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Abstract 

In this paper, we present a new guaranteed cost bound motivated by the maximum entropy equation. This bound is of 
interest due to its sensitivity to skew-symmetric structured uncertainty, which is difficult to address by means of 
conventional guaranteed cost bounds. 
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1. Introduction 

Although considerable research has been devoted to the robustness problem for linear uncertain systems, 
there remain important unsolved problems of intense interest. These problems include the determination of 
nonconservative robust stability and performance bounds for systems involving possibly repeated multiple 
uncertainty blocks that may be real or complex. A comprehensive review of the multiple complex block case 
is given in [9], while bounds for systems involving both real and complex blocks are given in [6]. 

From a Lyapunov function point of view, robust stability and performance can be guaranteed by means of 
a fixed Lyapunov function whose existence is equivalent to a small-gain condition [8]. As shown in [-3], this 
Lyapunov function is one of a large class of guaranteed cost bounds whose origin can be traced to the 
original work of Chang and Peng [-5], The best-known members of this class of bounds are the absolute value 
bound [,5], the linear bound [,1, 2, 7], and the quadratic bound [-8, 10]. A useful benefit of this Lyapunov 
function framework is its applicability to robust controller synthesis [-2, 10]. 

A valuable test of the effectiveness of a given robustness technique is to examine its ability to predict 
stability and performance in simple cases in which the robustness is readily apparent. We have in mind, for 
example, the case of a dissipative matrix A (satisfying A + AT< 0) and a skew-symmetric matrix At 
(satisfying AI + A~ x = 0). In this case it can readily be seen that A + a lAx  is asymptotically stable for all real 
~ .  Nevertheless, this problem is difficult to address by means of conventional guaranteed cost bounds, which 
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often yield conservative estimates of robust stability and performance. This point was the motivation for [4], 
where a "maximum entropy"-type Lyapunov function was used to (correctly) predict unconditional asymp- 
totic stability. 

The goal of the present paper is to improve upon the results of [4] in several ways. Like the results of [4], 
the Lyapunov bounds proposed herein are motivated by the double-commutator modification of the 
Lyapunov equation that arises in the maximum entropy control approach as applied to skew-symmetric 
uncertainty. These modifications have the useful property that in the limit of high uncertainty the solution of 
the modified Lyapunov equation commutes with the uncertainty structure [4]. However, whereas the 
construction of the Lyapunov bound in [4] involved both a modified Lyapunov equation and an auxiliary 
term (called Po in [4]), the Lyapunov bound in the present paper involves only a modified Lyapunov 
equation. The elimination of the auxiliary term is desirable since it yields a simpler framework for both 
analysis and synthesis. 

Another advantage of the Lyapunov bound given in this paper is its generality in applying to arbitrary 
nominal dynamics matrices and arbitrary uncertainty structures. Thus, the results given herein address the 
problem of dissipative nominal dynamics and skew-symmetric uncertainty as a special case of a much 
broader class of problems. This extension represents a significant improvement over the results of [4] which 
were limited to the dissipative/skew-symmetric case. 

The contents of the paper are as follows. In Section 2 we state the robust stability and performance 
problem. Then, using the notation and terminology of [3, 4], we present the new bound (Proposition 2.1) and 
then apply it to robust stability and robust Hz performance (Theorem 2.1). Connections between this bound 
and the absolute value bound of [5] as well the maximum entropy bounds of [4] are discussed. In Section 3 
numerical examples are given to illustrate properties of the new bound. 

Notation 
lr 
y , ,  5Q. 
~n×n 

[V, G] 
IXl 

r × r identity matrix, 
n × n nonnegative-definite matrices, symmetric matrices, 
n × n real matrices, 
FG - GF, 

. I x  2, where X • v 

2. Robust stability and performance problems 

Let q / c  •"×" denote a set of perturbations AA of a given nominal dynamics matrix A e ~"×". It is 
assumed that A is asymptotically stable and that 0 • q/ 

Robust stability problem. Determine whether the linear system 

~(t) = (A + AA)x(t), t • [0, vo), (1) 

is asymptotically stable for all A A • q/. 
Robust performance problem. For the disturbed linear system 

~(t) = (A + AA)x(t)  + Dw(t), t ~ [0, oo), (2) 

z(t) = Ex(t), (3) 

where w(.) is a zero-mean d-dimensional white-noise signal with intensity In, determine a performance 
bound fl satisfying 

J ( q l ) g  sup limsupE{ ]lz(t)llZ,} ~< ft. (4) 
A A ~  t ~  

For convenience define the n × n nonnegative-definite matrices R A ETE and V ~= DD T. The following result 
is immediate. 
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1.emma 2.1. Suppose A + AA  is asymptotically stable for all AA • all. Then 

J(q/ )  = sup tr(Q~AR)= sup tr(PAA V), 
AA~*/ AA ~'i' 

where Qaa • ~ × n  and PA.4 • R~×~ are the unique, nonnegative-definite solutions to 

0 = (A + AA)TQAA + QAA(A + AA) + V 

and 

127 

(5) 

(6) 

o = (,4 + AA)TP~,, + P~,,(A + AA) + n .  (7) 

Proof. See [3]. [] 

In the present paper our approach is to obtain robust stability as a consequence of sufficient conditions for 
robust performance. Such conditions are given by the following result. 

Theorem 2.1. Let t2: X ~ ~ 9 ~n be such that 

AATp  + P A A  ~< t~(P), AA e ~//, P e .A/'n, (8) 

and suppose there exists P e d~ ~ satisfying 

0 = ATe + PA + I2(P) + R. (9) 

Then 

(E, A + AA) is detectable, AA  • all, (10) 

if and only if 

A + AA is asymptotically stable, AA  • all. (11) 

In this case, 

PAA <- P, AA • ql, (12) 

where PAA satisfies (7), and 

J (q l )  <~ tr PV. (13) 

Proof. See [4]. [] 

Here we specialize to the case in which q/ is  given by 

a//&{AA • ~ '× ' :  AA = i=l~ aiA,,[a,,<~6i, i = l  . . . . .  r}, (14) 

where 3i > 0  and the matrices A i •  R ~×~ represent the uncertainty structure. Furthermore, for each 
i = 1 . . . .  , r ,  let Zi be a nonnegative-definite matrix satisfying 

--Zl  ~ Ai + AT ~ Zi. ( 1 5 )  

One choice of Zi is Zi = IA~ + A~I = [(Ai + A~)2] 1/2. Thus, ifA~ is skew symmetric, i.e., A~ + A~ = 0, then we 
set Z~ = 0, so that (15) is satisfed as an equality. 

We now introduce a specific choice of t2(P) which is motivated by the maximum entropy covariance model 
[4]. 
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Propos i t ion  2.1. For i = 1 . . . . .  r, let 6i >~ O, fli, 7i e II¢, fll # O. Then (8) is satisfied with O(P) given by 

+ [ ~62 ~6' 'Y,/fli' Zi ] f2(P) = .-, fl2(ATp + PA,) 2 + I. + V, fl,(A2Tp + 2ATpA, + PA 2) + y2ATA, + (16) i 

i = !  

Proof .  Letting AA e 0//and P e JV n, it follows that 

• . fl2(ATp + PAl) 2 + In + )'ifli(A2Tp + 2ATpAi + PA 2) + 72ATAI + I~,/fl, I 
i = 1  

-- ~ ai(ATp +PAi)  
i 1 

>/ __ fl2i(ATp 4- PAl )  2 71- ~ ]n -F- ];ifli(A2T p Jr- 2AT p A ,  + P A  2) + ?2 A~ A, - ~ - ( A i  + A T) 
i = 1  

r 

- ~ ai(ATiP +PAi)  
i = 1  

= E fli( ATP +PAi)  + yiAi - I. fli(A~P +PAi)  + 71Ai - I,, 
i= 

>~0. [] 

R e m a r k  2.1. As shown in [3] the first two terms of Eq. (16) comprise an upper bound for the absolute value 
bound proposed by Chang and Peng [5], i.e. 

6, I A T P + PA,I <~ f12 (ATp + pA,)2 + ~ I . .  (17) 
i = 1  i = 1  

R e m a r k  2.2. If A~ + A T = 0, i = 1 . . . . .  r, so that Zi = 0, then Q(P) can be written as 

+ [ ] O(P) = ,_, fl2[AT, p]2 + y, fliEA T, EAT, p]] + y2ATAi + I .  , (18) 
i = 1  

which exhibits the double commutator term [A/T, [A T, P]] discussed in [4]. For skew-symmetric uncertainty 
this term is indefinite and has zero trace. In addition, it is shown in [4] that [A T, P] ~ 0 as y~ --* oo, so that 
[AT, p ] 2 ~  0. Consequently, (9) with fJ(P) given by (16) provides a finite performance bound for large 
uncertainty levels 6i. Thus for the case of skew-symmetric uncertainty (9) is nonconservative with respect to 
robust stability. 

3. N u m e r i c a l  e x a m p l e s  

Example 3.1. We consider a lightly damped modal system with uncertainty in the damped natural frequency 
represented by 

A =  --1 --0.005 ' AI = - 1  ' 

where A1 is a skew symmetric. Furthermore, choose 

R =  0.12 2.5 J '  V =  . 

For this example, A + al AI is asymptotically stable for all al ~ ( -oo,  oo), while Fig. 1 shows the worst case 
Hz performance for 0 ~< 61 ~ 2. Applying the guaranteed cost bound of [5], robust stability is predicted only 
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Fig. 1. Comparison of new bound (13), Chang and Peng bound [5], Proposition 4.1 of [4] and actual worst case for a modal matrix 
A with skew-symmetric uncertainty A,. 

for trl e ( - l ,  1). By choosing suitable values of ill and ~1, the new bound (13), however, predicts stability for 
trl e ( -2 ,  2). Although this stability guarantee is also obtainable from Proposition 4.1 of [4], it can be seen 
from Fig. 1 that the new bound (13) provides a less conservative estimate of robust performance. 

4. Conclusions 

We presented a new guaranteed cost bound involving a double commutator in the spirit of the maximum 
entropy-type Lyapunov equation. This bound is sensitive to skew-symmetric uncertainty which is difficult to 
handle using conventional guaranteed cost bounds. 
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