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a b s t r a c t

The contribution of this paper is a framework for relating butterfly-shaped hysteresis maps to simple
(single-loop) hysteresis maps, which are typically easier to model and more amenable to control design.
In particular, a unimodal mapping is used to transform simple loops to butterfly loops. For the practically
important class of piecewise monotone hysteresis maps, we provide conditions for producing butterfly-
shaped maps and examine the properties of the resulting butterflies. Conversely, we present conditions
under which butterfly-shaped maps can be converted to simple piecewise monotone hysteresis maps
to facilitate hysteresis compensation and control design. Examples of a preloaded two-bar linkage
mechanism and a magnetostrictive actuator illustrate the theory and its utility for understanding,
modeling, and controlling systems with butterfly-shaped hysteresis.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hysteresis is a property of many nonlinear systems where the
output-versus-input graph forms a nontrivial loop in the steady
state, when the input varies periodically at an asymptotically low
frequency (i.e., quasi-statically). Here a nontrivial loop means a
loop with nonvanishing interior. In this paper, we refer to the
aforementioned input–output loop as the hysteresis map of the
system. The underlying mechanism that gives rise to hysteresis is
multistability, which refers to the existence of multiple attracting
equilibria. Under quasi-static excitation, the state of the system is
attracted to different equilibria depending on the direction of the
input (Bernstein, 2007).

Hysteretic systems arise in a vast range of applications,
such as ferromagnetics, smart materials, biological systems, and
aerodynamics (Cross, Grinfeld, & Lamba, 2009; Iyer & Tan, 2009;
Leang, Zou, & Devasia, 2009; Oh, Drincic, & Bernstein, 2009; Tan
& Iyer, 2009). Modeling and control of hysteresis is an area of
significant interest to the controls community (Chen, Hisayama, &
Su, 2009; Tan & Baras, 2004;Wang & Su, 2006;Wen & Zhou, 2007).
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In some applications (e.g., a thermostat), the input–output map is
independent of the frequency of excitation, and thus identical to
the hysteresis map. In most applications, however, the dynamical
system response depends on the frequency of excitation, and thus
the input–outputmap is frequency-dependent and approaches the
hysteresismaponly as the frequency of excitation approaches zero.
For details, see Oh and Bernstein (2005). In the present paper, we
consider the system operating at asymptotically low frequency,
ignore the transient response, and focus only on the hysteresis
map, that is, on the periodic steady-state response under a quasi-
static input.

The present paper focuses on butterfly-shaped hysteresismaps,
which arise in many applications, such as mechanics, optics, and
smart materials (Davi, 2001; Ebine & Ara, 1999; Li & Weng, 2001;
Sahota, 2004). A hysteresis map is a butterfly when it consists of
two loops of opposite orientation. In some applications, the shape
of the hysteresis map is reminiscent of butterfly wings, which
explains the terminology.

The contribution of this paper is a framework that relates
butterfly-shaped hysteresis maps to simple (single-loop) hys-
teresis maps, which are easier to model and more amenable to
control design. In particular, unimodalmappings are used to trans-
form simple loops to butterfly loops. For piecewise monotone hys-
teresis maps, we provide conditions on the unimodal functions for
producing butterfly-shaped maps and examine the properties of
the resulting butterflies. Conversely, we present conditions under
which butterfly-shaped maps can be converted to simple piece-
wise monotone hysteresis maps to facilitate hysteresis compensa-
tion and control design.

Although butterfly hysteresis maps are widely observed in the
literature, we are not aware of any prior explanations of the
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significance or origin of the characteristic shape of these maps.
The proposed framework can be used to better understand and
model dynamical systems involving butterfly-shaped hysteresis.
To illustrate this point, we consider the preloaded two-bar linkage,
which is a classical example of elastic instability (Simitses, 1967).
The hysteretic nature of this mechanism is studied by Padthe,
Chaturvedi, Bernstein, Bhat, andWaas (2008),where the hysteresis
map is shown to be a simple closed curve in terms of the force
input and linkage joint displacement output. In the present paper,
we show that if we take the displacement of the spring-loaded
mass as output, then the resulting hysteresismap is a butterfly. The
mapping from the joint displacement to the displacement of the
spring-loadedmass can be given explicitly and is clearly unimodal.

The proposed framework can also facilitate control design
for systems demonstrating butterfly-shaped hysteresis maps. By
transforming the butterfly map into a simple hysteresis map,
we can exploit various well-studied hysteresis operators, such
as the Preisach operator and the Prandtl–Ishlinskii (PI) operator
(Brokate & Sprekels, 1996; Janaideh, Mao, Rakheja, Xie, & Su, 2008;
Kuhnen, 2003; Mayergoyz, 2003; Tan & Baras, 2004; Visintin,
1994), and their inverses (Tan & Iyer, 2009) to develop effective
hysteresis compensation and control schemes. We demonstrate
this point by considering the butterfly-shaped hysteresis map for a
magnetostrictive actuator (Tan, 2002). In particular,we show that a
quadratic law rooted in the physics of magnetostrictive materials
serves as a unimodal function for transforming the butterfly into
a simple, piecewise monotone hysteresis map. The latter is then
modeled with a generalized PI operator for inverse hysteresis
compensation.

The contents of this paper are as follows. In Section 2,
we describe a framework for mapping simple hysteresis maps
into butterflies with unimodal functions, and present conditions
that allow such transformations in cases involving piecewise
monotone hysteresis maps. In Section 3, we consider a preloaded
two-bar linkage mechanism, where the simple hysteresis loop
between the linkage joint displacement and the force input is
converted into a butterfly loopwhen a kinematics-based unimodal
mapping is applied. In Section 4, the example of modeling and
compensating magnetostrictive hysteresis is presented. Finally,
concluding remarks are provided in Section 5. A preliminary
version of some of the results of this paper is given in Drinčić and
Bernstein (2009).

2. Transformation between simple and butterfly-shaped hys-
teresis maps

A hysteresis map is called simple, if it is a simple (oriented)
closed curve, which divides the plane into three sets, namely,
the interior region, the exterior region, and the curve itself
(Guillemin & Pollack, 1974). Throughout this paper, let C be a
simple hysteresis map and let [x0, x1] × [y0, y1] be the smallest
rectangle with sides parallel to the x- and y-axes containing C. We
assume that, for each x ∈ (x0, x1), there exists a unique pair of
points (x, ymin(x)), (x, ymax(x)) ∈ C such that ymin(x) < ymax(x).
The following definitions are needed.

Definition 1. A continuous map f : [y0, y1] → R is ∧- unimodal
if there exists yc ∈ (y0, y1) such that f is increasing on [y0, yc) and
decreasing on (yc, y1]. f is ∨-unimodal if there exists yc ∈ (y0, y1)
such that f is decreasing on [y0, yc) and increasing on (yc, y1]. f is
unimodal if it is either ∨-unimodal or ∧-unimodal.

Definition 2. A butterfly hysteresis map, or a butterfly, is the
union of two oriented simple closed curves with disjoint interiors,
a single point of intersection, and opposite orientation, such that
the curves are contained in the rectangle [x0, x1] × [q0, q1] and for
each x ∈ (x0, x1), the intersection of the curves and the vertical line
through x consists of at most two points.

For f : [y0, y1] → R, define f (C) , {(x, f (y)): (x, y) ∈ C}. The
following result is immediate.

Lemma 3. Let f : [y0, y1] → R be unimodal. Then C ′
= f (C) is

a butterfly if and only if there exist disjoint open intervals I1 and I2
such that [x0, x1] = cl(I1) ∪ cl(I2), and such that, for all x ∈ I1 and
all x′

∈ I2,

[f (ymin(x)) − f (ymax(x))][f (ymin(x′)) − f (ymax(x′))] < 0. (1)

We use the notation cl to denote the closure of a set. Note that
cl(I1)∩cl(I2) is a single point. From Lemma 3, it is straightforward
to establish the following.

Corollary 4. If a simple hysteresis map C is left–right symmetric or
up–down symmetric, then there exists no unimodal function f , such
that C ′

= f (C) is a butterfly.

Next, we focus on a special class of simple hysteresis maps that
are piecewise monotonic. This type of hysteresis maps is common
in smart materials.

Definition 5. Let C be a simple hysteresis map such that, for
x = x0, there exists a unique point (x0, y) ∈ C and, for x = x1,
there exists a unique point (x1, y) ∈ C. C is called piecewise
monotonically decreasing if ymin(x) and ymax(x) are decreasing
functions of x. C is piecewise monotonically increasing if ymin(x)
and ymax(x) are increasing functions of x.C is piecewisemonotonic
if it is either piecewise monotonically decreasing or piecewise
monotonically increasing.

The following lemma is used in the proof of Theorem 7.

Lemma 6. Let S be a closed polygonal region in a plane with vertices
A, B, C,D, labeled consecutively. Let C1 be a continuous curve that
connects A to C and satisfies C1 \ {A, C} ⊂ int(S). Let C2 be a
continuous curve that connects B to D and satisfies C2 \ {B,D} ⊂

int(S). Then C1 ∩ C2 ≠ ∅. If, in addition, there exist coordinate
axes with respect to which C1 is a monotonically increasing (resp.
decreasing) function and C2 is a monotonically decreasing (resp.
increasing) function, then C1 ∩ C2 consists of a single point.

Proof. Because C1 is a continuous curve connecting A to C , it
divides S into two open disjoint regions R1 and R2, where B ∈ R1
andD ∈ R2. Since the curveC2 connects pointsB andD itmust cross
from region R1 to region R2. From the Jordan curve lemma,C2 must
cross the boundary between these regions, that is, the curve C1. It
is straightforward that there exists a unique point of intersection
between C1 and C2 if, with respect to some axes, these curves are
monotonic with opposite monotonicity. �

Theorem 7. Let C be a piecewise monotonic simple hysteresis map.
Furthermore, let f be a ∨-unimodal function with its minimum point
qc(yc) such that yc ∈ (y0, y1) or a ∧-unimodal function with its
maximum point qc(yc), such that yc ∈ (y0, y1). Then C ′

= f (C)
is a butterfly.

Proof. We assume that the map f is ∨-unimodal and that
C is monotonically increasing; the remaining three cases are
analogous. Let J1 = (x0, xc1), where xc1 ∈ (x0, x1) and ymax(xc1) =

yc , and let J2 = (xc2, x1), where xc2 ∈ (x0, x1) and ymin(xc2) = yc .
Note that xc1 < xc2. Because f is ∨-unimodal, f (ya) < f (yb)
for ya, yb ∈ [y0, yc] such that ya > yb, and f (ya) > f (yb) for
ya, yb ∈ [yc, y1] such that ya > yb. Thus, for all x ∈ J1, f (ymax(x)) <
f (ymin(x)), and, for all x ∈ J2, f (ymax(x)) > f (ymin(x)).

Let J3 = [xc1, xc2]. Since C and f are piecewise monotonic,
C1 = {(x, f (ymax(x))) : x ∈ J3} is monotonically increasing and
C2 = {(x, f (ymin(x))) : x ∈ J3} is monotonically decreasing.
Furthermore, it follows from Lemma 6 that C1 ∩ C2 consists of a
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Fig. 1. Illustration of the proof of Theorem 9. The simple hysteresis map C and
points (xmin(yc), yc) and (xmax(yc), yc) are shown in (a). The∨-unimodal map f and
the point (yc , qc) are shown in (b). The butterflymapC ′ and the points (xmin(qc), qc)
and (xmax(qc), qc) are shown in (c).

unique point (x∗, q∗). Now, for all x ∈ I1 = (x0, x∗), f (ymax(x)) <
f (ymin(x)) while, for all x ∈ I2 = (x∗, x1), f (ymax(x)) > f (ymin(x)).
Thus, (1) is satisfied for all x ∈ I1 and all x′

∈ I2, and thus
C ′

= f (C) is a butterfly. �

We now further investigate the properties of the butterfly map
created by applying a unimodal map to a simple hysteresis map C.
The following definition is needed.

Definition 8. Let C be a simple hysteresis map or a butterfly, and
let [x0, x1]×[y0, y1] be the smallest rectangle containingC. A point
(x, y0) ∈ C is a minimum of C. A point (x, y1) ∈ C is a maximum
of C.

The following result, which is not restricted to the class of
piecewisemonotone simple hysteresismaps, is illustrated in Fig. 1.

Theorem 9. Let f : [y0, y1] → R be unimodal and let C be a
simple hysteresis map defined on the rectangle [x0, x1] × [y0, y1].
Assume that, for each y ∈ (y0, y1), there exists a unique pair of
points (xmin(y), y), (xmax(y), y) ∈ C such that xmin(y) < xmax(y),
and assume that C ′ , f (C) is a butterfly. If f is ∨-unimodal, then
C ′ has exactly two minima, which are equal. Alternatively, if f is ∧-
unimodal, then C ′ has exactly two maxima, which are equal.

Proof. We assume that the map f is ∨-unimodal; the ∧-unimodal
case is analogous. Let [x0, x1] × [qc, q1] be the smallest rectangle
containing C ′. Let yc ∈ (y0, y1) satisfy qc = f (yc). By
Definition 1, yc is the global minimizer of f . By assumption, there
exist exactly two points (xmin(yc), yc) and (xmax(yc), yc) ∈ C
such that xmin(yc) < xmax(yc). Applying f to these points yields
(xmin(yc), f (yc)), (xmax(yc), f (yc)) ∈ C ′. Hence these points are the
minima of the curve C ′ and, since xmin(yc) ≠ xmax(yc), it follows
that these points are distinct. Thus, the butterflymapC ′ has exactly
two minima of equal value qc . �

The following theorem is related to Theorem 9 and represents
the dual of Theorem 7, and informs when a butterfly can be
transformed into a simple, piecewise monotone hysteresis map.

Theorem 10. Let C ′ be a butterfly and let [x0, x1] × [q0, q1] be
the smallest rectangle containing C ′, with sides parallel to the x-
and y-axes. Decompose C ′ as the union of two branches, namely,
branch B+ associated with increasing x and branch B− associated
with decreasing x. Furthermore, define g+: [x0, x1] → [q0, q1] and
g−: [x0, x1] → [q0, q1], such that B+ and B− are the graphs of g+

and g−, respectively.
(a) Assume that C ′ has exactly two minima (xa, qc), (xb, qc), with
x0 < xa < xb < x1 and qc = q0. Furthermore, assume that g+

(resp., g−) is decreasing on [x0, xb] and increasing on [xb, x1], and
g− (resp., g+) is decreasing on [x0, xa] and increasing on [xa, x1].
Then, for each ∨-unimodal function f with minimum value qc , there
exist a piecewise monotonically increasing simple hysteresis map C1
with counterclockwise (resp., clockwise) orientation and a piecewise
monotonically decreasing simple hysteresis map C2 with clockwise
(resp., counterclockwise) orientation, such that C ′

= f (C1) = f (C2).
(b) Assume that C ′ has exactly two maxima (xa, qc), (xb, qc), with
x0 < xa < xb < x1 and qc = q1. Furthermore, assume that g+

(resp., g−) is increasing on [x0, xb] and decreasing on [xb, x1], and
g− (resp., g+) is increasing on [x0, xa] and decreasing on [xa, x1].
Then, for each ∧-unimodal function f with maximum value qc , there
exist a piecewise monotonically increasing simple hysteresis map C1
with counterclockwise (resp., clockwise) orientation and a piecewise
monotonically decreasing simple hysteresis map C2 with clockwise
(resp., counterclockwise) orientation, such that C ′

= f (C1) = f (C2).

Proof. We prove the case in (a) where g+ is decreasing on [x0, xb]
and increasing on [xb, x1], and g− is decreasing on [x0, xa] and
increasing on [xa, x1], as illustrated in Fig. 2(a). The other case in
(a) and the two cases in (b) can be proven analogously. Let f be a
∨-unimodal function, such that f (yc) = qc for some yc , and

f (y) =


f−(y), if y ≤ yc,
f+(y), if y ≥ yc,

where the continuous functions f− and f+ are strictly decreasing
and increasing, respectively (Fig. 2(b)). Let f −1

− and f −1
+ denote

the inverse functions of f− and f+, respectively, as illustrated in
Fig. 2(c). Note that f −1

− is continuous and strictly decreasing, and
f −1
+ is continuous and strictly increasing, with yc = f −1

− (qc) =

f −1
+ (qc). Define a curveC1 on the plane as the union of four directed
segments that are the corresponding graphs of

y = f −1
−

(g+(x)) as x increases from x0 to xb, (2)

y = f −1
+

(g+(x)) as x increases from xb to x1, (3)

y = f −1
+

(g−(x)) as x decreases from x1 to xa, (4)

y = f −1
−

(g−(x)) as x decreases from xa to x0, (5)

as illustrated in Fig. 2(d). Since f −1
− (g+(xb)) = f −1

− (qc) = yc =

f −1
+ (g+(xb)), f −1

+ (g+(x1)) = f −1
+ (g−(x1)) (from continuity of C ′),

f −1
+ (g−(xa)) = yc = f −1

− (g−(xa)), and f −1
− (g−(x0)) = f −1

− (g+(x0))
(from continuity of C ′), C1 is continuous and closed.

Define y = h+(x) on [x0, x1] using (2) and (3), and define
y = h−(x) on [x0, x1] using (4) and (5). Namely, h+ and h−

represent the two branches of C1 associated with increasing and
decreasing x, respectively. Using the properties of f −1

± and g±, it
can be shown that both h+ and h− are strictly increasing functions
of x. Furthermore, for each x ∈ (x0, x1), h+(x) < h−(x). Therefore,
C1 is a simple hysteresis map with counterclockwise orientation.
Finally, f (C1) can be defined as

f−(y) = f−(f −1
−

(g+(x))) = g+(x) as x increases from x0 to xb, (6)

f+(y) = f+(f −1
+

(g+(x))) = g+(x) as x increases from xb to x1, (7)
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Fig. 2. Illustration of the proof of Theorem 10. A butterfly C ′ is shown in (a), and a
∨-unimodal function f is shown in (b). The inverse functions of f+ and f− in (b) are
shown in (c). The constructed simple hysteresis map C is shown in (d).

f+(y) = f+(f −1
+

(g−(x))) = g−(x) as x decreases from x1 to xa, (8)

f−(y) = f−(f −1
−

(g−(x))) = g−(x) as x decreases from xa to x0, (9)

and, thus, C ′
= f (C1).

Following the same line of reasoning as above, it can be proven
that C2 is a piecewise monotonically decreasing, simple hysteresis
map with clockwise orientation, and C ′

= f (C2). �

In Sections 3 and 4, we show physical examples where the
butterfly hysteresis loops satisfy the assumptions of Theorem 10,
and the unimodal functions linking the butterfly and simple loops
are given by the physical models. If a butterfly hysteresis loop
satisfies the assumptions of Theorem 10, and yet a proper physical
model is not available, we can choose an arbitrary ∨-unimodal
(∧-unimodal, resp.) function f with a minimum (maximum,
resp.) value of qc as shown. Such an f guarantees successful
transformation of the butterfly loop into a simple, piecewise
monotone loop. Theproof of Theorem10 is constructive, and thus it
not only establishes the claims, but also illustrates how the simple
loop is constructed with the chosen f . To illustrate, we transform
the butterfly loop shown in Fig. 3(a) into a simple loop using the
two∨-unimodal functions shown in Fig. 3(b). The resulting simple
loops are shown in Fig. 3(c). Note that functions f1 and f2 have the
same minimum value qc , but at two different values of y, namely
yc and yc′ .

3. Hysteresis in a preloaded two-bar linkage mechanism

In this section, we analyze the dynamics of a two-bar linkage
with joints P,Q , and R and preloaded by a spring with stiffness
constant k as shown in Fig. 4. The purpose of this discussion is
to show that we can transform a simple hysteresis map into a
butterfly through aunimodalmap. Additional details of derivations
related to the simple hysteresis map are given by Padthe et al.
(2008).

A constant vertical force F is applied at Q , where the two bars
are joined by a frictionless pin. Let θ denote the counterclockwise
angle that the left bar makes with the horizontal, and let q denote
the distance between the joints P and R. When F = 0, the linkage
has three equilibrium configurations. In the first two, θ and q are
±θ0 and q0 = 2l cos θ0, respectively, and the spring k is relaxed.
For the third equilibrium, both bars are horizontal with θ = 0.

Fig. 3. Transformation of a butterfly loop into a simple loop by using two different
∨-unimodal functions. (a) shows the butterfly loop, (b) shows the ∨-unimodal
functions f1(y) =

1
3 (y+0.5)2−0.5 (solid) and f2(y) = 0.5(y+0.5)2−0.7 (dashed).

Applying the twodifferent∨-unimodal functions f −1
1 (solid) and f −1

2 (dashed) to the
butterfly loop yields the two distinct simple butterfly loops shown in (c).

Fig. 4. A preloaded two-bar linkage with a vertical force F acting at the joint Q .
The word ‘preloaded’ refers to the presence of the spring with stiffness constant k,
which is compressed when the two-bar linkage is in the horizontal equilibrium.

Note that y is the vertical distance from the joint Q to the
horizontal equilibrium, and q is the horizontal distance from joint
P to joint R as shown in Fig. 4. If θ is known, then y and q can be
determined from

y = l sin θ, q = 2l cos θ, (10)

respectively.
The equations of motion for the preloaded two-bar linkage are

given by
2ml2 +

9
8
mbar l2


sin2 θ +

5
24

mbar l2


θ̈

+


2ml2 +

9
8
mbar l2


(sin θ)(cos θ)θ̇2

+ 2kl2(cos θ0 − cos θ)(sin θ)

+ 2cl2(sin θ)2θ̇ = −
l cos θ

2
F , (11)

where mbar is the inertia of each bar. Using (10), the nonlinear
dynamics (11) can be expressed in terms of the displacement q or y.

We use (11) and (10) to simulate the linkage dynamics under
the periodic external force F = sin(0.001t) N with parameter
values k = 1 N/m, m = 1 kg, c = 1 N − s/m, mbar =

0.5 kg, and l = 1 m. As shown in Fig. 5(a), there exists a
nontrivial clockwise hysteresis map from the vertical force F to
the vertical displacement y at low frequencies. The presence of
a nontrivial loop at asymptotically low frequencies constitutes
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Fig. 5. Input–output maps of the two-bar linkage model (11) for F = sin(0.001t).
(a) shows the hysteresis map with the output variable y, while (b) shows the
butterfly hysteresis map with the output variable q. The parameter values are
k = 1 N/m,m = 1 kg, c = 1 N − s/m,mbar = 0.5 kg, and l = 1 m.

a b

Fig. 6. Comparison of the equilibrium sets E and the hysteresis maps for the
preloaded two-bar linkage. The output variable is y in (a) and q in (b). The hysteresis
map is a subset of E except for the vertical segments at the bifurcation points. The
parameter values are given in Fig. 5(a) with F(t) = sin(0.001t) N.

hysteresis. Fig. 5(b) shows the input–output map between the
vertical force F and horizontal displacement q. At asymptotically
low frequencies this input–output map is a symmetric butterfly
with two loops of opposite orientation.

The equilibrium set E for the preloaded two-bar linkage is the
set of points (F , y) that satisfy

y


1 −

l cos θ0
l2 − y2


=

F
4k

. (12)

Alternatively, the set E can be expressed as the set of points
(F , q) that satisfy

±


(4l2 − q2)


1 −

2l cos θ0

q


=

F
2k

. (13)

The equilibrium sets E defined by (12)–(13) are shown in Fig. 6.
The corresponding hysteresis maps (as the force varies quasi-
statically) are also shown in Fig. 6. The set E is useful for analyzing
the hysteresis of the preloaded two-bar linkage. It is shown in Oh
and Bernstein (2005) that a system that exhibits hysteresis has
a multi-valued equilibrium map and that the hysteresis map is a
subset of the equilibriummap. The only parts of the hysteresismap
that do not belong to the equilibria set are the vertical sections.

Thus the hysteresis map is a simple closed curve when the
output variable is y and a butterfly when the output variable is q.
Furthermore, we note that the butterfly in Fig. 5(b) satisfies the
conditions of Theorem 10(b), which implies that f should be ∧-
unimodal. From the kinematics equation (10)we find the unimodal
map f =


4(l2 − y2) shown in Fig. 7, which is indeed∧-unimodal

and transforms the simple hysteresis map into a butterfly.

4. Hysteresis in a magnetostrictive actuator

In this section, we present butterfly hysteresis data obtained
from a magnetostrictive actuator. Based on material physics, we
find the unimodal function that relates the butterfly hysteresis
map to a simple hysteresis map that is piecewise monotone.

Fig. 7. The ∧-unimodal mapping function f (y) =

4(l2 − y2), which transforms

the simple hysteresis map of the buckling mechanism into a butterfly.

Current I [A]

Fig. 8. Experimental displacement-to-current butterfly hysteresis in a Terfenol-D
magnetostrictive actuator (Tan, 2002).

The latter can be modeled with a hysteresis operator such as
generalized Prandtl–Ishlinskii model, which can then be inverted
for compensation of the hysteresis effect in the magnetostrictive
actuator.

A Terfenol-Dmagnetostrictive actuatormanufacturedbyEtrema
Products, Inc. exhibits displacement-to-current butterfly hystere-
sis shown in Fig. 8. We note that the observed butterfly has two
minima that are approximately equal, and can be taken as satisfy-
ing assumptions of Theorem 10. In order to transform the butter-
fly into a simple hysteresis map, we adopt the following from Tan
(2002).

Definition 11. Let ∆L be the change in the length of the magne-
tostrictive rod, and let Lrod be the length of the demagnetized rod.
Then the magnetostriction in the rod is

λ ,
∆L
Lrod

. (14)

Based on the physics of magnetostrictive materials (Brown,
1966) the magnetostriction λ and the magnetization M along the
rod direction can be approximately related through a quadratic law
stated in Tan (2002)

λ = a1M2
+ b1, (15)

where a1 =
λs
M2

s
, b1 is a constant, λs is the saturation

magnetostriction, and Ms is the saturation magnetization. The
input current I and the magnetic field H are related through

H = c0I + Hbias, (16)

where c0 is the coil factor and Hbias is the bias field produced by a
dc current. Actuator specifications state thatMs = 7.87×105 A/m,
Lrod = 5.13 × 10−2 m, c0 = 1.54 × 104 m−1; the remaining
parameters are experimentally identified to be λs = 1.313× 10−3

and Hbias = 1.23 × 104 A/m.
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a b

Fig. 9. Transformation from the butterfly to a simple closed curve. The∨-unimodal
relationship between M and λ obtained from (17) is shown in (a). (b) shows the
simple hysteresis curve between the magnetic field H and magnetization M along
the rod. A vertical jump due to unequal local minima of the butterfly map is visible
at the point where the map crosses the H-axis.

Combining Definition 11 with (15) and (16), we transform the
butterfly curve in Fig. 8 into a simple hysteresis curve between the
magnetic field H and themagnetization along the rodM . Using the
unimodal mapping (15), we obtain

M = ±


λ − b1

a1
. (17)

The sign of M is chosen such that the H–M hysteresis curve is
piecewisemonotonically increasing, as dictated by the physics. The
resulting plot of λ versus M is shown in Fig. 9(a). Eq. (16) is used
to calculate the values of the magnetic field H corresponding to
the input current. The resulting H–M hysteresis map is shown in
Fig. 9(b). The vertical jump in the hysteresismap at the pointwhere
it crosses the x-axis is due to the fact that, because ofmeasurement
error, the two local minima of the butterfly map in Fig. 8 are
not exactly equal. However, the experimental data approximately
meet the assumptions of Theorems 9 and 10.

The piecewise monotone hysteresis map in Fig. 9(b) can be
modeled with various operators, such as the Preisach operator and
the Prandtl–Ishlinskii (PI) operator. As an example, we use the
generalized PI operator given in Janaideh et al. (2008) and shown
to accurately characterize hysteresis inmagnetostrictive actuators.
Since the generalized PImodel has nonlocalmemory, it can be used
to model minor and major hysteresis loops and thus can easily be
fit and inverted. The generalized PI model consists of generalized
play operators that are defined by the input u, threshold r , and
envelope function γ . As in Janaideh et al. (2008), we use the
envelope function γ = c0 tanh(c1u + c2) + c3 and the density
function p(r) = ρe−τ r . We assume r = βj, where j = 1, . . . , 100,
and weminimize the error between the data and the model with a
least squares optimization routine. The output of the optimization
is summarized in Table 1.

Comparison of the output of the identified generalized PImodel
with parameters in Table 1 and experimental data in Fig. 9(b)
is shown in Fig. 10(a). Using (14)–(16), we convert the output
of the generalized PI model from Fig. 10(a) into a butterfly
hysteresis curve. The comparison of this butterfly map and the
experimentally measured data from Fig. 8 is shown in Fig. 10(b).

In the example above, we focused on only the major hysteresis
loop. Ferromagnetic materials and many other smart materials
demonstrate minor loops inside major loops. The same unimodal
function used to reduce a major butterfly loop to a simple loop can
be used to reduceminor butterfly loops without needing to choose
different unimodal functions for the transformation ofminor loops
within a major loop. Conversely, applying a unimodal function to
a piecewise monotone hysteresis operator that generates minor
loopswill lead to a hysteresis operator capable of generatingminor
butterfly loops.

Table 1
Identified parameters of the generalized PI model from the least squares
optimization routine.

Parameter Value Parameter Value

c0 4.0904 c1 0.777m/A
c2 −0.066 c3 −0.269
ρ 4.640 A/m τ −0.191
q 11.961 A/m β 1.139

Fig. 10. Comparison of the experimental data and the simulated output of the PI
model. (a) compares the experimental data shown in Fig. 9(b) and the output of the
generalized PImodel with parameters defined in Table 1. (b) compares the butterfly
map obtained from experimental data in Fig. 8 and the butterfly map obtained by
applying (15) and (16) to the output of the generalized PI model with parameters
defined in Table 1.

5. Conclusions

We studied the relationship between simple and butterfly
hysteresis maps and showed that they can be linked through
unimodal functions in almost all cases. Depending on the context,
such unimodal functions can be given by kinematics or underlying
physics or can be chosen to facilitate analysis or control design.
In particular, the proof of Theorem 9 provides a procedure to
construct the simple hysteresis map given a butterfly and a chosen
unimodal function. Two examples involving a nonlinear buckling
system and a smart material actuator were used to illustrate the
utility of the proposed framework in understanding,modeling, and
compensating for butterfly hysteresis.

In the example of magnetostrictive hysteresis, the simpleM–H
hysteresis map obtained from the butterfly carries physical mean-
ing (ferromagnetic hysteresis), and can in theory be experimentally
validated using themeasurement ofM . However, in general, when
we reduce a butterfly map to a simple hysteresis map for control
purposes, the latter does not have to carry specific physical inter-
pretation, and thus no validation is necessary.

Future work includes the extension of these results to
include hysteretic unimodal maps and multibutterflies. The use of
hysteretic unimodal maps may give more flexibility in the types of
butterflies that can be obtained froma given simple hysteresismap
and enable easier fits to experimental data in control applications.
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