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Energy flow models are derived for interconnected structures in tems of both modal and
structural subsystems. The principal goal of this analysis is to develop a deterministic
foundation for energy flow analysis that clarifies assumptions under which statistical energy
analysis (SEA) predictions are valid. Three sources of error involving modal incoherence,
pairwise coupling loss factor and blocked modal energy are identified. Assumptions under
which these terms are negligible are identified and compared to standard SEA assumptions.
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1. INTRODUCTION

The analysis of complicated structures comprised of multiple substructures remains one of
the most challenging problems in structural dynamics. As with the analysis of complex
systems in general, it is highly desirable to analyze the overall system in terms of the
interaction of system components. The underlying idea is to use insight into the interaction
of a small number of subsystems to predict the behavior of a large-scale system with
numerous interacting components. In the area of structural dynamics, energy flow methods
such as statistical energy analysis (SEA) [1–26] seek to predict vibration levels of complicated
structures in terms of the energy flow interaction of pairs of modes. For high-dimensional
problems with significant uncertainty, these methods complement finite element modelling
techniques.

As may be expected, the ability to predict the behavior of a complicated system in terms
of the pairwise interaction of subsystems is limited by the extent to which the interaction
of a pair of subsystems is affected by the presence of additional subsystems. Fortunately,
inmany large-scale structural vibration problems, such extraneous interactions are small due
to weak coupling and other effects. It is these effects that SEA exploits to facilitate the
analysis of complex structures.
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The early work on SEA is based on the classical papers [1–7] as well as many others. In
more recent work researchers have calculated energy flow between two interconnected
structures using deterministic methods. In particular, Pan ET AL. [24] calculated the energy
flow between a rigid body and supporting panel by using a modal approach, Mace [22]
calculated the energy flow between two interconnected beams by using wave functions, and
Keane and Price [15,20] obtained SEA-type relations for a pair of interconnected structures.
However, the deterministic energy flow models derived in references [22,24] are different
from the fundamental equations used in SEA which characterize energy flow in terms of
energy differences.

For multiple interconnected substructures there have been several attempts to reconcile
the differences between deterministic approaches and SEA [9,11,13,14,17]. For example,
Maidanik [9] developed a theoretical foundation for SEA by using an energy flow model,
Hodges and Woodhouse [14] explained SEA properties from a physical point of view, and
Langley [17] provided a general development of SEA relations. Nevertheless, there does not
yet exist a complete theory of SEA that rigorously clarifies the assumptions that underlie
the methodology. The goal of this paper is thus to make progress in clarifying the precise
assumptions under which SEA predictions are valid.

To this end, we extend our previous work [27], which was motivated by reference [28],
to obtain energy flow models for interconnected structures. In particular, we derive two
distinct energy flow models, namely, the modal subsystem model (section 3), which views
each mode as a subsystem, and the structural subsystem model (section 4), which views each
structure as a subsystem. These energy flow models predict energy flow among modes or
structures independently of the number of interconnected structures and the coupling
strength. These results are based on the thermodynamic energy flow relationship given by
Theorem 3.2 of reference [27], which is analogous to the corresponding result given by
equation (37) of reference [17] involving subsystem kinetic energy.

Crucial features of our development include the exclusive use of a deterministic structural
model and a localized stochastic disturbance. This formulation stands in contrast to
treatments that invoke stochastic structural uncertainty models and spatially distributed
disturbances to justify energy flow relationships [8,29–31]. We believe that energy flow
predictions based on deterministic modelling leave less ambiguity with regard to the meaning
of the results than predictions based on stochastic modelling that invoke the notion of an
ensemble or statistical population of structures. For this reason our derivation of SEA results
intentionally seeks to de-emphasize the statistical aspect of the theory.

In developing a rigorous foundation for SEA-type predictions, we consider three sources
of error, namely,modal incoherence, the pairwise coupling coefficient, and the use of blocked
modal energy. SEA often invokes a modal incoherence assumption so that energy flow
among structures can be represented by a modal flow model. Modal incoherence, however,
occurs when the disturbances are spatially distributed ‘‘rain on the roof’’ [9,14,26] or when
the covariance is averaged over an uncertainty distribution [32]. Our analysis shows that
modal incoherence is responsible for discrepancies between energy flow predictions based
on the modal subsystem model and energy flow predictions based on the structural
subsystem model. Furthermore, in SEA the coupling coefficient is derived from the pairwise
interaction of modes in isolation from other modes. As in reference [27], however, the
coupling coefficients are influenced by the presence of other modes. In our development, the
coupling coefficients are decomposed into pairwise interaction terms as well as error terms.
Finally, as shown in reference [27], energy actually flows according to thermodynamic energy
and not according to blocked energy. Although thermodynamic energy coincides with
uncoupled energy for second order subsystems, there is a significant difference between
thermodynamic energy and blocked energy. Consequently, SEA inevitably incurs errors due
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to all these effects. In this paper we quantify these error terms and consider limiting
conditions underwhich these error terms vanish. For cases inwhich the error terms are small,
the results thus predict that energy flow is proportional to blocked energy, as in classical
SEA theory. A numerical example involving a pair of cantilevered beams is used to illustrate
these results.

2. STRUCTURAL MODEL

We consider r one- or two-dimensional structures under vibration by means of pointwise
external disturbance forces. Each pair of structures is assumed to be mutually interconnected
by means of conservative couplings. For convenience, we make the simplifying assumption
that all couplings to a given structure are connected to a single point on that structure. The
case of structures interconnected at multiple points is more complicated and is outside the
scope of this paper.

The partial differential equation for the displacement response xi(j,t) of the ith structure
is given by

ri(j)
12xi(j,t)

1t2 +Lixi(j,t)=w̃i(t)d(j−j
 i)−hi(j,jci ,t), (1)

where j$Vi denotes the spatial co-ordinate defined on a region Vi for the ith structure.
Furthermore, ri(j) is the mass density of the ith structure, Li is the self-adjoint stiffness
operator for the ith structure, and w̃i(t) is the external disturbance force acting on the ith
structure at the point j
 i . We assume that w̃i(t), i=1,...,r, are mutually uncorrelated white
noise disturbances with unit intensity. Additionally, the coupling effect hi(j,jci ,t) at the
coupling position jci is given by

hi(j,jci ,t),fi(t)d(j−jci), (2)

for an interaction force fi(t) and

hi(j,jci ,t),gi(t)d'(j−jci), (3)

for an interaction torque gi(t), where d'(x) is the doublet (derivative of the delta function).
We consider a modal decomposition of the ith structure of the form

xi(j,t)=s
a

j=1

qij(t)cij(j), i=1,...,r, (4)

where qij(t) and cij(j) denote the model co-ordinates and normalized eigenfunctions,
respectively, and the double subscript ij denotes the jth mode of the ith structure. The
normalized eigenfunctions cij(j) satisfy the orthogonality properties

gVi

ri(j)cij(j)cik(j)dj=djk , gVi

Licij(j)cik(j)dj=v2
ijdjk , (5)

where vij is the uncoupled natural frequency of the jth mode of the ith structure and djk is
the Kronecker delta. From equations (4), (5) and appropriate boundary conditions, it
follows that the modal co-ordinates qij(t) satisfy

q̈ij(t)+2zijvijq̇ij(t)+v2
ijqij(t)=aijw̃i(t)−bijvi(t), (6)
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where vi(t) is the coupling interaction and the modal damping term 2zijvijq̇ij(t) is now
included. In equation (6), the modal coefficient aij is defined by

aij,cij(j
 i), (7)

while

bij,cij(jci), vi(t),fi(t), (8)

for force interaction and

bij,
1cij(jci)

1j
, vi(t),gi(t), (9)

for torque interaction.
The modal velocity yij(t) of the jth mode of the ith structure and the velocity yi(t) of the

ith structure at the coupling point are given by

yij(t)=bijq̇ij(t), yi(t)=s
ni

j=1

yij(t), (10,11)

where ni is the number of modes of the ith structure in the frequency range of interest.
Henceforth we consider stiffness coupling in which case the coupling interaction vi(t) is

given by

vi(t)=s
r

p=1

p$i

Kip$ s
ni

j=1

bijqij(t)−s
np

q=1

bpqqpq(t)%, (12)

where Kip is the stiffness of the coupling between the ith and the pth structures. The results
of this paper can be extended to the case of dissipative coupling by applying the results of
reference [33].

For later use, note that the modal impedance zij(s), i=1,...,r, j=1,...,ni , is given by

zij(s)=(s2+2zijvijs+v2
ij)/s. (13)

In the following two sections we derive two distinct energy flow models based upon
equation (6).

3. ENERGY FLOW MODELLING: MODAL SUBSYSTEMS

First, we obtain the modal subsystem model by treating each mode as a subsystem. Let
wij(t) denote the disturbance force exciting the jth mode of the ith structure, that is,

wij(t),aijw̃i(t), i=1,...,r, j=1,...,ni , (14)

and let L(s) denote the r×r stiffness coupling transfer function given by

L(s)=
1
s
CL , (15)
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where

s
r

p=2

K1p −K12 ... −K1r

CL,G
G

G

G

G

G

G

G

G

K

k

−K12 s
r

p=1

p$2

K2p ... −K2r

G
G

G

G

G

G

G

G

G

L

l

, (16)

.

.
.
.

.

.
.
.

−K1r −K2r ... s
r−1

p=1

Kpr

so that from equations (10)–(12) the coupling interaction vi(t) and the structural velocity yi(t)
are related by

vs=L(s)ys, (17)

where ys(t),[y1(t)···yr(t)]T and vs(t),[v1(t)···vr(t)]T.
To obtain a feedback representation of the interconnected modal subsystems, we define

the modal impedance matrix

Zm(s),diag(z11(s),...,z1n1(s),...,zr1(s),...,zrnr(s)), (18)

and the vectors

ym(t),[q̇11(t)···q̇1n1(t)···q̇r1(t)···q̇rnr(t)]
T, (19)

wm(t),[w11(t)···w1n1(t)···wr1(t)···wrnr(t)]
T, (20)

vm(t),[b11v1(t)···b1n1v1(t)···br1vr(t)···brnrvr(t)]T, (21)

w̃(t),[w̃1(t)···w̃r(t)]T. (22)

Note that wm(t)=Dmw̃(t), ys(t)=ET
mym(t) and vm(t)=Emvs(t), where the matrices Dm and Em

are defined by

G
G

G

L

l

T

, (23)Dm,G
G

G

K

k

a11

0
.
.
0

···
···
.
.

···

a1n1

0
.
.
0

0
a21.
.
0

···
···
.
.

···

0
a2n2.
.
0

0
0
.
.
0

···
···
..

···

0
0
.
.
0

0
0
.
.

ar1

···
···
.
.

···

0
0
.
.

arnr

Em,G
G

G

K

k

b11

0
.
.
0

···
···
.
.

···

b1n1

0
.
.
0

0
b21.
.
0

···
···
.
.

···

0
b2n2.
.
0

0
0
.
.
0

···
···
.
.

···

0
0
.
.
0

0
0
.
.

br1

···
···
.
.

···

0
0
.
.

brnr

G
G

G

L

l

T

. (24)

With this notation, the interconnected system (6) can be expressed as the feedback system
shown in Figure 1, where um(t),wm(t)−vm(t) and the coupling matrix Lm(s) for the modal
subsystem energy flow model satisfying vm=Lmym is defined by

Lm(s),EmL(s)ET
m. (25)
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Note that since L(s) given by equation (15) is conservative, that is, L(jv)+L*(jv)=0, it
follows that

Lm(jv)+L*m (jv)=EmL(jv)ET
m+(EmL(jv)ET

m)*

=Em(L(jv)+L*(jv))ET
m

=0, (26)

so that Lm(s) is also conservative. Since the modal impedance matrix Zm(s) is strictly positive
real and the coupling Lm(s) is conservative, it follows from standard results that the
closed-loop system in Figure 1 is asymptotically stable [27].

As in reference [27], the steady-state average modal energy flows per unit bandwidth
Ec

ij(v), Ed
ij (v), Ee

ij(v), i=1,...,r, j=1,...,ni are defined by

Ec
ij(v),−1

2ReSvmym(v)]ijij , Ed
ij(v),−1

2ReSumym(v)]ijij ,

Ee
ij(v),1

2Re[Swmym(v)]ijij , (27)

where Svmym, Sumym, and Swmym denote the cross-spectral densities of the given signals, Ec
ij(v)

is the energy flow entering the jth mode of ith structure through the coupling Lm(s), Ed
ij(v)

is the energy dissipation rate of the jth mode of the ith structure, and Ee
ij(v) is the external

energy flow entering the jth mode of the ith structure. In equation (27) and throughout the
paper, the shorthand Aijpq is used to denote the element A(nij,npq) of an arbitrary matrix A, where
nij is the mode count index defined by

nij,0s
i−1

l=1

nl1+j. (28)

The following result is obtained from reference [27].

Proposition 3.1. For i=1,...,r and j=1,...,ni , the modal coupling, dissipative, and external
energy flows per unit bandwidth Ec

ij(v), Ed
ij (v) and Ee

ij(v) are given by

Ec
ij(v)=−

1
2p

Re[L(jv)(Lm(jv)+Zm(jv))−1Swmwm(Lm(jv)+Zm(jv))−*]ijij , (29)

Figure 1. Feedback representation of modal subsystems.



   413

Ed
ij(v)=−

1
2p

Re[Zm(jv)(Lm(jv)+Zm(jv))−1Swmwm(Lm(jv)+Zm(jv))−*]ijij , (30)

Ee
ij(v)=

1
2p

Re[Swmwm(Lm(jv)+Zm(jv))−*]ijij, (31)

where Swmwm is the intensity matrix of wm(t) given by Swmwm=DmDT
m.

To analyze energy flows among modal subsystems, we now define as in reference [27] the
cross-modal thermodynamic energy Eth

imn of modes m and n of the ith structure and the modal
thermodynamic energy Eth

ij of the jth mode of the ith structure for i=1,...,r and
j,m,n=1,...,ni as

Eth
imn,

Swmwmimin

2zcimcin

=
aimain

2zcimcin

, (32)

Eth
ij ,Eth

ijj=
Swmwmijij

2cij

=
a2

ij

2cij

, (33)

respectively, where cij,2zijvij . Since Lm(jv) has zero real part, the following results follow
from Theorem 3.2 and Corollary 3.3 of reference [27].

Proposition 3.2. For i=1,...,r and j=1,...,ni , the modal coupling energy flow per unit
bandwidth Ec

ij(v) is given by

Ec
ij(v)=Ec

Inc,ij(v)+Ec
Coh,ij(v), (34)

where

Ec
Inc,ij(v),s

ni

k=1

dijik(v)(Eth
ik−Eth

ij )+s
r

p=1

p$i

s
np

q=1

dijpq(v)(Eth
pq−Eth

ij ), (35)

Ec
Coh,ij(v),s

ni

k=1$s
ni

l=1

l$k

mijkl(v)Eth
ikl−s

ni

l=1

l$j

mikjl(v)Eth
ijl%, (36)

and where dijpq(v) and mijpq(v) are defined by

dijpq(v),
1
p
cijcpq =[(Zm(jv)+Lm(jv))−1]ijpq =2, (37)

mijkl(v),
cijzcikcil

p
Re[([Zm(jv)+Lm(jv)]−1)ijik([Zm(jv)+Lm(jv)]−*)ilij ]. (38)

In equation (34), the first term Ec
Inc,ij(v) depends on differences between thermodynamic

modal energies generated from the incoherent (diagonal) portion Inc[Swmwm] of Swmwm, while
the second term Ec

Coh,ij(v) arises from the cross-modal thermodynamic energies generated
from the coherent (off-diagonal) portionCoh[Swmwm] ofSwmwm, that is, the effect of disturbance
correlation on each mode.
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We now consider the modal coupling, dissipative, and external energy flows defined by

Pc
ij,g

a

−a

Ec
ij(v)dv, Pd

ij,g
a

−a

Ed
ij (v)dv,

Pe
ij,g

a

−a

Ee
ij(v)dv. (39)

Let Z−1
m (s) have the realization

ẋm(t)=Amxm(t)+Bmum(t), ym(t)=Cm1xm(t), (40, 41)

and define the constant diagonal damping matrix

Cmd,diag(c11,...,c1n1,...,cr1,...,crnr). (42)

Since xm(t) is comprised of the position vector xpm(t) and the velocity vector ym(t), we can
introduce an output matrix Cpm so that xpm(t)=Cpmxm(t). Then the feedback system in Figure
1 has the realization

ẋm(t)=A	 mxm(t)+D	 mw̃(t), vm(t)=Cm2xm(t), (43, 44)

where A	 m,Am−BmEmCLET
mCpm, D	 m,BmDm and Cm2,EmCLET

mCpm. With this notation the
following result follows from Corollary 4.1 of reference [27].

Proposition 3.3. For i=1,...,r and j=1,...,ni , the modal energy flows Pc
ij, Pd

ij and Pe
ij are

given by

Pc
ij=−(Cm2Q	 mCT

m1)ijij , Pd
ij=−(CmdCm1Q	 mCT

m1)ijij , Pe
ij=1

2(DmD	 T
mCT

m1)ijij , (45–47)

where the steady-state modal covariance Q	 m,limt:aE[xm(t)xT
m(t)] satisfies the algebraic

Lyapunov equation

0=A	 mQ	 m+Q	 mA	 T
m+D	 mD	 T

m. (48)

Furthermore, the following result is obtained from Lemma 3.1 and Corollaries 3.1 and
3.2 of reference [27].

Proposition 3.4. The modal energy flows per unit bandwidth Ec
ij(v), Ed

ij (v), Ee
ij(v), and

the modal energy flows Pc
ij , Pd

ij , Pe
ij satisfy

Ec
ij(v)+Ed

ij (v)+Ee
ij(v)=0, i=1,...,r, j=1,...,ni , (49)

s
r

i=1

s
ni

j=1

Ec
ij(v)=0, (50)

Pc
ij+Pd

ij+Pe
ij=0, i=1,...,r, j=1,...,ni , (51)

and

s
r

i=1

s
ni

j=1

Pc
ij=0. (52)

Equations (49) and (51) represent the energy balance at each modal subsystem, while
equations (50) and (52) reflect the fact that the coupling is conservative. As an example,
Figure 2 illustrates energy flow among four modes of two interconnected structures.
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Figure 2. Energy flow model for two structures and four coupled modes.

4. ENERGY FLOW MODELLING: STRUCTURAL SUBSYSTEMS

We now obtain the structural subsystem energy flow model by treating each structure as
a subsystem. In this model the energy flows are evaluated at the coupling points of the
structures. Hence the colocated impedance zi(s) of the ith structure at the coupling point
is given by

1
zi(s)

=s
ni

j=1

b2
ij

zij(s)
, (53)

for i=1,...,r. Additionally, by using the fact that the admittance transfer function from
the external force w̃i(t) applied at j
 i to the velocity yi(t) at jci is given by ani

j=1aijbij/zij(s),
(see p. 263 in reference [34]), it follows that the filter transfer function Ti(s), defined by

Ti(s),zi(s)s
ni

j=1

aijbij

zij(s)
, (54)

transforms the external disturbance force w̃i at j
 i into the disturbance force wi at the coupling
point jci , that is,

wi=Tiw̃i . (55)

With the notation given in equations (54) and (55) and with zij(s) given by equation (13),
equation (6) can be rewritten as

zi(s)yi=wi−vi , (56)

which corresponds to the electrical representation of the interconnected system shown in
Figure 3 [27,28].

Since zi(s) is strictly positive real, it follows that

ci(v),Re[zi(jv)]q0, i=1,...,r, v$R, (57)
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where ci(v) is the frequency-dependent resistance or damping. For convenience, define the
r×r diagonal transfer function

Zs(s),diag(z1(s),...,zr(s)), (58)

and the frequency-dependent resistance or damping matrix

Cd(v),Re[Zs(jv)]=diag(c1(v),...,cr(v)). (59)

With this notation, the interconnected system in equation (56) can be expressed as the
feedback system in Figure 4, where ws(t),[w1(t)···wr(t)]T, us(t),[u1(t)···ur(t)]T=
ws(t)−vs(t) and ys(t), vs(t) and L(s) satisfy equation (17). Additionally, the components of
ws(t) are mutually uncorrelated so that the power spectral density matrix Swsws(v) of ws(t)
has the form

Swsws(v)=diag(Sw1w1(v),...,Swrwr(v)), (60)

where Swiwi(v) is the power spectral density of wi(t).
With this notation we can define structural energy flows per unit bandwidth Ec

i (v), Ed
i (v)

and Ee
i (v) for each structure. These flows correspond to Ec

ij(v), Ed
ij(v) and Ee

ij(v) in the
previous section where now Ec

i (v) is the energy flow entering the ith structure through the

Figure 3. Electrical representation of structural subsystems.
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Figure 4. Feedback representation of structural subsystems.

couplingL(s) in Figure 4. The following result corresponds to Proposition 3.1 in the previous
section.

Proposition 4.1. For i=1,...,r, the structural energy flows per unit bandwidth Ec
i (v),

Ed
i (v) and Ee

i (v) are given by

Ec
i (v)=−

1
2p

Re[L(jv)(L(jv)+Zs(jv))−1Swsws(v)(L(jv)+Zs(jv))−*](i,i), (61)

Ed
i (v)=−

1
2p

Re[Zs(jv)(L(jv)+Zs(jv))−1Swsws(v)(L(jv)+Zs(jv))−*](i,i), (62)

Ee
i (v)=

1
2p

Re[Swsws(v)(L(jv)+Zs(jv))−*](i,i). (63)

In contrast with the case of the modal subsystem model in section 3, wi(t) and wj(t) are
now mutually uncorrelated for i$j. (However, these results can be extended to the case in
which the structural disturbances are correlated.). Thus by defining the structural
thermodynamic energy Eth

i (v) of the ith structure as

Eth
i (v),

Swiwi(v)
2ci(v)

, (64)

the following result follows from Theorem 3.2, Corollary 3.3 of reference [27] and the fact
that Re[L(jv)]=0.

Proposition 4.2. For i=1,...,r, Ec
i (v) and Ed

i (v) are given by

Ec
i (v)=s

r

j=1

j$i

dij(v)[Eth
j (v)−Eth

i (v)], (65)

Ed
i (v)=−dii(v)Eth

i (v)−s
r

j=1

j$i

dij(v)Eth
j (v), (66)
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where, for i, j=1,...,r,

dij(v),
1
p
ci(v)cj(v)=[(Zs(jv)+L(jv))−1](i,j)=2. (67)

Equation (65) can be interpreted thermodynamically as saying that energy flow is
proportional to thermodynamic energy differences so that energy always flows from higher
energy structures to lower energy structures. As shown in reference [27], this result is valid
for both weak and strong coupling, unlike predictions based on blocked energy which may
be erroneous in the strong coupling case. The validity of equations (65) and (66) is thus due
to the use of thermodynamic energy which may be different from stored energy.

Now we consider the structural energy flows. As in the previous section the structural
energy flows Pc

i , Pd
i and Pe

i , i=1,...,r, are defined by

Pc
i ,g

a

−a

Ep
i (v)dv, Pd

i ,g
a

−a

Ed
i (v)dv,

Pe
i ,g

a

−a

Ee
i (v)dv. (68)

The following results correspond to Proposition 3.4.

Proposition 4.3. The structural energy flows per unit bandwidth Ec
i (v), Ed

i (v), Ee
i (v) and

the structural energy flows Pc
i , Pd

i , Pe
i satisfy

Ec
i (v)+Ed

i (v)+Ee
i (v)=0, i=1,...,r, (69)

s
r

i=1

Ec
i (v)=0, (70)

Pc
i +Pd

i +Pe
i =0, i=1,...,r, (71)

s
r

i=1

Pc
i =0. (72)

In the previous section we expressed the modal energy flows Pc
ij, Pd

ij, Pe
ij in terms of the

steady-state covariance Q	 m according to the approach in reference [27]. To obtain a similar
expression for each structure, we must account for the fact that the external disturbance w(t)
is no longer white noise and that ci(v) is not constant, in which case the results in reference
[27] cannot be applied directly. To overcome these difficulties we introduce the disturbance
filter transfer function matrix T(s) defined by

T(s),diag(T1(s),...,Tr(s)), (73)

and the stable dissipation filter Rd(s) satisfying [35]

Rd(s)RT
d(−s)=Cd(s). (74)

By including these filters we consider two augmented systems to obtain Pc
i and Pd

i in equation
(68). First let T(s) have the realization

ẋw(t)=Awxw(t)+Bww̃(t), ws(t)=Cwxw(t)+Dww̃(t), (75,76)
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while the transfer function Z−1
s (s) has the realization

ẋs(t)=Asxs(t)+Bsus(t), ys(t)=Csxs(t). (77,78)

Furthermore, we define the output matrix Cps for the position vector xps(t) so that

xps(t)=gys(t)dt=Cpsxs(t). (79)

Then by using the stiffness coupling L(s) given by equation (15), we obtain the augmented
system

ẋsa(t)=A	 sxsa(t)+D	 sw̃(t), (80)

where

xsa(t),$xs(t)
xw(t)%, A	 s,$As−BsCLCps

0
BsCw

Aw %,

D	 s,$BsDw

Bw %.

Furthermore, by defining Cs1,[Cs 0] and Cs2,[CLCps 0], it follows that ys(t)=Cs1xsa(t) and
vs(t)=Cs2xsa(t).

Next let Rd(s) have the realization

ẋR(t)=ARxR(t)+BRys(t), yR(t)=CRxR(t)+DRys(t). (81, 82)

Then equations (75)–(79), (81) and (82) yield the augmented system

ẋda(t)=A	 dxda(t)+D	 dw̃(t), (83)

where

xda(t),&xs(t)
xw(t)
xR(t)',

A	 d,&As−BsCLCps

0
BRCps

BsCw

Aw

0

0
0
AR',

D	 d,&BsDw

Bw

0 '.
Furthermore, by defining Cda,[DRCs1 CR ], it follows that yR(t)=Cdaxda(t). With these
augmented systems we have the following result.

Theorem 4.1. For, i=1,...,r, the structural energy flows Pc
i , Pd

i and Pc
i are given by

Pc
i =−(Cs2Q	 sCT

s1)(i,i), Pd
i =−(CdaQ	 dCT

da)(i,i), (84, 85)
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and

Pe
i =−(Cs2Q	 sCT

s1+CdaQ	 dCT
da)(i,i), (86)

where the steady-state covariances Q	 s,limt:aE[xsa(t)xT
sa(t)] and Q	 d,limt:aE[xda(t)xT

da(t)]
satisfy the algebraic Lyapunov equations

0=A	 sQ	 s+Q	 sA	 T
s +D	 sD	 T

s , 0=A	 dQ	 d+Q	 dA	 T
d+D	 dD	 T

d . (87, 88)

In the following section, we investigate the relation between the modal subsystem model
and the structural subsystem model.

5. MODAL COHERENCE EFFECTS IN MODAL AND STRUCTURAL
SUBSYSTEM MODELS

In the previous two sections we introduced two energy flow models, namely, the modal
subsystem model and the structural subsystem model. Since now each mode is excited by
mutually correlated disturbance forces, modal coherence effects play a key role in the
relationship between these models.

First, for i=1,...,r, we define the total modal coupling, dissipative, and external energy
flows for the ith structure by

Pc
i ,s

ni

j=1

Pc
ij, Pd

i ,s
ni

j=1

Pd
ij, Pe

i ,s
ni

j=1

Pe
ij. (89)

Note that Pc
i is the sum of the energy flows through the coupling to all ni modes of the ith

structure, while Pd
i and Pe

i can be interpreted in a similar manner. Then, from equations (51)
and (52) it follows that

Pc
i+Pd

i +Pe
i=0, s

r

i=1

Pc
i=0. (90)

Now, concerning Pc
i , Pd

i and Pe
i we obtain the following result.

Theorem 5.1. For i=1,...,r, the structural and total modal coupling, dissipative, and
external energy flows satisfy

Pc
i =Pc

i , Pd
i −Pd

i =P
 i , Pe
i −Pe

i=−P
 i , (91–93)

where

P
 i,$s
ni

j=1

(CmdCm1Q	 mCT
m1)ijij%−(CdaQ	 dCT

da)(i,i), (94)

and where Q	 m and Q	 d satisfy equations (48) and (88), respectively.

Proof. From the definition of Pc
i in equation (68) it follows that

Pc
i =−E[yi(t)vi(t)]=−E$s

ni

j=1

bijq̇ij(t)vi(t)%=s
ni

j=1

Pc
ij=Pc

i ,

which proves equation (91). Equation (92) follows from equations (46) and (85), while
equation (93) can be obtained from equations (71), (90), (91) and (92). q
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Theorem 5.1 shows that the energy entering the ith structure through the coupling is equal
to the total energy flow received by the ni modes of the ith structure, while Pd

i and Pe
i are

generally different from the sum of the modal energy flows Pd
i and Pe

i because of correlation
among modes, that is, modal coherence. The following result considers a special case in
which the effect of modal coherence disappears so that the structural and total modal
dissipative and external energy flows are the same.

Proposition 5.1. Consider the modal coefficients aij , bij defined by equations (7)–(9). If

aij/bij=aik/bik , i=1,...r, j,k=1,...,ni , (95)

then, for i=1,...,r,

Pd
i =Pd

i , Pe
i =Pe

i . (96, 97)

Proof. From equations (53) and (54) it follows that

wi=Ti(s)w̃i=zi(s)s
ni

j=1

aijbij

zij(s)
w̃i=0s

ni

j=1

b2
ij

zij(s)1
−1aij

bij
s
ni

j=1

b2
ij

zij(s)
w̃i=

aij

bij
w̃i .

Then, using equations (10) and (11), we have

Pe
i =E[wi(t)yi(t)]=E$aij

bij
w̃i(t)yi(t)%=s

ni

j=1

E[aijw̃i(t)q̇ij(t)]=Pe
i ,

which proves equation (97). Equation (96) follows from equations (90), (91) and (97). q
Assumption (95) holds for the case in which the disturbance location and coupling point

coincide for each structure, that is, j
 i=jci .
Now we consider the effect of modal coherence on Pc

ij and Pd
ij.

Lemma 5.1. For i=1,...,r and j=1,...,ni , the modal coupling and dissipative energy flows
Pc

ij and Pd
ij satisfy

Pc
ij=−(Cm2Q	 IncCT

m1)ijij−P
 Coh,ij (98)

and

Pd
ij=−(CmdCm1Q	 IncCT

m1)ijij+P
 Coh,ij , (99)

where

P
 Coh,ij,(Cm2Q	 CohCT
m1)ijij , (100)

and Q	 Inc and Q	 Coh satisfy

0=A	 mQ	 Inc+Q	 IncA	 T
m+Inc[Swmwm], (101)

0=A	 mQ	 Coh+Q	 CohA	 T
m+Coh[Swmwm], (102)

respectively.
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The proof is given in Appendix B. q
Next we rewrite equations (98) and (99) in terms of the modal thermodynamic energies.
Theorem 5.2. For i=1,...,r and j=1,...,ni , the modal coupling energy flow Pc

ij in equation
(98) and the modal energy dissipation rate Pd

ij in equation (99) are given by

Pc
ij= s

ni

k=1

sijik(Eth
ik−Eth

ij )+s
r

p=1

p$i

s
np

q=1

sijpq(Eth
pq−Eth

ij )−P
 Coh,ij , (103)

Pd
ij=−sijEth

ij +P
 Coh,ij , (104)

where, for i,p=1,...,r, j=1,...,ni , and q=1,...,np , sijpq and sij are defined by

sijpq,g
a

−a

dijpq(v)dv=2cijcpq(Cm1Q	 pqCT
m1)ijij , (105)

sij,s
r

p=1

s
np

q=1

sijpq
E th

pq

E th
ij
, (106)

and where dijpq(v) is defined by equation (37) and Q	 pq satisfies the Lyapunov equation

0=A	 mQ	 pq+Q	 pqA	 T
m+Bmenpqe

T
npq

BT
m. (107)

Proof. Since L(s) has zero real part, equations (103) and (104) follow from Theorem 4.2
and Corollary 4.2 of reference [27]. Equations (105)–(107) can be obtained directly from
Proposition 4.5 of reference [27]. q

The coefficients sijpq in equation (105) and sij in equation (106) are called the modal coupling
loss factor and the modal internal loss factor, respectively. It should be noted that sijpq=spqij

since L(s) is symmetric (see Corollary 4.2 of reference [27]).
We now characterize the energy flows for each structure in terms of the total modal

thermodynamic energy Eth
i of the ith structure defined by

Eth
i ,s

ni

j=1

Eth
ij . (108)

Note that Eth
i is the sum of the modal thermodynamic energies Eth

ij of the individual modes
of the ith structure. However, because of correlation effects, Eth

i is generally not equal to the
thermodynamic energy Eth

i of the ith structure defined by equation (64).

Theorem 5.3. For i=1,...,r, the total coupling and dissipative energy flows Pc
i and Pd

i

satisfy

Pc
i=s

r

p=1

(hipE
th
p −hpiE

th
i )−P
 Coh,i , (109)

Pd
i =−hiE

th
i +P
 Coh,i , (110)
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where

P
 Coh,i,s
ni

j=1

P
 Coh,ij , (111)

hip,s
np

q=1

s
ni

j=1

fpqsijpq , hi,s
ni

j=1

fijsij , (112)

and where

fij,
Eth

ij

Eth
i
. (113)

The proof is given in Appendix C.

As in SEA, the coefficients hip and hi are called the coupling loss factor and the internal
loss factor, respectively. Note that the weighting factors fij are non-negative and satisfy

s
ni

j=1

fij=1.

Thus the coupling loss factor hip is a convex combination of the modal coupling loss factors
sijpq and likewise for the internal loss factor hi .

Remark 5.1. Since ani
j=1ani

k=1sijik(Eth
ik−Eth

ij )=0, it follows that the energy flow among
different modes of the same structure does not contribute to the total modal coupling energy
flow Pc

i . Therefore, it is only necessary to consider energy flow among the modes of different
structures.

6. ANALYSIS OF MODAL PAIRWISE INTERACTION

In the previous section we showed that energy flow can be expressed as a linear
combination of the modal thermodynamic energies Eth

ij in equation (103) or total modal
thermodynamic energy Eth

i in equation (109). Our goal in this section is to simplify the results
of Theorem 5.3 by decomposing the structural coupling coefficient hip and dissipative
coefficient hi into pairwise modal interaction terms along with error terms.

To simplify the development we define xm(t) in equation (40) by

xm(t),[a11(t) b11(t) a12(t) b12(t)···arnr(t) brnr(t)]
T, (114)

where the energy co-ordinates are defined by

aij(t),vijqij(t), bij(t),q̇ij(t). (115)

With this representation for xm(t), Am and Bm in equation (40) are given by

Am,block-diag(Am[11],Am[12],...,Am[rnr]),

Bm,block-diag0$01%,...,$01%1, (116)
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where Am[ij] denotes the 2×2 matrix

Am[ij]=$ 0
−vij

vij

−2zivij%. (117)

For the jth mode of the ith structure and the qth mode of the pth structure we decompose
A	 m=Am−A in equation (43) as

A	 m=A� ijpq−A
 ijpq, (118)

where

A� ijpq,Am−Aijpq, A
 ijpq,A−Aijpq, A,BmEmCLET
mCpm, (119–121)

and

0 ··· 0 0 0 ··· 0 0 0 ··· 0F L
G G.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
. 0

G G0 ··· 0 0 0 ··· 0 0 0 ··· 0
G G

0 ··· 0 A[ijij] 0 ··· 0 A[ijpg] 0 ··· 0G G
0 ··· 0 0 0 ··· 0 0 0 ··· 0G G

G GAijpq, .
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

. 0
, (122)

G G0 ··· 0 A[pqij] 0 ··· 0 A[pqpq] 0 ··· 0
G G

0 ··· 0 0 0 ··· 0 0 0 ··· 0G G.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

. 0G G
k l0 ··· 0 0 0 ··· 0 0 0 ··· 0

where A[ijpq] denotes the (nij ,npq)th 2×2 subblock of A located at the same position in Aijpq.
It can be seen that the decomposition (118) isolates those terms that govern pairwise modal
interactions. With this notation we obtain the following result.

Corollary 6.1. The coupling coefficient sijpq defined by equation (105) is given by

sijpq=s̄ijpq+ŝijpq , (123)

where

s̄ijij,
c2

ij [k2
ijpq(cij+cpq)+cpq [(v2

c,ij−v2
c,pq)2+(cij+cpq)(cijv

2
c,pq+cpqv

2
c,ij)]]

k2
ijpq(cij+cpq)2+cijcpq [(v2

c,ij−v2
c,pq)2+(cij+cpq)(cijv

2
c,pq+cpqv

2
c,ij)]

, (124)

for i=1,...,r, j=1,...,ni ;

s̄ijpq,
k2

ijpqcijcpq(cij+cpq)

k2
ijpq(cij+cpq)2+cijcpq [(v2

c,ij−v2
c,pq)2+(cij+cpq)(cijv

2
c,pq+cpqv

2
c,ij)]

, (125)

for i$p or j$q; and, for i,p=1,...,r, j=1,...,ni , q=1,...,np ,

ŝijpq,−2cijcpq(Cm1Q
 ijpqCT
m1)ijij , (126)

where

kijpq,Kipbijbpq , v2
c,ij,v2

ij+b2
ij s

r

m=1

m$i

Kmi , (127)
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and Q
 ijpq satisfies

0=A� ijpqQ
 ijpq+Q
 ijpqA� ijpqT+Vijpq, (128)

Vijpq,A
 ijpqQ	 pq+Q	 pqA
 ijpqT, (129)

where Q	 pq is given by equation (107).
The proof is given in Appendix D.

Remark 6.1. The pairwise modal coupling loss factor s̄ijpq in equation (125) has the same
form as the coupling coefficient for the two interconnected oscillators considered in example
1 of reference [27]. Additionally, limKip:0s̄ijij=cij , that is, s̄ijij in equation (124) converges to
the damping coefficient of the uncoupled mode.

Remark 6.2 Since sijpq=spqij and s̄ijpq=s̄pqij , it follows that ŝijpq=ŝpqij . As in Corollary 6.1,
the modal internal loss factor sij in equation (106) can be decomposed as

sij=s̄ij+ŝij , (130)

where

s̄ij,s
r

p=1

s
np

q=1

s̄ijpq
E th

pq

E th
ij
, ŝij,s

r

p=1

s
np

q=1

ŝijpq
Eth

pq

Eth
ij
. (131)

With this notation Pc
ij in equation (103) and Pd

ij in equation (104) can be expressed as

Pc
ij= s

ni

k=1

s̄ijik(Eth
ik−Eth

ij )+s
r

p=1

p$i

s
np

q=1

s̄ijpq(Eth
pq−Eth

ij )

+s
ni

k=1

ŝijik(Eth
ik−Eth

ij )+s
r

p=1

p$i

s
np

q=1

ŝijpq(Eth
pq−Eth

ij )−P
 Coh,ij , (132)

Pd
ij=−s̄ijEth

ij −ŝijEth
ij +P
 Coh,ij . (133)

Furthermore, we can decompose the coupling loss factor hip and the internal loss factor hi

as shown by the following result.

Corollary 6.2 For i,p=1,...,r,

hip=h̄ip+ĥip , hi=h̄i+ĥi , (134)

where

h̄ip,s
np

q=1

s
ni

j=1

fpqs̄ijpq , ĥip,s
np

q=1

s
ni

j=1

fpqŝijpq , (135)

h̄i,s
ni

j=1

fijs̄ij , ĥi,s
ni

j=1

fijŝij , (136)

and where fij is defined by equation (113).
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Proof. This result follows immediately by substituting equations (123) and (130) into hip

and hi in equation (112), respectively. q

In analogy with s̄ijpq , the parameter h̄ip can be viewed as a pairwise coupling loss factor.

7. BLOCKED ENERGY AND THERMODYNAMIC ENERGY

In the previous sections we derived energy flow relations involving the modal
thermodynamic energy Eth

ij defined by equation (33). The SEA approach, however, considers
the steady-state blocked modal energy [1,2,16,31] defined by

Ebl
ij ,1

2v
2
c,ijE[q2

ij(t)]+1
2E[q̇2

ij(t)], (137)

where v2
c,ij is defined by equation (127). As in example 1 of reference [27], the goal of this

section is to quantify the distinction between blocked modal energy and modal
thermodynamic energy in predicting energy flow.

For convenience, we define the difference E
 ij between the modal thermodynamic energy
and the blocked modal energy by

E
 ij,Eth
ij −Ebl

ij , (138)

which is characterized by the following result.

Theorem 7.1. For i=1,...,r and j=1,...,ni , E
 ij is given by

E
 ij=
1
2
G
G

G

K

k
Q
 (2nij−1,2nij−1)+Q
 (2nij,2nij)−

b2
ij s

r

p=1

p$i

Kip

v2
ij

Q	 m(2nij,2nij)

G
G

G

L

l
, (139)

where Q	 m satisfies equation (48) and Q
 satisfies

0=AmQ
 +Q
 AT
m+V
 , (140)

where V
 ,AQ	 m+Q	 mAT and Am and A are defined by equations (116) and (121).
The proof is given in Appendix E.

On the other hand, by ignoring the connecting stiffnesses in equation (127) and replacing
vc,ij by vij in the definition of the blocked modal energy, we define the steady-state uncoupled
modal energy by

Eu
ij,1

2v
2
ijE[q2

ij(t)]+1
2E[q̇2

ij(t)].

Proposition 7.1. For i,m=1,...,r and j=1,...,ni ,

Eth
ij =Eu

ij. (141)

Proof. The result is obtained by replacing vc,ij by vij in equation (198) in Appendix E and
comparing to equation (197). q

Proposition 7.1 shows that if the intensity of the disturbance entering each mode and the
modal damping coefficient are known, then one can calculate via equation (32) the modal
thermodynamic energy and thus the uncoupled modal energy. Note that the definition of
the uncoupled modal energy involves the modal displacements and velocities of the actual
coupled system. Thus, Theorem 5.2 implies that energy flows according to the uncoupled
modal energy, that is,
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Pc
ij= s

ni

k=1

sijik(Eu
ik−Eu

ij)+s
r

p=1

p$i

s
np

q=1

sijpq(Eu
pq−Eu

ij)−P
 Coh,ij . (142)

SEA, however, is based upon energy flow analysis involving two interconnected oscillators
and thus effectively assumes that only one pair of modes is vibrating, while all other modes
are fixed or blocked. Thus the blocked modal energy Ebl

ij is considered in the SEA approach,
which inevitably incurs errors due to the difference E
 ij between the modal thermodynamic
energy and the blocked modal energy. These error terms are characterized in the following
section.

8. FUNDAMENTAL RELATIONS OF STATISTICAL ENERGY ANALYSIS

In the previous three sections we identified error terms due to modal coherence P
 i and
P
 Coh,i , pairwise interaction ĥip , and the difference E
 ij between the modal thermodynamic
energy and the blocked modal energy. In this section we derive the fundamental relations
that form the basis for the SEA approach. These relations clearly show the form of the error
terms that are neglected in practice. First we consider the coupling energy flow Pc

i (=Pc
i ).

To begin, define the total blocked modal energy Ebl
i of the ith structure as

Ebl
i ,s

ni

j=1

Ebl
ij . (143)

Theorem 8.1. For i=1,...,r, the total coupling energy flow Pc
i is given by

Pc
i=s

r

p=1

(h̄ipE
bl
p −h̄piE

bl
i )+P
 bl

i +P
 pw
i −P
 Coh,i , (144)

where P
 Coh,i is defined by equation (111),

P
 pw
i ,s

r

p=1

(ĥipE
th
p −ĥpiE

th
i ), P
 bl

i ,s
r

p=1

(h̄ipE
 p−h̄piE
 i),

E
 i,s
ni

j=1

E
 ij=Eth
i −Ebl

i . (145–147)

Proof. The results follow directly from equations (134)–(136), (138) and Theorem
5.3. q

Next, energy balance at each structure, that is,

−hiE
th
i +s

r

p=1

(hipE
th
p −hpiE

th
i )+Pe

i=0, (148)

yields the following result.

Theorem 8.2. For i=1,...,r,

−h̄iE
bl
i +s

r

p=1

(h̄ipE
bl
p −h̄piE

bl
i )+Pe

i =−P
 i−P
 pw
i −P
 bl

i , (149)
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where P
 i is defined by equation (94),

P
 pw
i ,−ĥiE

th
i +s

r

p=1

(ĥipE
th
p −ĥpiE

th
i ), (150)

P
 bl
i ,−h̄iE
 i+s

r

p=1

(h̄ipE
 p−h̄piE
 i). (151)

Proof. This result follows from equations (90), (134)–(136), (138) and Theorem 5.3.q

Note that equations (148) and (149) do not include the modal coherence term P
 Coh,i defined
by equation (111) since this term is cancelled out when Pc

i and Pd
i are added (see Theorem

5.3).
Equation (149) can be rewritten in matrix form, that is,

AEbl=Pe+P
 +P
 pw+P
 bl, (152)

where Ebl,[Ebl
1 ···Ebl

r ]T, Pe,[Pe
1···Pe

r ]T, P
 ,[P
 1···P
 r ]T, P
 pw,[P
 pw
1 ···P
 pw

r ]T, P
 bl,[P
 bl
1 ···P
 bl

r ]T and
the r×r matrix A is defined by

A(i,i),h̄i+s
r

j=1

j$i

h̄ji , A(i,j),−h̄ij .

Equation (152) is a compartmental model which shows that energy flow can be expressed
as a linear combination of subsystem energy. As usual for compartmental models, A is an
M-matrix [36,37].

By ignoring the error terms P
 bl
i , P
 pw

i and P
 Coh,i in equation (144), it follows that

Pc
i=s

r

p=1

(h̄ipE
bl
p −h̄piE

bl
i ), (153)

while ignoring P
 , P
 pw and P
 bl in equation (152) yields

AEth=Pe. (154)

Equations (153) and (154) are the fundamental equations considered in the SEA approach
[16].

To obtain additional relations considered in SEA, we define the average modal
thermodynamic energy E� th

i as

E� th
i ,Eth

i /ni . (155)

Theorem 8.3. The pairwise coupling loss factor h̄ip defined by equation (135) is given by

h̄ip=
1
np

s
np

q=1

s
ni

j=1

8pqs̄ijpq , (156)

where

8pq,Eth
pq/E� th

p . (157)

Furthermore, if

Eth
pq=E� th

p , p=1,...,r,q=1,...,np , (158)
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then

nph̄ip=nih̄pi , i,p=1,...,r. (159)

Proof. From the definition of h̄ip in equation (135) it follows that

h̄ip=s
np

q=1

s
ni

j=1

fpqs̄ijpq=s
np

q=1

s
ni

j=1

8pq

np
s̄ijpq ,

which proves equation (156). Additionally, if equation (158) holds, then 8pq=1. Thus,
equation (156) yields

nph̄ip=nih̄pi=s
np

q=1

s
ni

j=1

s̄ijpq . q

By defining the modal density ni as

ni,ni/Dv, (160)

where Dv is the width of the frequency band in which the ar
i=1ni modes lie, equation (159)

can be rewritten as

nph̄ip=nih̄pi . i,p=1,...,r. (161)

In SEA terminology, equations (158) and (161) represent equipartition of energy and
reciprocity, respectively [16].

9. PAIRWISE MODAL COUPLING LOSS FACTOR IN THE WEAK COUPLING CASE

As seen in equation (135), the pairwise coupling loss factor h̄ip depends on the pairwise
modal coupling loss factor s̄ijpq defined by equation (125). In this section, we consider the
weak coupling case and derive an alternative pairwise modal coupling loss factor. In this
case, these two pairwise modal coupling loss factors are shown to be approximations of the
actual modal coupling loss factor sijpq defined by equation (105).

The following result focuses on the size of the modal coupling loss factor as determined
by the off-diagonal portion �L(jv)� of L(jv).

Proposition 9.1. Define

Z(jv),Zm(jv)+{Lm(jv)} (162)

and assume that

>Z−1(jv)�Lm(jv)�>Q1, (163)

where >·> denotes the spectral norm. Then the modal coupling loss factor sijpq defined by
equation (105) is given by

sijpq=s̃ijpq+
cijcpq

p g
a

−a

d
 ijpq(jv)dv, (164)

where

s̃ijpq,
k2

ijpq(cij+cpq)
(v2

c,ij−v2
c,pq)2+(cij+cpq)(cijv

2
c,pq+cpqv

2
c,ij)

, (165)
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d
 ijpq(v),=O(v)ijpq =2+2Re&
1
jv

kijpq

ẑij(jv)ẑpq(jv)
O(v)ijpq', (166)

O(v),Z−1(jv) s
a

n=2

[−Z−1(jv)�Lm(jv)�]n, (167)

ẑij(s),
s2+2zijvijs+v2

c,ij

s
, (168)

and kijpq and vc,ij are defined by equation (127).
The proof is given in Appendix F.

Proposition 9.1 shows that the pairwise modal coupling loss factor s̃ijpq given by equation
(165) is a first order approximation for sijpq in terms of the coupling matrix L(jv). The
pairwisemodal coupling loss factor s̃ijpq was derived in references [2,8] for two interconnected
oscillators (see example 1 in reference [27]) and plays a central role in SEA. The following
result examines the relationship between the pairwise modal coupling loss factors s̃ijpq and
s̄ijpq .

Proposition 9.2. Suppose equation (163) holds. Then

s̃ijpq=s̄ijpq−
7ijpqs̄

2
ijpq

1+7ijpqs̄ijpq
, (169)

where

7ijpq,
(cij+cpq)(cijcpq−kijpq)

kijpqcijcpq
. (170)

Proof. The result follows from equations (125) and (165). q

As can be seen from equations (125) and (165), both s̄ijpq and s̃ijpq depend on second order
terms in Kip , while 7ijpqs̄

2
ijpq/(1+7ijpqs̄ijpq) in equation (169) depends on fourth order terms

in Kip . Thus, s̄ijpq and s̃ijpqcoincide up to quadratic terms in the coupling stiffness.
Furthermore, since O(v) in equation (167) depends on terms higher than second order in
Kip , it follows that d
 ijpq(jv) in equation (166) depends on terms higher than third order in
Kip . Thus, both s̄ijpq and s̃ijpq coincide with sijpq up to quadratic terms in the coupling stiffness.
This result can also be obtained by analyzing the error term ŝijpq given by equation (126).
Consequently, in the weak coupling case it follows that sijpq3s̄ijpq3s̃ijpq , that is, both pairwise
model coupling loss factors s̄ijpq and s̃ijpq are approximations of the modal coupling loss factor
sijpq .

10. LIMITING RESULTS INVOLVING THE ERROR TERMS

In section 8, we derived equations (144) and (152) involving error terms and showed that
except for these error terms the energy flow (153) agrees with results obtained in reference
[16]. Since the error terms are generally non-zero, we consider, in this section, limiting results
which give conditions under which these terms go to zero. First we consider the error P
 i

defined by equation (94) which arises due to modal coherence. For the following results the
notation limKi{m}:0 denotes the index set involved in the limiting procedure.
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Proposition 10.1. For i=1,...,r,

lim
Ki{m}:0

zi{j}:0

P
 i=0. (171)

The proof is given in Appendix G.

Proposition 10.1 shows that, in the limit Ki{m},zi{j}:0, the discrepancy between energy flow
predictions based on the modal subsystem model and predictions based on the structural
subsystem model vanishes. At the same time we can obtain the following result.

Proposition 10.2. Let the steady-statemodal covarianceQ	 m satisfy theLyapunov equation
(48). Then

lim
K{im }:0

z{ij }:0

E−1/2
0 Q	 mE−1/2

0 =I, (172)

where

E0,diag(Eth
11,Eth

11,Eth
12,Eth

12,...,Eth
rnr

,Eth
rnr

). (173)

The proof is given in Appendix H.

Next we consider the effect of modal coherence on the coupling energy flow Pc
i in

equation (109).

Proposition 10.3. For i=1,...,r,

lim
Ki{m}:0

P
 Coh,i=0. (174)

The proof is given in Appendix I.

Propositions 10.1 and 10.2 show that, in the limit K{im},z{ij}:0, the steady-state covariance
Q	 m converges to the diagonal matrix E0, which shows that P
 i vanishes and modal incoherence
occurs. Furthermore, Proposition 10.3 shows that P
 Coh,ij also vanishes as Ki{m}:0, which
implies that the structure can be viewed as a set of modes (oscillators) excited by uncorrelated
disturbance forces. Thus, in the limiting case of light damping and weak coupling, the
structural subsystem model is equivalent to the modal subsystem model in which each
mode is excited by an uncorrelated disturbance. This fact has been rigorously verified by
Propositions 10.1–10.3.

Next we consider the error term P
 bl
i in equation (151) due to the difference between the

blocked modal energy Ebl
ij and the modal thermodynamic energy Eth

ij .

Proposition 10.4. For i=1,...,r,

lim
Ki{m}:0

P
 bl
i = lim

Ki{m}:0

P
 bl
i =0. (175)

Proof. Since limK{im}:0A=0, where A is defined by equation (121), it follows from
equations (139) and (140) that limKi{m}:0E
 ij=0, which proves equation (175). q



.  ET AL.432

Figure 5. Cantilevered beams interconnected by stiffness coupling.

Proposition 10.4 says that limKi{m}:0Ebl
ij =Eth

ij so that in the weak coupling case the blocked
energy Ebl

ij can be replaced by the thermodynamic energy Eth
ij . This approximation does not

hold under strong coupling as shown in section 7 of reference [27]. Finally, we obtain a
similar result involving the effects of pairwise interaction P
 pw

i and P
 pw
i .

Proposition 10.5. For i=1,...,r,

lim
Ki{m}:0

P
 pw
i = lim

Ki{m}:0
P
 pw

i =0. (176)

Proof. As limKi{m}:0, A
 ijpq defined by equation (120) converges to zero, which implies
Vijpq defined by equation (129) also converges to zero. Thus from equation (128),
limKi{m}:0Q
 ijpq=0, which proves equation (176). q

Figure 6. Thermodynamic energies: ——, E th
1 (v); - - -, Eth

2 (v).
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Figure 7. Coupling energy flow: Ec
1(v) and Ec

2(v).

From the results obtained in Propositions 10.3–10.5 we can conclude that if the
coupling is sufficiently small then the SEA fundamental equation (153) holds
approximately. Additionally, if the coupling and the modal damping are sufficiently
small then equation (154) holds approximately according to Propositions 10.1, 10.4
and 10.5. These results are illustrated in the following section by means of a numerical
example.

11. NUMERICAL EXAMPLE

As a numerical example we consider interconnected uniform cantilevered beams as shown
in Figure 5. The beams are of lengths L1,L2, mass densities r1,r2, and bending stiffnesses
E1IA1,E2IA2, respectively. Each beam is subjected to mutually uncorrelated white noise
disturbances w̃i(t), i=1,2, with unit intensity applied at j
 i and interconnected by a spring
with stiffness K at jci .

Figure 8. Energy dissipation rate. ——, E d
1(v); - - -, E d

2(v).
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Figure 9. External power: ——, E e
1(v); - - -, E e

2(v).

By considering the boundary conditions

xi(j,t)=j=0=0,
1xi(j,t)

1j bj=0

=0,
12xi(j,t)

1j2 bj=Li

=0,

13xi(j,t)
1j3 bj=Li

=0, i=1,2,

we obtain the natural frequencies and eigenfunctions as [16]

vij=k2
ijzEiIAi/mi ,

cij(ji)=Aij [(sinkijLi−sinhkijLi)(sinkijj−sinhkijj)

+(coskijLi−coshkijLi)(coskijj−coshkijj)],

where Aij is the normalized parameter so that equation (5) holds and the wave number kij

satisfies coskijLicoshkijLi=−1. Thus, aij and bij in equation (6) are given by aij=cij(j
 i) and
bij=cij(jci).

We now consider the first 10 modes of beam 1 and the first seven modes of beam 2 so
that n1=10, n2=7. By setting L1=3, L2=2·5, r1=r2=1, E1IA1=1, E2IA2=1·12, K=0·01,
z1j=0·01, z2j=0·02, j=1,2,3, j
 1=1, j
 2=1·5 and jc1=jc2=2·2, the steady state energy
quantities per unit bandwidth Eth

i (v), Ec
i (v), Ed

i (v) and Ee
i (v) are shown in Figures 6–9,

respectively. Since the conservation of energy at the coupling, equation (70) of Proposition
4.2, holds, it follows that Ec

1(v)=−Ec
2(v). Thus, as shown in Figure 7, Ec

1(v) and Ec
2(v) have

the same magnitude.
Next we examine the relationship between the thermodynamic energies Eth

1 (v), Eth
2 (v) and

the coupling energy flow Ec
1(v). Figure 10 shows that if Eth

1 (v)qEth
2 (v) then Ec

1(v)Q0, that
is, energy flows from beam 1 to beam 2, while if Eth

1 (v)QEth
2 (v) then Ec

1(v)q0, that is, energy
flows from beam 2 to beam 1. This result is predicted by equation (65) of Proposition 4.3.
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Figure 10. Relationship between thermodynamic energy and coupling energy flow. ——, E th
1 (v); - - -, E th

2 (v);
—·—, E c

1(v)×5000.

Next, we examine the convergence of the residual terms considered in the previous
section. Consider the first ten modes of beam 1 and the first seven modes of beam 2.
Furthermore, define

R
 i,bP
 Coh,i

Pp
i b, R
 i,bP
 i

Pe
i b, i=1,2, (177)

R
 pw
i ,bP
 pw

i

Pp
i b, R
 pw

i ,bP
 pw
i

Pe
i b, i=1,2, (178)

R
 bl
i ,bP
 bl

i

Pp
i b, R
 bl

i ,bP
 bl
i

Pe
i b, i=1,2, (179)

Figure 11. Error terms versus coupling stiffness K. –w–, R
 1; –+–, R
 pw
1 ; –(–, R
 bl

1 ; –×–, R1.
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Figure 12. Error terms for beam 1 versus coupling stiffness K. –w–, R
 1; –+–, R
 pw
1 ; –(–, R
 b1

1 ; –×–, R1.

Ri,bP
 Coh,i+P
 pw
i +P
 bl

i

Pp
i b, Ri,bP
 i+P
 pw

i +P
 bl
i

Pe
i b, i=1,2. (180)

According to equations (144) and (149), these quantities are the ratios of the error terms
to the exact energy flow value. In particular, Ri and Ri denote the ratio of total error to the
exact energy flow and if Ri=0 and Ri=0, then the exact energy flow expressions (144) and
(152) converge to equations (153) and (154), respectively.

First we consider the effect of coupling K on the error terms (177)–(180). By setting
z1j=z2q=0·01, j=1,...,10,q=1,...,7, we calculate these ratios. Since sijpq=spqij and r=2 it
follows that Pc

1=−Pc
2, P
 Coh,1=−P
 Coh,2, P
 pw

1 =−P
 pw
2 and P
 bl

1 =−P
 bl
2 . Thus it suffices to

examine R
 1, R
 pw
1 , R
 bl

1 and R1. Figure 11 shows that R
 1 decreases with the coupling stiffness

Figure 13. Error terms for beam 2 versus coupling stiffness K. –w–, R
 2; –+–, R
 pw
2 ; –(–, R
 b1

2 ; –×–, R2.
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Figure 14. Error terms for beam 1 versus damping z. –w–, R
 1; –+–, R
 pw
1 ; –(–, R
 bl

1 ; –×–, R1.

K as guaranteed by Proposition 10.3, while R
 pw
i and R
 bl

i decrease with the coupling stiffness
K as guaranteed by Propositions 10.4 and 10.5. Consequently, Ri decrease with the coupling
stiffness. The same analysis can be applied to R
 i , R
 pw

i , R
 bl
i and Ri , i=1,2, plotted in Figures

12 and 13. Furthermore, from Figures 11–13 it can be seen that the effect of pairwise
interaction R
 pw

i and R
 pw
i is larger than both effects of modal coherence R
 i , R
 i and the

difference between the thermodynamic energy and the stored blocked energy R
 bl
i ,R
 bl

i .
Now, we consider the effect of damping zij on the residual terms R
 i , R
 pw

i , R
 bl
i and Ri , i=1,2.

By setting z1j=z2q=z, j=1,...,10, q=1,...,7 and K=0·01, Figures 14 and 15 show that R
 i

decreases with the damping z as explained by Proposition 10.1.

12. CONCLUSIONS

In this paper we applied the energy flow model obtained in reference [27] to the case of
conservatively coupled structures. We obtained two energy flow models, namely, the modal

Figure 15. Error terms for beam 2 versus damping z. –w–, R
 2; –+–, R
 pw
2 ; –(–, R
 bl

2 ; –×–, R2.



.  ET AL.438

subsystem model and the structural subsystem model, which predict energy flow among
modes or structures. Furthermore, by using these two energy flow models, the fundamental
relations that form the basis for SEA were derived along with error terms. The fundamental
equation that characterizes the SEA approach is a compartmental model which shows that
energy flow can be expressed as a linear combination of subsystem energy, while the error
terms arise from the effects of the modal coherence, pairwise interaction and the difference
between the thermodynamic energy and the blocked energy. These error terms were shown
to become small under weak coupling and light modal damping. These properties, which
were demonstrated by means of numerical examples, validate the use of SEA relations in
the limiting case and quantify the magnitude of the error in the case of strong coupling.

There are several extensions to this work that warrant investigation. In particular, the case
of structures interconnected at multiple points remains to be considered. Furthermore, a
comparison with the SEA relations obtained in reference [17] is of interest. Finally, a
comparison of these results to ensemble averaging and an investigation of the role of modal
overlap remain areas for future research.
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APPENDIX A: NOTATION

Sxx power spectral density matrix of x
Sxy cross-spectral density matrix of x and y
j z−1
I identity matrix
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ei ith column of I
e [11···1]T (bold-face distinguishes from exponential)
a(i) ith element of column vector a
A(k,l) (k,l)-element of A
Aijkl A(nij,nkl)

A[ijkl] (nij ,nkl)th 2×2 subblock of A
Re[A], Im[A] real, imaginary part of A
diag(a1,...,ar) diagonal matrix whose ith diagonal element is ai

block-diag(A1,...,Ar) block-diagonal matrix whose ith diagonal block is Ai

AT,A* transpose, complex conjugate transpose of A
tr[A] trace of A
{A},�A� diagonal, off-diagonal portion of A
Inc[S],Coh[S] diagonal (incoherent), off-diagonal (coherent) portion of the spectral

density (intensity) matrix S
Aq(e)0 symmetric positive (nonnegative) definite matrix

APPENDIX B: PROOF OF LEMMA 5.1

By substituting Q	 m=Q	 Coh+Q	 Inc and DmDT
m=Swmwm=Coh[Swmwm ]+Inc[Swmwm ] into

equations (45)–(47), we obtain

Pc
ij=−(Cm2Q	 IncCT

m1)ijij−(Cm2Q	 CohCT
m1)ijij , (181)

Pd
ij=−(CmdCm1Q	 IncCT

m1)ijij−(CmdCm1Q	 CohCT
m1)ijij , (182)

Pe
ij=1

2(Inc[Swmwm]B
T
mCT

m1)ijij . (183)

Thus, from equation (51) it follows that

P
 Coh,ij=(Cm2Q	 CohCT
m1)ijij=−(CmdCm1Q	 CohCT

m1)ijij ,

which proves equations (98) and (99).

APPENDIX C: PROOF OF THEOREM 5.3

By summing equations (103) and (104) in Theorem 5.2 over the modes of each structure,
it follows that

Pc
i=s

ni

j=1

s
ni

k=1

sijik(Eth
ik−Eth

ij )+s
r

p=1

p$i

s
ni

j=1

s
np

q=1

sijpq(Eth
pq−Eth

ij )−P
 Coh,i , (184)

Pd
i =s

ni

j=1

sijEth
ij +P
 Coh,i . (185)

Since sijik=sikij it follows that ani
j=1ani

k=1sijik(Eth
ik−Eth

ij )=0, while by substituting the definition
of the modal thermodynamic energy (33) into the second term on the right-hand side of
equation (184), we obtain

s
r

p=1

p$i

s
ni

j=1

s
np

q=1

sijpq(Eth
pq−Eth

ij )=s
r

p=1

p$i

0s
np

q=1

s
ni

j=1

sijpqfpqE
th
p −s

ni

j=1

s
np

q=1

sijpqfijE
th
i 1
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=s
r

p=1

p$i

(hipE
th
p −hpiE

th
i )

=s
r

p=1

(hipE
th
p −hpiE

th
i ),

which proves equation (109). Equation (110) follows from equation (185) in the same
manner.

APPENDIX D: PROOF OF COROLLARY 6.1

By substituting A	 m=A� ijpq−A
 ijpq into equation (107), we obtain

0=A� ijpqQ	 pq+Q	 pqA� ijpqT−Vijpq+Bmenpqe
T
npq

BT
m. (186)

In equation (186), Vijpq includes the effect of coupling among all modes except the jth mode
of the ith structure and the qth mode of the pth structure. To obtain the pairwise coupling
coefficient s̄ijpq , we consider the Lyapunov equation without Vijpq, that is,

0=A� ijpqQ� ijpq+Q� ijpqA� ijpqT+Bmenpqe
T
npq

BT
m, (187)

and from equation (105) of Theorem 5.2, the coupling coefficient s̄ijpq given by

s̄ijpq=2cijcpq(Cm1Q� ijpqCT
m1)ijij=2cijcpq(Q� ijpq

[ijij])(2,2). (188)

From equation (187), we obtain the matrix equations

0=(Am[ijij]−A[ijij])Q� ijpq
[ijij]+Q� ijpq

[ijij](Am[ijij]−A[ijij])T−A[ijpq]Q� ijpq
[ijpq]−Q� ijpq

[pqij]A
T
[ijpq], (189)

0=(Am[ijij]−A[ijij])Q� ijpq
[ijpq]+Q� ijpq

[ijpq](Am[pqpq]−A[pqpq])T−A[ijpq]Q� ijpq
[pqpq]−Q� ijpq

[ijij]A
T
[pqi1j], (190)

V=(Am[pqpq]−A[pqpq])Q� ijpq
[pqpq]+Q� ijpq

[pqpq](Am[pqq]−A[pqpq])T

−A[pqi]Q� ijpq
[pqi]−Q� ijpq

[ijpq]A
T
[pqij], (191)

where

V,$00 0
1%. (192)

By using Q� ijpq
[pqij]=Q� ijpq

[ijpq]
T, we can obtain Q� ijpq

[ijij] from equations (189)–(191). By substituting the
resulting Q� ijpq

[ijij] into equation (188), s̄ijpq defined by equation (125) can also be obtained.
Additionally, equations (126) and (128) can be obtained by subtracting equation (187) from
equation (186), while defining Q
 ijpq,Q� pq−Q	 ijpq yields equation (128).

APPENDIX E: PROOF OF THEOREM 7.1

By setting Kim=0, it follows that A	 m=Am. Thus the Lyapunov equation (48) can be
rewritten as

AmQm+QmAT
m+D	 mD	 T

m=0, (193)

and the nijth 2×2 diagonal sub-block Qm[ij] of Qm is given by

Am[ij]Qm[ij]+Qm[ij]AT
m[ij]+Vij=0, (194)
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where

Vij,$00 0
a2

ij%. (195)

Solving equation (194) and using equation (33) yields

Qm[ij]=G
G

G

K

k

a2
ij

4zijvij

0

0
a2

ij

4zijvij

G
G

G

L

l
=$Eth

ij

0
0

Eth
ij %. (196)

Thus,

Eth
ij =1

2[Qm(2nij−1,2nij−1)+Qm(2nij,2nij)]. (197)

On the other hand, from equation (115), Ebl
ij in equation (137) is given by

Ebl
ij =

1
2$v2

c,ij

v2
ij
Q	 m(2nij−1,2nij−1)+Q	 m(2nij,2nij)%. (198)

Subtracting equation (198) from equation (197) yields

E
 ij=
1
2 &(Qm−Q	 m)(2nij−1,2nij−1)+(Qm−Q	 m)(2nij,2nij) −

b2
ij s

r

p=1

p$i

Kip

v2
ij

Q	 m(2nij,2nij)', (199)

while subtracting equation (48) from equation (193) and setting Q
 =Qm−Q	 m yields equation
(140). Finally, by substituting Q
 into equation (199) we obtain equation (139).

APPENDIX F: PROOF OF PROPOSITION 9.1

Using equation (162), it follows that

(Zm(jv)+Lm(jv))−1=(Z(jv)+�Lm(jv)�)−1

=[Z(jv)(I+Z−1(jv)�Lm(jv)�)]−1

=(I+Z−1(jv)�Lm(jv)�)−1Z−1(jv)

=(I−Z−1(jv)�Lm(jv)�)Z−1(jv)+O(v),

which, with equations (15), (18) and (25), yields

(Zm(jv)+Lm(jv))−1
ijpq=

(1/jv)kijpq

ẑij(jv)ẑpq(jv)
+O(v)ijpq . (200)

Using the integral formulas given in references [37,38], it follows that

sijpq=g
a

−a

dijpq(v)dv

=
1
p
cijcpqg

a

−a

=[(Zm(jv)+Lm(jv))−1]ijpq =2dv
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=
cijcpq

p g
a

−ab (1/jv)kijpq

ẑij(jv)ẑpq(jv)b
2

dv+
cijcpq

p g
a

−a

d
 ijpq(jv)dv

=
k2

ijpq(cij+cpq)
(v̂2

ij−v̂2
pq)2+(cij+cpq)(cijv̂

2
pq+cpqv̂

2
ij)

+
cijcpq

p g
a

−a

d
 ijpq(jv)dv,

which proves equation (164).

APPENDIX G: PROOF OF PROPOSITION 10.1

For i=1,...,r and j=1,...,ni , let Dvij denote disjoint frequency bands such that

lim
zij:0gDvij

1
zij(jv)

dv=g
a

−a

1
zij(jv)

dv. (201)

Furthermore, since K{im}:0 implies that L(jv)+Zs(jv):Zs(jv) and
Lm(jv)+Zm(jv):Zm(jv), it follows from equations (31), (63), and (93) that

lim
Ki{m}:0

zi{j}:0

P
 i= lim
Ki{m}:0

zi{j}:0

1
2pg

a

−a

(Ti(jv)T*i (jv)[L(jv)+Zs(jv)]−*(i,i)

−s
ni

j=1

[DmDT
m(Lm(jv)+Zm(jv))−*]ijij)dv

= lim
zi{j}:0

1
2pg

a

−a

(Ti(jv)T*i (jv)zi(jv)−*−s
ni

j=1

[DmDT
mZm(jv)−*]ijij)dv

= lim
zi{j}:0

1
2pg

a

−a$zi(jv)s
ni

j=1

aijbij

zij(jv)
z*i (jv) s

ni

j=1

aijbij

z*ij (jv)
z−*i (jv)−s

ni

j=1

a2
ij

z*ij (jv)%dv

= lim
zi{j}:0

1
2pg

a

−a$0 s
ni

j=1

b2
ij

zij(jv)1
−1

s
ni

j=1

aijbij

zij(jv)
s
ni

j=1

aijbij

z*ij (jv)
−s

ni

j=1

a2
ij

z*ij (jv)%dv

=
1
2p

s
ni

j=1gDvij
$0 s

ni

j=1

b2
ij

zij(jv)1
−1

s
ni

j=1

aijbij

zij(jv)
s
ni

j=1

aijbij

z*ij (jv)
−s

ni

j=1

a2
ij

z*ij (jv)%dv

=
1
2p

s
ni

j=1gDvij
$ a2

ij

z*ij (jv)
−

a2
ij

z*ij (jv)%dv

=0.
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APPENDIX H: PROOF OF PROPOSITION 10.2

As K{im}:0, it follows that Q	 m:Qm, where the diagonal elements of Qm are given by
equation (196). Furthermore, since disturbances entering different structures are mutually
uncorrelated, it follows that modal coherence does not occur between modes of different
structures. Hence the 2×2 (nip ,niq) off-diagonal sub-block of Qm satisfies

Am[ip]Qm[ipiq]+Qm[iq]AT
m[iq]+Vipq=0, i=1,...,r, p,q=1,...,ni , (202)

where

Vipq,$00 0
aipaiq%. (203)

Solving equation (202) in closed form yields

Qm[ipiq],G
G

G

K

k

2vipviq(vip+viq)aipaiq

D
zij

viq(v2
ip−v2

iq)aipaiq

D

vip(v2
q−v2

ip)aipaiq

D
2vipviq(vip+viq)aipaiq

D
zij

G
G

G

L

l
, (204)

where

D,(v2
ip−v2

iq)2+32v2
ipv

2
iqz

2
ij+16vipviqz

2
ij(v2

ip+v2
iq).

Furthermore, it can be shown that

(E−1/2
0 QmE−1/2

0 )[ipiq]=E−1/2
0[ipip]Qm[ipiq]E1/2

0[iqiq]. (205)

By substituting Qm[ipiq] given by equation (204) into equation (205) and letting z{ij}:0, we
obtain

lim
K{im}:0

z{ij}:0

(E−1/2
0 Q	 mE0)−1/2

[ipiq] = lim
z{ij}:0

(E−1/2
0 QmE−1/2

0 )[ipiq]=I. (206)

Thus, equation (172) follows immediately from equations (196) and (206).

APPENDIX I: PROOF OF PROPOSITION 10.3

By using Q	 Inc given by equation (101) in Lemma 5.1, we obtain

lim
Ki{m}:0

Pd
ij= lim

Ki{m}:0
[−(CmdCm1Q	 IncCT

m1)ijij+P
 Coh,ij ]. (207)

Next, by using equation (101), note that K{im}:0 implies that Q	 Inc:Q	 Inc,0, which satisfies

0=AmQ	 Inc,0+Q	 Inc,0AT
m+Inc[Swmwm]. (208)

By using the energy co-ordinates defined by equation (115) it follows that

− lim
Ki{m}:0

(CmdCm1Q	 IncCT
m1)ijij=−(CmdCm1Q	 Inc,0CT

m1)ijij=−a2
ij/2. (209)
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Therefore,

lim
Ki{m}:0

Pd
ij=−a2

ij/2+ lim
Ki{m}:0

P
 Coh,ij . (210)

On the other hand, by calculating Pe
ij directly from equation (183) yields

lim
Ki{m}:0

Pe
ij=a2

ij/2. (211)

By using equations (210), (211), limKi{m}:0Pc
ij=0, and equation (51), we obtain

0= lim
Ki{m}:0

(Pd
ij+Pe

ij)=−a2
ij/2+ lim

Ki{m}:0
P
 Coh,ij+a2

ij/2= lim
Ki{m}:0

P
 Coh,ij . (212)

It now follows from equation (111) that limKi{m}:0P
 Coh,i=limKi{m}:0 s
ni

j=1

P
 Coh,ij=0.


