
_(') 00 - 0 0 0 a - a;m_
by - by, O - 0 0 - 0 0 - 0"

B |0 7 0 b b 0 00 0 (4)
(0 - 0 0 =+ 0 0 - 0 by -~ b, |

With this notation, the interconnected system (6) can be expressed as the feedback system
shown in Figure 1, where u,(#) £ wn(t) —vn(f) and the coupling matrix L,(s) for the modal
subsystem energy flow model satisfying v, = L,y 1s defined by

L.(s)2 E,L(s)EL. (25)
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Note that since L(s) given by equation (15) is conservative, that is, L(jw)+ L*(jw)=0, it
follows that

Lu(jo)+ L (o) = EnL(jo)EL 4+ (EnL(jo ) EL)*
= E(L(jo)+ L*(jo))E}
=0, (26)

so that L,(s) is also conservative. Since the modal impedance matrix Z,,(s) is strictly positive
real and the coupling L.(s) is conservative, it follows from standard results that the
closed-loop system in Figure 1 is asymptotically stable [27].

As in reference [27], the steady-state average modal energy flows per unit bandwidth
Ei(w), E{(w), Ej(w), i=1,...,r, j=1,...,n,; are defined by

Ey(0)2 —1ReS, . (@),  Ei®)2 —iReS,,,. (@)
Ej(w) £1Re[S,. ()], (27)

where S, _, ,
is the energy flow entering the jth mode of ith structure through the coupling Lun(s), Ei(w)
is the energy dissipation rate of the jth mode of the ith structure, and Ej(w) is the external
energy flow entering the jth mode of the ith structure. In equation (27) and throughout the
paper, the shorthand A4, is used to denote the element Ay, ,,, of an arbitrary matrix 4, where

n; is the mode count index defined by
i—1
e (y,) " (28)
=1

The following result is obtained from reference [27].

Proposition 3.1. Fori=1,...,rand j=1,...,n;, the modal coupling, dissipative, and external
energy flows per unit bandwidth Ej(w), Ej(w) and Ej(w) are given by

1

Ej(@)= =5 Re[L(O)(Ln(j) + Zn([j)) 'S (Ln(i) + Zn(i®)) i (29)
l i
Dy,
wIn
> +u—m>zl;ll(s) Ym
————————————————— L (8)-———mmmmmmoo
UM Ug Vs |
|_{E,, | L(s) E. f«

______________________________________

Figure 1. Feedback representation of modal subsystems.
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1 . . . . . .
Ej(0) = =5 -Re[Zu(io)(Ln(j) + Zn(®)) ™ Sup (Ln(i0) + Zin(j0)) ™ Tyt (30)
1 . . .
Ej(@)=5_Re[S . (La(j0) + Zu(j)) ™l (31
where S, is the intensity matrix of wn(¢) given by S, .. = DnDy.

To analyze energy flows among modal subsystems, we now define as in reference [27] the
cross-modal thermodynamic energy E., of modes m and n of the ith structure and the modal
thermodynamic energy Ej of the jth mode of the ith structure for i=1,...,r and
J,mn=1,...,n; as

A
th A WmWmimin Aimlin
Eimn = = 2 (32)
2\/% 2 Cimcin
S 2
th A oth _ OWmVmig
Efi - Ef/f - - ’ (33)
2(,',',‘ Zcij

respectively, where ¢; 2 2{;w;. Since Ln(jw) has zero real part, the following results follow
from Theorem 3.2 and Corollary 3.3 of reference [27].

Proposition 3.2. For i=1,...,r and j=1,...,n;, the modal coupling energy flow per unit
bandwidth Ej(w) is given by

Elcl(w) = Elcnch(w) + Eg‘,oh,!j(w)a (34)
where

Eiei(@)2 Y (o) (Ef—Ef)+ Y. i O (@) (Epg— EP), (35)

k=1 —lg=1

i

IXETEDY |:z tia (@) Effy— Y ﬂi/c//(w)E;;;:|, (36)

k= = -

ot "

and where 0;,,(w) and p;,,(w) are defined by

51’/’1’!1 (w) £ %Cilcpqu(zm(jw) + Lm(jw))7 I]t’/’pq |z’ (37)
() 2 YR [ Zu(§09) + L] (Zonie0) + Lunieo)] )] (38)

T

In equation (34), the first term Ej,.;(w) depends on differences between thermodynamic
modal energies generated from the incoherent (diagonal) portion Inc[S,,, ., ] of S, .., While
the second term E¢,,,(w) arises from the cross-modal thermodynamic energies generated
from the coherent (off-diagonal) portion Coh[S,,, . ] of S....,, thatis, the effect of disturbance
correlation on each mode.

WmWm mWm?
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We now consider the modal coupling, dissipative, and external energy flows defined by

P2 J Ej(w)do, P;‘,éj Ei(w)do,

—w —w

Pf,éj E(o)dw. (39)
Let Z,'(s) have the realization
Xm(t) = AunX(t) + Buttn(1), V() = Co Xu(2), (40, 41)
and define the constant diagonal damping matrix
Cmdédiag(c,l,...,cl,,l,...,c,.l,...,cml,). (42)

Since x.(¢) is comprised of the position vector x,n(?) and the velocity vector y,(¢), we can
introduce an output matrix C,, so that x,,(¢) = Cpnxn(?). Then the feedback system in Figure
1 has the realization

Xm() = ApXn(1) + D¥(2), Un(1) = CooXm(1), (43, 44)

where 4,2 Ay — ByEnCLENCon, D2 ByD,, and Cpp 2 E, C,ELC,y,. With this notation the
following result follows from Corollary 4.1 of reference [27].

Proposition 3.3. For i=1,...,r and j=1,...,n;, the modal energy flows P, Pj and P; are
given by

P,L, = — (Cn12Q~m C;l)i/ifa Pl(-} = - (Cmd ml Q~m C;{‘nl)z’/'i/'s Pze/ = %(Dmﬁ;ct—;l)i/i/s (45_47)

where the steady-state modal covariance O, 21lim,...&[xn(7)x5(¢)] satisfies the algebraic
Lyapunov equation

0=A,0n+ OnAdl+ DD (48)

Furthermore, the following result is obtained from Lemma 3.1 and Corollaries 3.1 and
3.2 of reference [27].

Proposition 3.4. The modal energy flows per unit bandwidth Ej(w), Ej(w), Ej(w), and
the modal energy flows P5, P§, P satisfy

Ej(w)+ Ej(w)+ Ej(w) =0, i=1,..,r, j=1,...,m, (49)
ZIZIE,(w)=0 (50)
PitPirPi=0,  i=1,...r, j=1l,...n, (51)
and
iipg:o. (52)
P

Equations (49) and (51) represent the energy balance at each modal subsystem, while
equations (50) and (52) reflect the fact that the coupling is conservative. As an example,
Figure 2 illustrates energy flow among four modes of two interconnected structures.
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d
P%l Mode 1 of structure 1 P11

A
d e
Po1 P12
c
P11
c c
Mode 1 of P31 L.© P12 Mode 2 of
structure 2 m P structure 1
c
P2
e d
P31 P12

y
d e
Pog Mode 2 of structure 2 Pay

Figure 2. Energy flow model for two structures and four coupled modes.

4. ENERGY FLOW MODELLING: STRUCTURAL SUBSYSTEMS

We now obtain the structural subsystem energy flow model by treating each structure as
a subsystem. In this model the energy flows are evaluated at the coupling points of the
structures. Hence the colocated impedance z;(s) of the ith structure at the coupling point
is given by

L s
Zi(s):/;Zif(s)’ Y

for i=1,...,r. Additionally, by using the fact that the admittance transfer function from
the external force ,(¢) applied at & to the velocity y,(¢) at &, is given by X agby)zi(s),
(see p. 263 in reference [34]), it follows that the filter transfer function 7;(s), defined by

E é s a” < bl
(S) Z (5)/; Z,','(S)

(54)

transforms the external disturbance force i, at & into the disturbance force w; at the coupling
point &, that is,

wW;= T‘,‘MN/,‘. (55)

With the notation given in equations (54) and (55) and with z;(s) given by equation (13),
equation (6) can be rewritten as

zi($)yi=wi—u;, (56)
which corresponds to the electrical representation of the interconnected system shown in
Figure 3 [27,28].

Since z;(s) is strictly positive real, it follows that

ci(w) 2 Re[z;(jw)] >0, i=1,..,r, weR, (57)
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where ¢;(w) is the frequency-dependent resistance or damping. For convenience, define the
rx r diagonal transfer function

Z(s) 2 diag(z(s),...,2.(s)), (58)
and the frequency-dependent resistance or damping matrix
Ci(w) 2 Re[Z(jw)] =diag(ci(w),...,c(w)). (59)

With this notation, the interconnected system in equation (56) can be expressed as the
feedback system in Figure 4, where wi(£)£[wi()--w,(O)]", w()E[w(t) - u.()]" =
ws(t) —vs(2) and yy(2), vs(¢) and L(s) satisfy equation (17). Additionally, the components of
w,(?) are mutually uncorrelated so that the power spectral density matrix S, ..(«) of wy()
has the form

Sar () =diag(Sy,,(@),. .., Suu (®)), (60)

where S,,..(w) is the power spectral density of w;(¢).

With this notation we can define structural energy flows per unit bandwidth Ef(w), EX(w)
and Ej(w) for each structure. These flows correspond to Ej(w), Ei(w) and Ej(w) in the
previous section where now Ef(w) is the energy flow entering the ith structure through the

+ +
w Voltage noise
1 source

Port 1 |vq (voltage)

+
l y1 (current) ulI 21(s)| Impedance
_ S . |
+ +
Port 2 |vg _
+
l Yo uZI 2’2(3)
> _ |
L(s) .
.
.
+ +
T er
Portr (v _

+
l ¥, urI 2,(s)
_ - |

[
-

Figure 3. Electrical representation of structural subsystems.
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"Rd(s) — |

Ys

A0

L(s)

Figure 4. Feedback representation of structural subsystems.
coupling L(s) in Figure 4. The following result corresponds to Proposition 3.1 in the previous
section.

Proposition 4.1. For i=1,...,r, the structural energy flows per unit bandwidth Ej(w),
E}(w) and Ei(w) are given by

E(©) = —3Re[LG0)(LG0)+ ZG0) S0 @)LG0) +ZGo) T, (61)
E/(©) = —5-RelZ o)L (0) + ZG0) 'S (@)LG0)+ ZG0) s (62
E0) =52 R[S, (0)(LG0) + ZG0) oo (©)

In contrast with the case of the modal subsystem model in section 3, w;(¢) and w;(¢) are
now mutually uncorrelated for i#;. (However, these results can be extended to the case in
which the structural disturbances are correlated.). Thus by defining the structural
thermodynamic energy E!(w) of the ith structure as

Snyny(w)

(64)

the following result follows from Theorem 3.2, Corollary 3.3 of reference [27] and the fact
that Re[L(jw)]=0.

Proposition 4.2. For i=1,...,r, Ef(w) and E'(w) are given by

Ei0)= Y 0,(0)[E @)~ E'©)) (65)
B©) = —5.(@)EM©) ~ L, BN o), (66)

j=1
J#i
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where, for i,j=1,...,r,

(@) é%cf(w)cf(w)I[(Zs(iw) + L) sl (67)

Equation (65) can be interpreted thermodynamically as saying that energy flow is
proportional to thermodynamic energy differences so that energy always flows from higher
energy structures to lower energy structures. As shown in reference [27], this result is valid
for both weak and strong coupling, unlike predictions based on blocked energy which may
be erroneous in the strong coupling case. The validity of equations (65) and (66) is thus due
to the use of thermodynamic energy which may be different from stored energy.

Now we consider the structural energy flows. As in the previous section the structural
energy flows P, P and P¢, i=1,...,r, are defined by

El(w)do,

— 0

Pféf Ep(w)dw, P?éj

— 0

pea r E(w)dw. (68)

The following results correspond to Proposition 3.4.

Proposition 4.3. The structural energy flows per unit bandwidth Ef(w), E'(w), Ef(w) and
the structural energy flows P;, P{, P satisfy

E(0)+ EN o)+ E@)=0,  i=1,...r, (69)
S Ef(w) =0, (70)
Pi+ P{ 4 P:=0, i=1,...,r, (71)
3 Pi=0. (72)
~

In the previous section we expressed the modal energy flows P, Pi, P; in terms of the
steady-state covariance O,, according to the approach in reference [27]. To obtain a similar
expression for each structure, we must account for the fact that the external disturbance w(z)
is no longer white noise and that ¢;(w) is not constant, in which case the results in reference
[27] cannot be applied directly. To overcome these difficulties we introduce the disturbance

filter transfer function matrix 7'(s) defined by
T(s)2diag(Ti(s),..., T.(s)), (73)
and the stable dissipation filter Ry(s) satisfying [35]
Ri($)RI(—s)=Cu(s). (74)

By including these filters we consider two augmented systems to obtain P¢and P{in equation
(68). First let T(s) have the realization

xw(l):Au‘xn'(l)_‘_wa(t)a M}s(l‘): waw([)_‘_Dwﬂ’y(Z), (75, 76)
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while the transfer function Z;'(s) has the realization
Xo(1) = Ax(1) + Bau(1), ys() = Coxi(2). (77,78)

Furthermore, we define the output matrix C, for the position vector x,,() so that

Xps(1) = Jys(t)dt = Cpux(0). (79)

Then by using the stiffness coupling L(s) given by equation (15), we obtain the augmented
system

Yalt) = Aoxa(t) + Do (1), (80)

where

X, (1) 0 A,

~ A BSDW

Furthermore, by defining C,, £[C, 0] and Co2[C.C, 0], it follows that y,(t) = Cyx.u(¢) and
v5(1) = CaXxo(2).
Next let Ry(s) have the realization

Xr(1) = ArXr(t) + Brys(1), Yr(t) = Crxr(t) + Drys(2). (81, 82)
Then equations (75)—(79), (81) and (82) yield the augmented system
Xaa(1) = Aaxai(1) + D (1), (83)

Yo ([) é |:x§(t):| g é |:AS_BSCLCps Ban':|

where

x(7)
Xa() 2| x.(0) |,
XR(t)

As_BsCLCps Bscw 0

gd é 0 Aw O s
BRCps 0 AR
B:D,
DNdé Bn’
0

Furthermore, by defining Cy,2[DrCy Ck], it follows that yg(7) = CuXa(?). With these
augmented systems we have the following result.

Theorem 4.1. For, i=1,...,r, the structural energy flows P¢, P! and P are given by

P:': —(C52Q~5CSTI)(,,>, P,d = _(CdileC(}d)(i,i)v (847 85)
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and
Pi=— (Cs2Q~s a+ CdaQNdC}a)(f,i)’ (86)

where the steady-state covariances 0,2 lim,_., &[xu(1)xL(1)] and Qa2 1im,. .. & [xe(t)x0(1)]
satisfy the algebraic Lyapunov equations

0=A4.0.+ 0, A'+ DD’ 0=A.04+ QAL+ DyDY. (87, 88)

In the following section, we investigate the relation between the modal subsystem model
and the structural subsystem model.

5. MODAL COHERENCE EFFECTS IN MODAL AND STRUCTURAL
SUBSYSTEM MODELS

In the previous two sections we introduced two energy flow models, namely, the modal
subsystem model and the structural subsystem model. Since now each mode is excited by
mutually correlated disturbance forces, modal coherence effects play a key role in the
relationship between these models.

First, for i=1,...,r, we define the total modal coupling, dissipative, and external energy
flows for the ith structure by

P L ZP/ PpiL ZP‘j P L ZP, (89)
1

1 1
j=1 j= j=1

Note that #% is the sum of the energy flows through the coupling to all n, modes of the ith
structure, while 2 and 2 can be interpreted in a similar manner. Then, from equations (51)
and (52) it follows that

Pt P+ P=0, Y P=0. (90)

Now, concerning 25, 2¢ and 2¢ we obtain the following result.

Theorem 5.1. For i=1,...,r, the structural and total modal coupling, dissipative, and
external energy flows satisfy

Pi=25,  Pl=P!=P, Pi-2=-P, (91-93)

where

pi é |: z’ (Cmd Cvm] Q~m Cr-lr-1|)i/i/:| - (CdleNdCt}-a)(i‘i)a (94)
j=1

and where 0,, and 0, satisfy equations (48) and (88), respectively.
Proof. From the definition of P{ in equation (68) it follows that

Pi=— 8Lyt = —g[ibi/q'i/(f)vf(f)] =Y =,

which proves equation (91). Equation (92) follows from equations (46) and (85), while
equation (93) can be obtained from equations (71), (90), (91) and (92). O



STATISTICAL ENERGY ANALYSIS 421

Theorem 5.1 shows that the energy entering the ith structure through the coupling is equal
to the total energy flow received by the n; modes of the ith structure, while P{ and P¢ are
generally different from the sum of the modal energy flows 2¢ and Z¢ because of correlation
among modes, that is, modal coherence. The following result considers a special case in
which the effect of modal coherence disappears so that the structural and total modal
dissipative and external energy flows are the same.

Proposition 5.1. Consider the modal coefficients a;, b; defined by equations (7)—(9). If
alby=aw/by,  i=1,..r, jk=1,..n, 95)

then, for i=1,...,r,
P (96, 97)

Proof. From equations (53) and (54) it follows that

S 2 N 2 ..

lz,,(s)

Then, using equations (10) and (11), we have

=&wi(ny(n)]= [W(t)y(t)} ZG‘ aWi(1)gy(1)] =27,

which proves equation (97). Equation (96) follows from equations (90), (91) and (97). (]
Assumption (95) holds for the case in which the disturbance location and coupling point
coincide for each structure, that is, &= &,
Now we consider the effect of modal coherence on P§; and Pj.

Lemma5.1. Fori=1,...,randj=1,...,n;, the modal coupling and dissipative energy flows
P and Pj satisfy

= —(CoO1cCl))iii— Peonsi (98)
and
= — (CoaCon Qe Cr)iii+ Pcon 99)
where
Peoni 2 (ConQcan Cri)iis (100)
and O, and Oc., satisfy
AnOue+ Qe AL +Inc[S,,.v.], (101)
0=A,0con+ Ocandy + Cohl[S,,., ], (102)

respectively.
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The proof is given in Appendix B. O

Next we rewrite equations (98) and (99) in terms of the modal thermodynamic energies.

Theorem 5.2. Fori=1,...,rand j=1,...,n;, the modal coupling energy flow P; in equation
(98) and the modal energy dissipation rate Pj in equation (99) are given by

Pi= Z O'ifik(E;/lcl_E};‘)_F Z 2 O',-/-,,,,(E,[,},}—E};‘)_ pCOh":j’ (103)
k=1 =lg=1
-
Pj= _UiiE}lh“—ﬁ Coh,if» (104

where, for i,p=1,...,r, j=1,...,n;, and ¢=1,...,n,, 0;,, and ¢; are defined by

ipg 2 J Sipg()d =26, (Con Qs Cor Vi (105)
N room, Eth

2 Y Y o (106)
p=lg=1 v

and where d,,,(w) is defined by equation (37) and §,, satisfies the Lyapunov equation

0=Au0y+ O An+ Bue,,er B (107)

Proof. Since L(s) has zero real part, equations (103) and (104) follow from Theorem 4.2
and Corollary 4.2 of reference [27]. Equations (105)—(107) can be obtained directly from
Proposition 4.5 of reference [27]. O

The coefficients g, in equation (105) and ¢;in equation (106) are called the modal coupling
loss factor and the modal internal loss factor, respectively. It should be noted that g, = 6,
since L(s) is symmetric (see Corollary 4.2 of reference [27]).

We now characterize the energy flows for each structure in terms of the rotal modal
thermodynamic energy & of the ith structure defined by

S LY E. (108)
j=1

Note that &} is the sum of the modal thermodynamic energies Ej of the individual modes
of the ith structure. However, because of correlation effects, &'" is generally not equal to the
thermodynamic energy E™ of the ith structure defined by equation (64).

Theorem 5.3. For i=1,...,r, the total coupling and dissipative energy flows 2¢ and 2!

satisfy

Pi= Z (Wfﬁ}h - npig}h) - @COh.i» (1 09)

p=1

y?:_niéa,['h“‘@(‘,oh,i, (110)
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where
Fen 23 P (111)
i
Nip 4 il i(f)pqa iipg > Ni £ id’i/a is (112)
P -
and where
<f>i,é§’;’il:. (113)

The proof is given in Appendix C.

As in SEA, the coefficients 1, and #; are called the coupling loss factor and the internal
loss factor, respectively. Note that the weighting factors ¢, are non-negative and satisfy

n;

Ed),‘,’: 1

Thus the coupling loss factor #,;, is a convex combination of the modal coupling loss factors
aip, and likewise for the internal loss factor #;.

Remark 5.1. Since X/ Xy 0 (Ef — Ej)=0, it follows that the energy flow among
different modes of the same structure does not contribute to the total modal coupling energy
flow #;. Therefore, it is only necessary to consider energy flow among the modes of different
structures.

6. ANALYSIS OF MODAL PAIRWISE INTERACTION

In the previous section we showed that energy flow can be expressed as a linear
combination of the modal thermodynamic energies E}' in equation (103) or total modal
thermodynamic energy " in equation (109). Our goal in this section is to simplify the results
of Theorem 5.3 by decomposing the structural coupling coefficient #; and dissipative
coefficient #; into pairwise modal interaction terms along with error terms.

To simplify the development we define x..(¢) in equation (40) by

Xu() [ (1) Pu(t)  oa(t)  Pu@) o, (t)  Pu (O], (114)
where the energy co-ordinates are defined by
o (1) £ w;q;(1), Bi(1) = G (1). (115)

With this representation for x,(¢), 4, and B, in equation (40) are given by

Am 2 block-diag (A1, Ampias - - - » Ampen,))s

B2 block—diag([?}...,[ﬂ), (116)
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where A4,;; denotes the 2 x 2 matrix

_ 0 jj
Amm_ |:—w[,- _2Ci0)i/:|. (1 17)

For the jth mode of the ith structure and the gth mode of the pth structure we decompose
Awn=An— .o/ in equation (43) as

,Zm:;l’”"—/ii”"’, (118)
where
Y Ly - /ii/pqé&/_&/iqu, &/éBmEmCLE“T]Cpma (119-121)
and
(0 0 0 0 0 0 0 0]
) . S . ) 0
0 -+ 0 0 0o - 0 0 0 0
0o - 0 ijif] 0o - 0 lijpg] 0 0
) 0 -+ 0 0 0o - 0 0 0 0
M!/pqé . A . . . . . 0 s (122)
o - 0 gy 0 0 Ay 0 0
0 -+ 0 0 0O - 0 0 0 0
S . S : . 0
0 - 0 0 0 0 0 0 0.

where .o7};,; denotes the (n;,1,,)th 2 x 2 subblock of .7 located at the same position in .o/ %7,
It can be seen that the decomposition (118) isolates those terms that govern pairwise modal
interactions. With this notation we obtain the following result.

Corollary 6.1. The coupling coefficient g;,, defined by equation (105) is given by

Oijpg = G_i/'pq + &i/'ﬂt/ > (123)
where
A ciz/' [K('Z/'pq(cif + CM) + Cpq [(wlz',lf/' - wrz‘.pq)z + (cif + Cpq)(C,_'/-Q)iM + cﬁqwzz',(/')]]
O ot eVt o@D (ot e et eni)], 2D
ijpg\*ij Pq ytpq oij opq 1 Pq y¥epq Pqeij
fori=1,....r, j=1,...,n;
PN KinaCiCog (CiF Cp) (125)
ijpg — s
Kipg(Cii7 g ) = CiCpg[(07 55— @02 1) A (i Cog ) (€507 py =+ Cog 7 )]
fori#p or j#¢q; and, for i,p=1,....,r, j=1,...,m, g=1,...,n,,
Gig £ 2¢4iCpy(Comi Qj/qu:ml)iiiia (126)
where
.
Kijpg £ Kipbibpg, wzzzi/' £ 0),-2/4- bizf Z K, (127)

m=1
m#i
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and Q" satisfies
0= Zi/ﬁqu/M + QU’[H/Z iipgT 4 J/iird (128)
yire & 4 ii/ﬁt/Q’pq + qu AirdT (129)

where 0,, is given by equation (107).
The proof is given in Appendix D.

Remark 6.1. The pairwise modal coupling loss factor 6;,, in equation (125) has the same
form as the coupling coefficient for the two interconnected oscillators considered in example
1 of reference [27]. Additionally, limk, .G, = ¢y, that is, 6;; in equation (124) converges to
the damping coefficient of the uncoupled mode.

Remark 6.2 Since 6, = G, and G = Gy, it follows that 6;,,= 4. As in Corollary 6.1,
the modal internal loss factor g, in equation (106) can be decomposed as

O','/':O_',:,'—Féi,', (130)
where
r Eth roony Eth
= A = rq A A A P4
U!.'/'_Z zgzjipqu Ji/—z Zai/pqu- (131)
p=1q=1 ij p=1lg=1 ij

With this notation P§ in equation (103) and Pj in equation (104) can be expressed as

n; ronp
P;= Z O:i/‘ik (Erllt1 _Ezt/h) + Z Z O_-i/’pq(E;t;_E;fh
k=1

p=1lg=1
p#i
+ Y G ER—EP)+ Y Y. Gy (Epy— Ef) = Peons (132)
k=1 “lg=1
i
P?/': _O_'i/E};]_éi/E};l‘f' pCoh.i/'~ (133)

Furthermore, we can decompose the coupling loss factor #;, and the internal loss factor #;
as shown by the following result.

Corollary 6.2 For i,p=1,...,r,

Np=Mp+Mp> M=t (134)
where
ﬁip 4 Z Z ¢pt]o_-i/p11’ ﬁl’/} = Z Z (ﬁﬁqéi/pqa (1 35)
g=1j=1 g=1j=1
T2y biby, ey ¢i6;, (136)
Jj=1 j=1

and where ¢, is defined by equation (113).
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Proof. This result follows immediately by substituting equations (123) and (130) into #,,
and #; in equation (112), respectively. O

In analogy with 6,,,, the parameter 1j,, can be viewed as a pairwise coupling loss factor.

7. BLOCKED ENERGY AND THERMODYNAMIC ENERGY

In the previous sections we derived energy flow relations involving the modal
thermodynamic energy E} defined by equation (33). The SEA approach, however, considers
the steady-state blocked modal energy [1,2,16,31] defined by

E} &502,8[q; (014368145 (0)], (137)

where w]; is defined by equation (127). As in example 1 of reference [27], the goal of this
section is to quantify the distinction between blocked modal energy and modal
thermodynamic energy in predicting energy flow.

For convenience, we define the difference £ between the modal thermodynamic energy
and the blocked modal energy by

E,AE!—EY, (138)
which is characterized by the following result.

Theorem 7.1. For i=1,...,r and j=1,...,n,, E,-, is given by

,
2
bii Z KP
p=1
A 1 A A p#i ~
Ei/ = 5 Q(Zn,,— 1,2n5—1) + Q(Zn,v,ln,-/-) - (,02 Qm(2n,-,2n,,) s (1 39)

where 0, satisfies equation (48) and O satisfies
0=A.0+ QAL+ 7V, (140)

where V2 .20+ Onet/™ and A, and .7 are defined by equations (116) and (121).
The proof is given in Appendix E.

On the other hand, by ignoring the connecting stiffnesses in equation (127) and replacing
.; by w; in the definition of the blocked modal energy, we define the steady-state uncoupled
modal energy by

Ej £30;61q5(0]+3614:(0)).
Proposition 7.1. For i,m=1,...,r and j=1,...,n,
EY=E}. (141)

Proof. The result is obtained by replacing w,; by w;in equation (198) in Appendix E and
comparing to equation (197). O

Proposition 7.1 shows that if the intensity of the disturbance entering each mode and the
modal damping coefficient are known, then one can calculate via equation (32) the modal
thermodynamic energy and thus the uncoupled modal energy. Note that the definition of
the uncoupled modal energy involves the modal displacements and velocities of the actual
coupled system. Thus, Theorem 5.2 implies that energy flows according to the uncoupled
modal energy, that is,
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Pi=Y 0u(Ex—EN+ Y Y 64y(Esy— E§) — Poony. (142)
k=1 p=1g=1
p#i

SEA, however, is based upon energy flow analysis involving two interconnected oscillators
and thus effectively assumes that only one pair of modes is vibrating, while all other modes
are fixed or blocked. Thus the blocked modal energy E! is considered in the SEA approach,
which inevitably incurs errors due to the difference E; between the modal thermodynamic
energy and the blocked modal energy. These error terms are characterized in the following
section.

8. FUNDAMENTAL RELATIONS OF STATISTICAL ENERGY ANALYSIS

In the previous three sections we identified error terms due to modal coherence P; and
Pcons, pairwise interaction 7, and the difference E; between the modal thermodynamic
energy and the blocked modal energy. In this section we derive the fundamental relations
that form the basis for the SEA approach. These relations clearly show the form of the error
terms that are neglected in practice. First we consider the coupling energy flow ¢ (= F5).
To begin, define the rotal blocked modal energy & of the ith structure as

ENEY B, (143)
j=1
Theorem 8.1. For i=1,...,r, the total coupling energy flow Z is given by
Pe=Y ([, 60—+ P+ P — P, (144)

r=1

where Pcoy; is defined by equation (111),

M-

@zpw £ (’;Iipg;h_ﬁpfg}h)a @zb] = Z (ﬁipgp_ﬁpfgi):
p=1

1

P

E2Y By=a"— &Y. (145-147)

Jj=1

Proof. The results follow directly from equations (134)—(136), (138) and Theorem
5.3. O

Next, energy balance at each structure, that is,
=06+ Y M6y —nu6") + P =0, (148)
p=1
yields the following result.

Theorem 8.2. Fori=1,...,r,

— 76"+ Y (7,60 — 7,6+ Pi= — P— P — P, (149)

p=1
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where P, is defined by equation (94),

p,PW = _”Alig}h‘i‘ Z (ﬁr}v@@;)h_ﬁpi(g)}h)’ (150)

p=1

p})lé—ﬁiéﬁi‘f' Z(’/_Iipé?)p_ﬁpiégf)' (151)

Proof. This result follows from equations (90), (134)—(136), (138) and Theorem 5.3. ]

Note that equations (148) and (149) do not include the modal coherence term Pc,,; defined
by equation (111) since this term is cancelled out when 2¢ and 2¢ are added (see Theorem
5.3).

Equation (149) can be rewritten in matrix form, that is,

AE" =P+ P+ PP+ P, (152)

where &" 2 [éatlal. . .g't_al]T7 P2 [PS--- P, P2 [f)l .. .p’_]T’ prva [}S?w,,,}”)rpw]T, pra [P}’l"'p,t.’l]T and
the r x r matrix A4 is defined by

A2t Y il A=~
-
Equation (152) is a compartmental model which shows that energy flow can be expressed
as a linear combination of subsystem energy. As usual for compartmental models, 4 is an
M-matrix [36,37].
By ignoring the error terms 2", 2™ and Pcq, in equation (144), it follows that

Zi= ) (18, —u67), (153)
p=1

while ignoring P, P* and P" in equation (152) yields
A8"=P.. (154)

Equations (153) and (154) are the fundamental equations considered in the SEA approach
[16].
To obtain additional relations considered in SEA, we define the average modal
thermodynamic energy E™ as
EMA &N n,. (155)

Theorem 8.3. The pairwise coupling loss factor 7, defined by equation (135) is given by

_ 1 & _
'7"1'2’72 Z@pqaiipz/’ (156)
Pg=1j=1
where
P2 Epy|E. (157)

Furthermore, if

E,=E), p=l..rqg=1Ll..n, (158)
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then
T = Nl Lp=1,....r. (159)
Proof. From the definition of 7,, in equation (135) it follows that

np np

nj nj
Mp= Z Z (/51"10_'1'/'1"1 = Z Z (ppqo_'i/pq»

g=1j=1 g=1j=1 ny

which proves equation (156). Additionally, if equation (158) holds, then ¢,,=1. Thus,
equation (156) yields

np  ni

Mol =Nil5i= Y, ) Gy O

g=1j=1

By defining the modal density v; as
vén/dw, (160)

where Aw is the width of the frequency band in which the Xj_,n; modes lie, equation (159)
can be rewritten as

V,,ﬁ[p=v,-ﬁp,-. i,p=1,...,r. (161)

In SEA terminology, equations (158) and (161) represent equipartition of energy and
reciprocity, respectively [16].

9. PAIRWISE MODAL COUPLING LOSS FACTOR IN THE WEAK COUPLING CASE

As seen in equation (135), the pairwise coupling loss factor 77, depends on the pairwise
modal coupling loss factor ,,, defined by equation (125). In this section, we consider the
weak coupling case and derive an alternative pairwise modal coupling loss factor. In this
case, these two pairwise modal coupling loss factors are shown to be approximations of the
actual modal coupling loss factor g;;, defined by equation (105).

The following result focuses on the size of the modal coupling loss factor as determined
by the off-diagonal portion {L(jw)) of L(jw).

Proposition 9.1. Define

Z(jw) & Zn(jo) + { La(jo)} (162)

and assume that
127 () Lu(w)> [ <1, (163)
where |- || denotes the spectral norm. Then the modal coupling loss factor o, defined by

equation (105) is given by

. cico |7 6
Oijpg= Oijpg + ;Iqu Oipg(jo)dw, (164)

0

where

2
s A K{j;:l/((’i/+ CW) (165)
(02— 02pg)* (€t € ) (€402 g+ Cpyy)’
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1

—Kijpg

S L10(n).. |? _Jo
Sin(@) 210(@ )yl + 2Re| s

@(w)i/ﬁt/ > (1 66)

V()£ Z (jo) i [—Z7 (jo)XLa(jo))T, (167)

2 2
A S+ 2:,‘,‘({),’,’3' + Weij
- B
S

2,(5) (163)
and x;;, and w.; are defined by equation (127).

The proof is given in Appendix F.

Proposition 9.1 shows that the pairwise modal coupling loss factor 6}, given by equation
(165) is a first order approximation for ¢, in terms of the coupling matrix L(jw). The
pairwise modal coupling loss factor 6;,, was derived in references [2, 8] for two interconnected
oscillators (see example 1 in reference [27]) and plays a central role in SEA. The following
result examines the relationship between the pairwise modal coupling loss factors 6,,, and

Oijpq -

Proposition 9.2. Suppose equation (163) holds. Then

=2

~ — QiipgTijpq
Gy = G ppg — —d I 169
rq rq 1 _|_ Qii/)q Gi/'pq ( )
where
Oiina N (CI.'/‘ + Cﬁq)(ciicm — K'f/pq) ) (1 70)
KijpgCijCpq
Proof. The result follows from equations (125) and (165). O

As can be seen from equations (125) and (165), both &;,, and 6;;,, depend on second order
terms in Kj,, while 0;,,67,,/(1+ 0ineGing) in equation (169) depends on fourth order terms
in K;,. Thus, 64, and &;,coincide up to quadratic terms in the coupling stiffness.
Furthermore, since ()(w) in equation (167) depends on terms higher than second order in
K, it follows that d,,,(jo) in equation (166) depends on terms higher than third order in
K;,. Thus, both 6, and 6}, coincide with oy, up to quadratic terms in the coupling stiffness.
This result can also be obtained by analyzing the error term 6, given by equation (126).
Consequently, in the weak coupling case it follows that g, = 6, = G5, that is, both pairwise
model coupling loss factors 6;,, and 6, are approximations of the modal coupling loss factor

Oijpq -

10. LIMITING RESULTS INVOLVING THE ERROR TERMS

In section 8, we derived equations (144) and (152) involving error terms and showed that
except for these error terms the energy flow (153) agrees with results obtained in reference
[16]. Since the error terms are generally non-zero, we consider, in this section, limiting results
which give conditions under which these terms go to zero. First we consider the error P
defined by equation (94) which arises due to modal coherence. For the following results the
notation limg,, ., denotes the index set involved in the limiting procedure.

v
m}
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Proposition 10.1. For i=1,....r,

~>
[

lim
Kifmy—0
Cigjy—0

0. (171)

The proof is given in Appendix G.

Proposition 10.1 shows that, in the limit K., {;;,—0, the discrepancy between energy flow
predictions based on the modal subsystem model and predictions based on the structural
subsystem model vanishes. At the same time we can obtain the following result.

Proposition 10.2. Let the steady-state modal covariance 0,, satisfy the Lyapunov equation
(48). Then

lim E;'"0nE; =1, (172)
Ky —0
¢ ‘m*"
where
E,&diag(ES, ENLED, ED, ... L En). (173)

The proof is given in Appendix H.

Next we consider the effect of modal coherence on the coupling energy flow £ in
equation (109).

Proposition 10.3. Fori=1,...,r,

lim Pcon,=0. (174)

Kifmy—0

The proof is given in Appendix I.

Propositions 10.1 and 10.2 show that, in the limit K;.,,{;; —0, the steady-state covariance
O..converges to the diagonal matrix E,, which shows that P, vanishes and modal incoherence
occurs. Furthermore, Proposition 10.3 shows that Pc,,; also vanishes as Kj,,—0, which
implies that the structure can be viewed as a set of modes (oscillators) excited by uncorrelated
disturbance forces. Thus, in the limiting case of light damping and weak coupling, the
structural subsystem model is equivalent to the modal subsystem model in which each
mode is excited by an uncorrelated disturbance. This fact has been rigorously verified by
Propositions 10.1-10.3.

Next we consider the error term P" in equation (151) due to the difference between the
blocked modal energy E}' and the modal thermodynamic energy Ej.

Proposition 10.4. For i=1,...,r,

lim 2" = lim P"=0. (175)

Kitmy=0 Kitmy-o0
Proof. Since limg,, ..o/ =0, where 4 is defined by equation (121), it follows from
equations (139) and (140) that limg, ,_oE;=0, which proves equation (175). O

)
i{m}
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Figure 5. Cantilevered beams interconnected by stiffness coupling.

Proposition 10.4 says that limg,,, ..E}' = Ej so that in the weak coupling case the blocked
energy Ej can be replaced by the thermodynamic energy Ej. This approximation does not
hold under strong coupling as shown in section 7 of reference [27]. Finally, we obtain a

similar result involving the effects of pairwise interaction 2 and PP,
Proposition 10.5. For i=1,....r,
lim #2™= lim P™=0. (176)

K —0 K —0

i(m} i{m}

Proof. As limg,,, ., /" defined by equation (120) converges to zero, which implies

Vrira deﬁl}ed by equation (129) also converges to zero. Thus from equation (128),
limg,, .oQ"=0, which proves equation (176). O
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Figure 6. Thermodynamic energies: ——, Ei'(w); - - -, E(w).
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Figure 7. Coupling energy flow: Ef(w) and E5(w).

From the results obtained in Propositions 10.3—10.5 we can conclude that if the
coupling is sufficiently small then the SEA fundamental equation (153) holds
approximately. Additionally, if the coupling and the modal damping are sufficiently
small then equation (154) holds approximately according to Propositions 10.1, 10.4

and 10.5. These results are illustrated in the following section by means of a numerical
example.

11. NUMERICAL EXAMPLE

As a numerical example we consider interconnected uniform cantilevered beams as shown
in Figure 5. The beams are of lengths L,,L,, mass densities p;,p,, and bending stiffnesses
E\l.i,E>ly, respectively. Each beam is subjected to mutually uncorrelated white noise

disturbances w;(¢), i= 1,2, with unit intensity applied at & and interconnected by a spring
with stiffness K at &,.

Dissipation rate (dB)

1 1 11111l | 1 1 ) I T | | 1 1 11111l | 1 1 ) I T |
~140
1072 107" 10° 10! 107
Frequency (rad/s)

Figure 8. Energy dissipation rate. ——, E{(w); - - -, ES(w).
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Figure 9. External power:

By considering the boundary conditions

0(&,0) ()
SEDe=0, LD o ZuCDr
%(E D=0 & |, IS .
.0l _ =
2 I

we obtain the natural frequencies and eigenfunctions as [16]
wy=ki/ Edai/m,
Wi(&) = A,[(sink;L;—sinhk;L;)(sink;¢ —sinhk;&)
+ (cosk;L;—coshk;L;)(cosk;é —coshk;E)],

where A4; is the normalized parameter so that equation (5) holds and the wave number k;
satisfies cosk;L;coshk;L;= — 1. Thus, a; and b, in equation (6) are given by a;=1,() and
b= (&e,)-

We now consider the first 10 modes of beam 1 and the first seven modes of beam 2 so
that n,=10, n,=7. By setting L,=3, L,=2'5, py=p,=1, E\ly=1, E,l,=1-12, K=0-01,

=001, (=002, j=1,2,3, {,=1, £=1-5 and E,=¢&,=2-2, the steady state energy
quantities per unit bandwidth E"(w), Ef(w), EX(w) and Ef(w) are shown in Figures 6-9,
respectively. Since the conservation of energy at the coupling, equation (70) of Proposition
4.2, holds, it follows that Ef(w)= — E5(w). Thus, as shown in Figure 7, Ef(w) and ES(w) have
the same magnitude.

Next we examine the relationship between the thermodynamic energies E(w), E¥(w) and
the coupling energy flow Ej(w). Figure 10 shows that if E{"(w) > E¥(w) then Ef(w) <0, that
is, energy flows from beam 1 to beam 2, while if E(w) < E¥(w) then Ef(w) > 0, that is, energy
flows from beam 2 to beam 1. This result is predicted by equation (65) of Proposition 4.3.
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Figure 10. Relationship between thermodynamic energy and coupling energy flow. ——, Ef(w); - - -, E¥(w);
—-—, Ef(®) x 5000.

Next, we examine the convergence of the residual terms considered in the previous
section. Consider the first ten modes of beam 1 and the first seven modes of beam 2.
Furthermore, define

. P . v
%é%, el s, (177)
A QAP\V A APW
arelZil geell -1, (178)
” ol A pbl
analZel el s (179)

Error (%)

1 1 1 1 111 || 1 1 1 1 111 || 1 1 1 1 1111
10t 102 103
1/K
Figure 11. Error terms versus coupling stiffness K. —0—, %1; —+—, AP; —x—, AV; —x—, R.
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Error (%)
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Figure 12. Error terms for beam 1 versus coupling stiffness K. —0O—, Ri; —+—, R, —x—, RY; —x—, R.

10°

P+ P+ PV
P;

N

Q,.é%%oh«f+g’?w+'@fm|, RA . i=12 (180)

PP
1

According to equations (144) and (149), these quantities are the ratios of the error terms
to the exact energy flow value. In particular, #; and R, denote the ratio of total error to the
exact energy flow and if #;=0 and R;=0, then the exact energy flow expressions (144) and
(152) converge to equations (153) and (154), respectively.

First we consider the effect of coupling K on the error terms (177)—(180). By setting
L=0,=001, j=1,...,10,¢g=1,...,7, we calculate these ratios. Since ¢;;,,=0,,; and r=2 it
follows that 2= — %, Pcopi= — Pcona, PP = —P%" and PP= — P, Thus it suffices to
examine #,, #", #" and #,. F igure 11 shows that %, decreases with the coupling stiffness

Error (%)

10t 102 103
1/K
Figure 13. Error terms for beam 2 versus coupling stiffness K. ~0—, Ry; —+—, R?; ——, RY'; —x—, R,.
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Figure 14. Error terms for beam 1 versus damping {. —O—, Ri;—+—, R ——, R™ —x—, R,.

K as guaranteed by Proposition 10.3, while £ and £ decrease with the coupling stiffness
K as guaranteed by Propositions 10.4 and 10.5. Consequently, #; decrease with the coupling
stiffness. The same analysis can be applied to R;, R?, R" and R;, i=1,2, plotted in Figures
12 and 13. Furthermore, from Figures 11-13 it can be seen that the effect of pairwise
interaction #* and R is larger than both effects of modal coherence #:, R; and the
difference between the thermodynamic energy and the stored blocked energy £, R".

Now, we consider the effect of damping {; on the residual terms R, R™, R'and R, i=1,2.
By setting {,,=(,,=(, j=1,...,10, g=1,...,7 and K=0-01, Figures 14 and 15 show that R,
decreases with the damping { as explained by Proposition 10.1.

12. CONCLUSIONS

In this paper we applied the energy flow model obtained in reference [27] to the case of
conservatively coupled structures. We obtained two energy flow models, namely, the modal

Error (%)

1 1 1 1 11 ||| 1 1 1 1 1111
2
0 10! 10

/g

Figure 15. Error terms for beam 2 versus damping {. —O—, Ry; —+—, RP"; —x—, R{'; —x—, R..

2
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subsystem model and the structural subsystem model, which predict energy flow among
modes or structures. Furthermore, by using these two energy flow models, the fundamental
relations that form the basis for SEA were derived along with error terms. The fundamental
equation that characterizes the SEA approach is a compartmental model which shows that
energy flow can be expressed as a linear combination of subsystem energy, while the error
terms arise from the effects of the modal coherence, pairwise interaction and the difference
between the thermodynamic energy and the blocked energy. These error terms were shown
to become small under weak coupling and light modal damping. These properties, which
were demonstrated by means of numerical examples, validate the use of SEA relations in
the limiting case and quantify the magnitude of the error in the case of strong coupling.

There are several extensions to this work that warrant investigation. In particular, the case
of structures interconnected at multiple points remains to be considered. Furthermore, a
comparison with the SEA relations obtained in reference [17] is of interest. Finally, a
comparison of these results to ensemble averaging and an investigation of the role of modal
overlap remain areas for future research.
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APPENDIX A: NOTATION

power spectral density matrix of x
cross-spectral density matrix of x and y
V=1

identity matrix
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e ith column of

e [11---1]" (bold-face distinguishes from exponential)

ag ith element of column vector «

Awp (k,l)-element of 4

Aif/\'/ A(”u-”u)

A[,',-/\»/] (}’l,/,l’l}d)th 2 x 2 subblock Of A

Re[A4], Im[A] real, imaginary part of 4

diag(ai,...,a,) diagonal matrix whose ith diagonal element is

block-diag(A4,,...,4,) block-diagonal matrix whose ith diagonal block is A4;

A", A% transpose, complex conjugate transpose of 4

tr[A] trace of A

{A},<4) diagonal, off-diagonal portion of 4

Inc[S],Coh[S] diagonal (incoherent), off-diagonal (coherent) portion of the spectral
density (intensity) matrix S

A>(=)0 symmetric positive (nonnegative) definite matrix

APPENDIX B: PROOF OF LEMMA 5.1

By substituting Ow=O0co+On and D.DL=S, . =Coh[S, . ]+Inc[S, . ] into
equations (45)—(47), we obtain

mWm

P,C/ = — (CanQInc Cr-{)])i/[f - (sz QCoh C‘:l)i/'i/" (1 8 1)
qu/' = (Cmdcml ancCrTﬂ)iii/_ (Cmdcml QCoh CL)I‘/;/, (1 82)
Pj=3(Inc[S,,,, 1 BnCa)ii- (183)

Thus, from equation (51) it follows that
pCoh.i,':(CmZQCothTﬂ)iii/: _(Cmd lllléCothll)ififa

which proves equations (98) and (99).

APPENDIX C: PROOF OF THEOREM 5.3

By summing equations (103) and (104) in Theorem 5.2 over the modes of each structure,
it follows that

P = Z Z oy (Ejf — Ezl;h)"' Z Z Z O'i/m(E;};_ Ell/h) _@C"hv"’ (184)
j=lk=1 p=lj=1q=1
pHi
P4=Y 6,EP+ Peo. (185)

j=1

Since g4 = o4y it follows that £\ 2 6,4 (Ef — Ei') =0, while by substituting the definition
of the modal thermodynamic energy (33) into the second term on the right-hand side of
equation (184), we obtain

roon;oon r n, n; np  ny,
th thy __ oth oth
IDIDNIMOAET D ED N BIPWIMGED I SIS
p=1lj=1g=1 p=1\¢q=1j=1 j=lg=1

pH#I p#i
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= Z (nip@@;h - npi(g)}h)

p=1
pP#FI

= Z (nipg;h - npiéa}h)a
p=1

which proves equation (109). Equation (110) follows from equation (185) in the same
manner.

APPENDIX D: PROOF OF COROLLARY 6.1
By substituting 4,, = A" — A" into equation (107), we obtain
0=A47"Q,,+ 0, A" — V" + B.e, e, Br. (186)
In equation (186), V7 includes the effect of coupling among all modes except the jth mode

of the ith structure and the gth mode of the pth structure. To obtain the pairwise coupling
coefficient G;,,, we consider the Lyapunov equation without V%4, that is,

0= Zi/'quiipq + QUMZW”IT + Bmen enT B;: (1 87)

P4 Tpq

and from equation (105) of Theorem 5.2, the coupling coefficient &, given by

_ S _
Gijpg = 2€Cpg(Co1 Q" Cn)ijiy = 2¢11Cpg (O 2. (188)
From equation (187), we obtain the matrix equations
_ o T . . .
0= (Awiiin— i) Otlin + Ot Awiin— L 1in) " — A 11 Qilpey — Ol tiipg)» (189)
. . — -
0= (Am[i/‘i/] —.of [i/'i/])Qf%jlq] + Qﬁfgpqt[](Am[l’llﬁll] —.of [pt/pq])T —.f [H’/N/]Qfg;/[}w] - QE%/]"Q/ [pqiljl> (190)
B _ _ .
V= (Am[pt/pq] - ‘Q/[Pfll’q])Q’[[/thZ)q] + Qﬁﬁff;q](/‘qu] — [pqpq])
. . .
— Qi — Qilpar tpains (191)
where
0 0
VA . 192
0 1 (192)

By using Q74,= Qir.", we can obtain Q{4 from equations (189)—(191). By substituting the

2 liipa] liif

resulting Q%4 into equation (188), G;,, defined by equation (125) can also be obtained.

liif
Additionally, equations (126) anfi (128) can l~)e obtained by subtracting equation (187) from
equation (186), while defining Q"= Q,,— Q" yields equation (128).

APPENDIX E: PROOF OF THEOREM 7.1

By setting K, =0, it follows that 4, =A,. Thus the Lyapunov equation (48) can be
rewritten as

AwOn+ OQuAn+ DD} =0, (193)
and the n;th 2 x 2 diagonal sub-block Q. of Q. is given by
At Qi+ Qi Amisn + V=0, (194)
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where

A0 o
V,,-_[O Q?J. (195)

Solving equation (194) and using equation (33) yields

a2

4L 5 0 Er} 0
o i
Oniig = (; ! 2 =0 E}}‘] (196)
40y
Thus,
Ey} =%[Qm(2n,/—l,2n,-/— 1+ Omenyanl- (197)
On the other hand, from equation (115), E} in equation (137) is given by
Eib'l = 1|:&02,’>IZQ~m(2n —1.2n;—1) + Q~m(2n 7n-):| . (198)
] 2 wl—] ij = LNij i<
Subtracting equation (198) from equation (197) yields
b; Y. Ky
p=1
~ 1 ~ ~ 2 ~
Ei/' :E (Qm - Qm)(Zn,,—l,2n,-,— 1) + (Qm - Qm)(Zn,,,2n,~,) #Qm(Z/u,-.Zn,,) bl (1 99)

i

while subtracting equation (48) ffom equation (193) and setting O = 0., — 0., yields equation
(140). Finally, by substituting Q into equation (199) we obtain equation (139).

APPENDIX F: PROOF OF PROPOSITION 9.1
Using equation (162), it follows that
(Zn(j@) + Lu(jw)) ™' =(Z(jw) +{Lu(j))) "
=[Z(jo)I+Z ' (jo){La(j))]™
=(I+Z'(jo){Lun(jw)))'Z ' (jw)
=(I—Z"(jo){Lu(jo)))Z" (jo) + O(w),
which, with equations (15), (18) and (25), yields
(Zu(§0) + Ln(j®)) =%+ () g (200)

Using the integral formulas given in references [37,38], it follows that

o0
Oijpg = j Oipg(@)dw
—©

271_56'//6'/”,‘[0C |[(Zm060) + Lm(jw))il]i/'pq |2d(x)
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oo . 2 »
:Ci/;I"IJ\ |A”(1,/“]wA)KU.M % dQ)+Ci;?qf giqu(jw)dw

2 0
Kipg (Cirt Cpg) CiiCpq e
S ~ — OipgJ)dw

(@5 — @)+ (cy+ o) (CsDpy+Cpdy) T | irg (),

which proves equation (164).

APPENDIX G: PROOF OF PROPOSITION 10.1

Fori=1,...,r and j=1,...,n;, let Aw; denote disjoint frequency bands such that

. 1 *
lim —dw= —dw. 201
J(JCU) szz;,-ow) 00

Furthermore, since Kim—0 implies that L(jw)+ Z(jw)—-Z,(w) and
Lu(jo)+ Zu(jw)— Z.(jw), it follows from equations (31), (63), and (93) that

lim P= hrn IJI (T:(jo)T# (o) L(jw) + Z(jw)]ex

Ki—0 502

s«m"o G0

tl/m

= S (DD Ln(je2) + Za(i) *])d

= lim = (ﬂ(jw)ﬂ*(jw)zf(iw)** - i [Dn Dy Zn(j )~ *]yy)dew

Sili} Jow j=1

1 (foo n; n; n;

~ lim zow>2 S ) L) Zz:raowﬂ

j=1 j=1 j=1

— 1 i% [ (& b; - agby & agby
= mar _<sz,~<jw>> 221 G0) 2 5F Go) 5 [0

(& blz/ T agby <~ agby <
7_(22,-,-060)) ZZ!/(]CU) Zzi/ F(jo) ZZ'T(.]@)]

j=1 j=1 j=1

([ @
277:/:1 oyl Zij (]w) Zj (]CO)
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APPENDIX H: PROOF OF PROPOSITION 10.2

As K,y —0, it follows that O,,—Q.,, where the diagonal elements of Q,, are given by
equation (196). Furthermore, since disturbances entering different structures are mutually
uncorrelated, it follows that modal coherence does not occur between modes of different
structures. Hence the 2 x 2 (n;,,n,) off-diagonal sub-block of Q,, satisfies

Auwiinn Oriipi) + OuiigpAmiig + Ving =0, i=1,...,r, p,g=1,...n, (202)
where
Ao o
V,-,,q—[o a | (203)

Solving equation (202) in closed form yields

20,0, (Wi + W) aipaiy Wip (qu - wizp)afpaiq
D S D
Qm[ipiq] é 2 2 ) (204)
Wi (7, — )iy 20,04 (0 + Wiy )iy e
D D v
where
A 2 232 2 242 2 2 2
D £ (w;,— w;,) + 32w,0: + 160,w, (i (w;,+ o).
Furthermore, it can be shown that
—1/2 —1/2 — —1/2 1/2
(Eo QmEo )[:‘piq] = EO[:'p‘ip]Qm[z‘piq]Eo‘[iqfq]~ (205)

By substituting QOuwjp»ig given by equation (204) into equation (205) and letting {3 —0, we
obtain

lim (E; "> OnEo)phi = lim (E; *QnEy Piig=1. (206)
K{imy=0 Ljy—0

Cijy—0

Thus, equation (172) follows immediately from equations (196) and (206).

APPENDIX I: PROOF OF PROPOSITION 10.3

By using Oy, given by equation (101) in Lemma 5.1, we obtain

hm P,(} = hm [_ (Cmd Cm] anc Cr—gl)’f/’fl' + pCoh,i/’]- (207)

Kiimy—0 Kimy—

Next, by using equation (101), note that Kj,,—0 implies that Qy.c— Qunco, Which satisfies

0=AnOneo+ Oineo Al +1Inc[S,, .. ]. (208)

m"Wm

By using the energy co-ordinates defined by equation (115) it follows that

- Kllm O(Cmdcml ancc$1)i/if = — (Cmd le QInC.O C:ll)lf/'(i = alz//2 (209)
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Therefore,

hm PS: _a’21/2+ hm p(‘,oh,r_’f-

Kiimy—0 Kigmy—

On the other hand, by calculating P; directly from equation (183) yields
lim Pj=a;/2.

Ky —0

By using equations (210), (211), limg,,, -, P;=0, and equation (51), we obtain
0= lim (Pi+P)=—a2/24 lim Peo;4a2/2= lim Pcyy.
Kimy=0 Kiimy—0 Kiimy=0

n;
0P coni= thl (m) =0 z PCoh,i/' =0.

j=1

It now follows from equation (111) that limg

)
i{m}
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(210)

@11)

(212)



