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ABSTRACT
We present a direct discrete-time output-feedback adaptive control algorithm for single-input,
single-output systems that are possibly unstable and nonminimumphase. The plantmodeling infor-
mation is given by impulse response components, and the plant is modelled within the algorithm
by a truncated shifted Laurent series. A shifted Laurent series is a Laurent series at a point different
from the origin in the complex plane and about infinity. The shifted Laurent series is analysed, includ-
ing its convergence and its relationship to other Laurent series. In particular, we provide a technique
for constructing a truncated shifted Laurent series using impulse response components. Numerical
examples show that retrospective cost adaptive control can achieve asymptotic command following
for a class of exponentially unstable, nonminimum-phase systems.

1. Introduction

Adaptive control is motivated by control applications that
are not amenable to reliable modelling prior to opera-
tion. Such systems may involve physical processes that
are either difficult to model or may be subject to unpre-
dictable changes. Although robust control techniques can
be used to account for prior uncertainty, adaptive con-
trollers have the ability to modify the control law in
response to the actual plant dynamics, commands, and
disturbances. Consequently, an adaptive controller can be
viewed as a robust control law that can circumvent the
loss of performance due to prior uncertainty.

The benefits of adaptive control must contend with a
host of challenges that are well documented in the lit-
erature. For example, adaptive control laws are largely
confined to systems that are either full-state feedback,
positive real, or minimum phase (Anderson et al., 1986;
Astrom & Wittenmark, 1994; Ioannou & Sun, 1996;
Narendra & Annaswamy, 1989; Tao, 2003). In addition,
adaptive control laws may lack robustness to noise and
unmodelled dynamics, see Rohrs, Valavani, Athans, and
Stein (1985), while others are prone to bursting, see Datta
and Ioannou (1994), Hsu and Costa (1987). Neverthe-
less, the promise of adaptive control in applications with
highly uncertain dynamics is evident in the recent litera-
ture, see Hovakimyan and Cao (2010).

In the present paper, we revisit retrospective cost
adaptive control (RCAC), which was proposed in Venu-
gopal and Bernstein (2000), and subsequently developed

CONTACT Shicong Dai daibluewater@foxmail.com

in Hoagg, Santillo, and Bernstein (2008), Santillo and
Bernstein (2010), Hoagg and Bernstein (2012). As shown
in Hoagg and Bernstein (2012), RCAC is applicable to
single-input and single-output (SISO) systems with out-
put feedback and nonminimum-phase (NMP) zeros. The
multiple-input andmultiple-output (MIMO) case ismore
complicated, see Sumer and Bernstein (2015).

In Hoagg and Bernstein (2012), the required mod-
elling information is given by the first nonzero Markov
parameter and knowledge of the NMP zeros of the plant.
This information is used implicitly and approximately in
Santillo and Bernstein (2010), where the plant modelling
information consists of a finite number ofMarkov param-
eters (that is, impulse response components) that serve as
coefficients of a finite impulse response (FIR) model of
the plant.

In particular, the Markov parameters are the coeffi-
cients of the truncated Laurent series of the plant at the
origin and about infinity (that is, in a punctured plane that
excludes the disk centred at the origin whose radius is the
spectral radius of the plant), and these coefficients thus
implicitly model each zero whose magnitude is greater
than the plant spectral radius. Furthermore, if the plant
is asymptotically stable, then this Laurent series has two
additional features. First, this Laurent series converges
uniformly to the plant transfer function in a region that
contains the unit circle, which implies that this Laurent
series captures the frequency response of the plant. Sec-
ond, the sequence of coefficients of this Laurent series
converges to zero, which implies that the Laurent series
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can be approximated using truncation. Thus, knowledge
of a sufficient number of Markov parameters can pro-
vide information about the NMP zeros and frequency
response of the plant; the former are generally easy to esti-
mate through identification, while the latter may be diffi-
cult to estimate.

One drawback of the use of Markov parameters is the
fact that, for unstable plants, they fail to capture NMP
zeros whose magnitude is less than the plant spectral
radius, fail to capture the frequency response of the plant,
and are unbounded. This observation suggests that it may
be advantageous toworkwith the coefficients of a Laurent
series in a punctured plane that excludes a shifted disk
that is not centred at the origin in the complex plane. In
some cases, such a disk may exist that excludes all NMP
zeros but may include all plant poles, thus rendering the
plant ‘asymptotically stable’ relative to the shifted disk.
The challenge, however, is the fact that, although impulse
response coefficients may be known or estimated (even
for an unstable plant, perhaps by impulsing the system or
by means of a suitable system identification method such
as OKID in Juang & Phan, 1994), it is not clear how one
might go about obtaining estimates of the coefficients of
a shifted Laurent series, that is, the Laurent series corre-
sponding to a punctured plane that excludes a disk that is
not centred at the origin.

The main contribution of the present paper is a tech-
nique for obtaining estimates of the coefficients of a
shifted Laurent series based on estimates of the Markov
parameters. In particular, this paper provides a technique
for constructing amodel of the plant for usewithinRCAC
that is given by a truncated shifted Laurent series rather
than the ‘usual’ Laurent series whose coefficients are the
plant impulse response parameters. It turns out that the
model constructed in this manner is an infinite impulse
response (IIR) filter rather than an FIR filter as in San-
tillo and Bernstein (2010), where Markov parameters are
used directly. This technique also provides an alternative
to the IIR filter construction used inHoagg and Bernstein
(2012).

The numerical examples in this paper show that the
IIRfilter constructed forRCACby this technique can pro-
vide improved performance relative to the use of an FIR
filter. Intuitively speaking, the reason for this improve-
ment appears to be due to the fact that the radius of con-
vergence relative to the excluded disk for a shifted Laurent
series may be smaller than the radius of convergence rel-
ative to the origin-centred excluded disk. Consequently,
the plantmay appear to be ‘more stable’ relative to the for-
mer disk.

Much of the technical material in the present paper
consists of a detailed development of properties of shifted
Laurent series, including convergence properties and the

relationship between different Laurent series. Although
Laurent series is a classical topic in complex analysis, see
Gamelin (2001), the relationship between different Lau-
rent series in different punctured planes does not appear
to be considered in the literature, and thus the contribu-
tion of the present paper includes a detailed treatment of
this material.

The contents of the paper are as follows. Section 2
describes the adaptive control problem, while Section 3
presents the RCAC algorithm. Section 4 reviews Lau-
rent series and considers the boundedness and conver-
gence of its coefficients. Section 5 presents the relation-
ship between the truncated Laurent series and the plant
in terms of their NMP zeros, frequency response, and
impulse response, as well as the advantages of the shifted
Laurent series over the ‘usual’ Laurent series whose
coefficients are the plant impulse response parameters.
Section 5 provides a technique for obtaining the trun-
cated shifted Laurent series using Markov parameters,
while Section 7 presents the assumption needed to use the
truncated shifted Laurent series as the plantmodel within
RCAC. Section 8 provides numerical examples of com-
mand following, including performance comparisonwith
Santillo and Bernstein (2010) for asymptotically stable
NMP systems, and with Hoagg and Bernstein (2012) for
exponentially unstable NMP systems. Technical proofs
are relegated to appendices.

2. Problem formulation

Consider the SISO discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) =Cx(k) + D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ R
lx is the state, y(k) ∈ R is the output,

u(k) ∈ R is the input, w(k) ∈ R
lw is the exogenous sig-

nal, and z(k) ∈ R is the performance variable. The com-
ponents of w can represent either command signals to be
followed, disturbances to be rejected, or both, depending
on the choice ofD1,D2, and E0. In addition, we define the
transfer function from u to z as Gzu.

The goal is to develop an adaptive output feedback
controller that minimises the performance variable z in
the presence of the exogenous signalwwith limitedmod-
elling information about (1)–(3) for possibly unstable and
NMP systems. We assume that measurements of the out-
put y and the performance z are available for feedback.
However, we assume that a direct measurement of the
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exogenous signal w is not available. The required mod-
elling information is described in Section 7.

3. Algorithm statement

3.1 Control law

We use a strictly proper time-series controller of order nc
of the form

u(k) =
nc∑
i=1

Mi(k)u(k − i) +
nc∑
i=1

Ni(k)z(k − i), (4)

where, for all i= 1, …, nc,Mi(k) ∈ R andNi(k) ∈ R. The
controller (4) can be represented as

u(k) = φT(k)θ (k), (5)

where

θ (k) �= [N1(k) · · · Nnc (k) M1(k) · · · Mnc (k)]
T ∈ R

2nc

(6)

and

φ(k) �= [z(k − 1) · · · z(k − nc) u(k − 1)
· · · u(k − nc)]T ∈ R

2nc . (7)

3.2 Retrospective performance

For θ̂ ∈ R
2nc and nf � 1, we define the retrospective per-

formance

ẑ(θ̂ , k) �=
nf∑
i=0

aiz(k − i) +
nf∑
i=1

bi[φT(k − i)θ̂ − u(k − i)],

(8)

where a0
�= 1 and, for all i = 1, …, nf, ai ∈ R and bi ∈

R. By defining the FIR filters α(q)
�= ∑nf

i=0 aiq
−i and

β(q)
�= ∑nf

i=1 biq
−i, where q is the forward shift opera-

tor, (8) can be written as

ẑ(θ̂ , k) = α(q)z(k) + β(q)[û(k) − u(k)], (9)

where

û(k) �= φT(k)θ̂ (10)

is the retrospective control. The retrospective perfor-
mance ẑ(θ̂ , k) can be interpreted as the performance
assuming that θ̂ was used in the past, while α(q) and β(q)

w � x(k + 1) = Ax(k) + Bu(k) + D1w(k)
y(k) = Cx(k) + D2w(k)
z(k) = E1x(k) + E0w(k)

u �
z

�u(k) = θ(k)φ(k)u

�û(k) = θ̂φ(k)�u

�

û
+

�u −
� � β(q)

�
α(q)

�

�+
+�

ẑ�

�

�
θ̂

RLS

Figure . Closed-loop system with RCAC algorithm given by (),
(), (), (), and (). The adaptation block is marked by the box
in dashed-line.

can be interpreted as a model of Gzu. For use below, we
define the filtered regressor

�(k) �= β(q)φ(k) =
nf∑
i=1

biφ(k − i) ∈ R
2nc . (11)

3.3 Cumulative retrospective cost optimisation

The cumulative retrospective cost function is defined by

J(θ̂ , k) �=
k∑
j=0

λk−iRzẑ2(θ̂ , k) + λk(θ̂ − θ (0))TRθ (θ̂ − θ (0)),

(12)

where Rz > 0, Rθ ∈ R
2nc×2nc is positive definite, and λ �

(0, 1] is the forgetting factor. The next result follows from
standard recursive-least-squares theory (Goodwin & Sin,
1984).

Theorem 3.1: Let P(0) = R−1
θ and θ (0) ∈ R

2nc . Then, for
all k � 0, the unique global minimiser of (12) is given by
θ̂ = θ (k), where

θ (k + 1) = θ (k) − P(k)�(k)ẑ(θ (k), k)
λR−1

z + �T(k)P(k)�(k)
, (13)

P(k + 1) = 1
λ

[
P(k) − P(k)�(k)�T(k)P(k)

λR−1
z + �T(k)P(k)�(k)

]
.

(14)

The closed-loop system with RCAC algorithm given
by (5), (9), (10), (13), and (14) is shown in Figure 1. The
objective of this paper is to construct α(q) and β(q).
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4. Review of Laurent series

For ν ∈ R, r1 � [0, �), and r2 � (0, �], P(ν, r1)
�= {z ∈

C : |z − ν| > r1} is the open punctured plane centred at
z= ν with inner radius r1, D(ν, r2)

�= {z ∈ C : |z − ν| <

r2} is the open disk centred at z = ν with outer radius
r2, and A(ν, r1, r2)

�= {z ∈ C : r1 < |z − ν| < r2} is the
open annulus centred at z = ν with inner radius r1 and
outer radius r2, where r1 < r2. In addition, for ν ∈ R and
r � [0, �), S(ν, r) �= {z ∈ C : |z − ν| = r} is the circle
centred at z = ν with radius r. For S ⊂ C, clS is the clo-
sure of S .

LetG be a proper rational function, ν ∈ R, and ρ � [0,
�). Recall (Gamelin, 2001, p. 168) that, if G is analytic in
P(ν, ρ), then G has a unique, absolutely convergent Lau-
rent series in P(ν, ρ) of the form

G(z) =
∞∑
i=0

Li
(z − ν)i

, (15)

where, for all i � 0, Li ∈ R. In the case ν = 0, (15) can be
written as

G(z) =
∞∑
i=0

Hi

zi
, (16)

whereH0,H1,H2, … is the impulse response of the linear
discrete-time system whose transfer function is G.

Definition 4.1: Let G be a proper rational function, and
let ν ∈ R. Then, the spectral radius of G relative to ν is
defined as

ρ(G, ν)
�= max{|z − ν| : z is a pole of G},

and the inner spectral radius of G relative to ν is defined
as

ρi(G, ν)
�= min{|z − ν| : z is a pole of G}.

Note that P(ν, ρ(G, ν) is the largest open punctured
plane centred at ν within which G is analytic, while
D(ν, ρi(G, ν) is the largest open disk centred at ν within
whichG is analytic. Note that ρ i(G, ν)� ρ(G, ν) and ρ(G,
0) is the spectral radius of G.

Proposition 4.1: Let G be a proper rational function,
and let ν ∈ R. Consider the Laurent series of G in
P(ν, ρ(G, ν)) given by (15). Then the following statements
hold:

(1) ρ(G, ν) = lim supi→∞ |Li|1/i.
(2) ρ(G, ν) � [0, 1) if and only if limi → �Li = 0.
(3) ρ(G, ν) = 1 and G has no repeated poles in S(ν, 1)

if and only if 0 < lim supi→∞ |Li| < ∞.

(4) Either ρ(G, ν)� (1, �) or both ρ(G, ν)= 1 and G
has at least one repeated pole in S(ν, 1) if and only
if lim supi→∞ |Li| = ∞.

Proof: See Appendix 2. �
Example 4.1: Consider the Lyapunov-stable transfer
function G(z) = 1/(z2 + 1). Then ρ(G, 0) = 1, H0 = 0,
and, for all i � 1,

Hi =
{
0, i odd,
(−1)(i−2)/2, i even.

Thus limi → �|Hi| does not exist. Hence ‘lim sup’ in 3)
of Proposition 4.1 cannot be replaced by ‘lim’. Further-
more, limi → �|Hi|1/i does not exist. Hence ‘lim sup’ in 1)
of Proposition 4.1 cannot be replaced by ‘lim’.

Example 4.2: Consider the exponentially unstable trans-
fer function G(z) = 1/(z2 + 4). Then ρ(G, 0) = 2 > 1,
H0 = 0, and, for all i � 1,

Hi =
{
0, i odd,
(−1)(i−2)/22i−2, i even.

Thus limi → �|Hi| does not exist. Hence ‘lim sup’ in 4) of
Proposition 4.1 cannot be replaced by ‘lim’.

Example 4.3: Consider the unstable transfer function
G(z)= 1/(z− 3/2). For ν = 0, ρ(G, 0)= 3/2> 1,H0 = 0,
and, for all i� 1,Hi = (3/2)i − 1. Thus, lim supi→∞ |Hi| =
∞, in accordance with 4) of Proposition 4.1. For
ν = 1/2, ρ(G, 1/2) = 1, L0 = 0, and, for all i � 1,
Li = 1. Thus, 0 < lim supi→∞ |Li| < ∞, in accordance
with 3) of Proposition 4.1. For ν = 1, ρ(G, 1) = 1/2 < 1,
L0 = 0, and, for all i � 1, Li = (1/2)i − 1. Thus, limi → �Li
= 0, in accordance with 2) of Proposition 4.1. Note that
ρ(G, ν) = lim supi→∞ |Li|1/i holds in all three cases, in
accordance with 1) of Proposition 4.1.

5. Analysis of the truncated Laurent series

Let G be a proper rational function, let ν ∈ R, and con-
sider the Laurent series (15) ofG in P(ν, ρ(G, ν)). For all
z ∈ {z ∈ C : z �= ν} and n � 1, we define the truncated
Laurent series

Gν,n(z)
�= Lν,n{G(z)} �=

n∑
i=0

Li
(z − ν)i

. (17)

Note that the proper rational functionGν, n is the transfer
function of an IIR filter in the case ν � 0 and an FIR filter
in the case ν = 0. For all z ∈ P(ν, ρ(G, ν)),

lim
n→∞Gν,n(z) = G(z), (18)
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Figure . Example . with G given by () and ν = . Since S(0, 1) ⊂ clA(0, 0.9, 1.1) ⊂ P(0, 0.5), as shown in (a), θ �→G, n(e
jθ ) con-

verges uniformly to θ �→G(ejθ ) on (−π , π ] as n → �, as shown in (b). Furthermore, for large n, G, n has a zero that is close to the NMP
zero  of G. In particular, G,  has a zero at ., as shown in (c), and G,  has a zero close to ., as shown in (d).

and Gν, n(z) converges absolutely as n → �. Further-
more, for ρ1, ρ2 ∈ R such that ρ(G, ν) < ρ1 < ρ2, Gν, n
converges uniformly to G on clA(ν, ρ1, ρ2) as n → �.
In addition, for all z /∈ clP(ν, ρ(G, ν)), limn → �Gν, n(z)
does not exist, where a limit exists if and only if it is a real
or complex number.

The next example illustrates the fact that, ifG is asymp-
totically stable, then, for largen,G0, n approximatesG uni-
formly on the unit circle, that is, the frequency response
of G0, n uniformly approximates the frequency response
of G. Furthermore, in P(0, ρ(G, 0)), the zeros of G0, n
approximate the zeros of G.

Example 5.1: Consider the asymptotically stable, NMP
transfer function

G(z) = z − 2
(z − 0.5)2

. (19)

Since S(0, 1) ⊂ clA(0, 0.9, 1.1) ⊂ P(0, 0.5), as shown
in Figure 2(a), the Laurent series of G in P(0, 0.5) con-
verges uniformly to G on the unit circle. Therefore,
θ �→G0, n(ejθ ) converges uniformly to θ �→G(ejθ ) on (−π ,
π] as n → �, as shown in Figure 2(b). Furthermore, for
large n,G0, n has a zero that is close to the NMP zero ofG.
Figure 2(c) and 2(d) shows the poles and zeros of G and
G0, n for n = 5 and n = 10, respectively.

The next example shows that, if G is exponentially
unstable, then, for all z ∈ S(0, 1), G0, n(z) does not
approximate G(z). However, for a properly chosen ν �
0, Gν, n can approximate G uniformly on a portion of the
unit circle. Thus, on a subset of S(0, 1), Gν, n can provide
a better approximation of G than G0, n.
Example 5.2: Consider the exponentially unstable, NMP
transfer function

G(z) = z − 2
(z − 1.2)(z − 0.5)

. (20)

Since G has a pole outside the closed unit disk, it follows
thatP(0, ρ(G, 0)) ∩ S(0, 1) = ∅, whereρ(G, 0)= 1.2, as
shown in Figure 3(a). Hence, for all z ∈ S(0, 1), the Lau-
rent series of G in P(0, ρ(G, 0)) does not converge at z.
Therefore, for all θ � (−π , π], G0, n(ejθ ) does not con-
verge to G(ejθ ) as n → �, as shown in Figure 3(b). How-
ever, as in Example 5.1, for large n, G0, n has a zero that
is close to the NMP zero of G. Note that (19) is asymp-
totically stable, whereas (20) is exponentially unstable.
Figure 3(c) and 3(d) shows the poles and zeros of G and
G0, n for n = 5 and n = 10, respectively.

Next, note that S(0, 1) ∩ P(0.8, ρ(G, 0.8)) �= ∅,
where ρ(G, 0.8)= 0.4. In fact, {ejθ : θ ∈ (−π, −0.14π] ∪
[0.14π, π]} ⊂ P(0.8, 0.4), as shown in Figure 4(a). Thus,
θ �→G0.8, n(ejθ ) converges uniformly to θ �→G(ejθ ) on (−π ,
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not converge to G(ejθ ) as n → �, as shown in (b). However, for large n, G, n has a zero that is close to the NMP zero  of G. In particular,
G,  has a zero at ., as shown in (c), and G,  has a zero at ., as shown in (d).
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Figure . Example . with G given by () and ν = .. Note that S(0, 1) ∩ P(0.8, 0.4) �= ∅. In fact, {ejθ : θ ∈ (−π,−0.14π ] ∪
[0.14π, π ]} ⊂ P(0.8, 0.4), as shown in (a). Thus, θ �→G., n(e

jθ ) converges uniformly to θ �→G(ejθ ) on (−π , −.π ]�[.π , π ] as n
→ �, as shown in (b). Furthermore, for large n, G., n has a zero that is close to the NMP zero  of G. In particular, G.,  has a zero at .,
as shown in (c), and G.,  has a zero close to ., as shown in (d).
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−0.14π]�[0.14π , π] as n→ �, as shown in Figure 4(b).
Furthermore, for large n, G0.8, n also has a zero that is
close to the NMP zero of G as in Example 5.1. Figure 4(c)
and 4(d) shows the poles and zeros of G and G0.8, n for
n = 5 and n = 10, respectively.

Figures 3(b) and 4(b) show that, for θ � [0.14π , π],
G0.8, 5(ejθ ) is closer to G(ejθ ) than G0, 5(ejθ ).

For a proper rational function G, let rd(G) denote the
relative degree of G. The following result is immediate.
Lemma 5.1: Let G be a proper rational function, ν ∈ R,
and ρ � [0, �), assume that G is analytic in P(ν, ρ), let d
be a positive integer, and consider the coefficients {Li}∞i=0 of
the Laurent series (15) in P(ν, ρ). Then, rd(G) = d if and
only if L0 = L1 = ��� = Ld − 1 = 0 and Ld � 0. Thus, if 1�
n � rd(G) − 1, then Gν, n = 0. Furthermore, if n � rd(G),
then rd(Gν, n) = rd(G).
Proposition 5.1: Let G be a proper rational function,
ν1, ν2 ∈ R, and n � m � 1. Then Lν1,m{Gν2,n} =
Lν1,m{G}.
Proof: In the casem� n� rd(G)− 1, Lemma 5.1 implies
that Gν2,n = 0 and thus, for all z � ν1, Lν1,m{Gν2,n(z)} =
Lν1,m{G(z)} = 0. In the casem+ 1� rd(G)� n, Lemma
5.1 implies thatm + 1 ≤ rd(G) = rd(Gν2,n) and thus, for
all z� ν1,Lν1,m{Gν2,n(z)} = Lν1,m{G(z)} = 0. Next con-
sider the case rd(G) � m � n. Then there exists {Li}∞i=1
such that, for all z ∈ P(ν2, ρ(G, ν2)),

G(z) =
∞∑
i=0

Li
(z − ν2)i

= Gν2,n(z) +
∞∑

i=n+1

Li
(z − ν2)i

.

Since
∑∞

i=n+1
Li

(z−ν2)i
is the Laurent series of the ratio-

nal function G − Gν2,n in P(ν2, ρ(G, ν2)), Lemma 5.1
implies that rd(G − Gν2,n) ≥ n + 1 ≥ m + 1. Note
that G is analytic in P(ν1, ρ(G, ν1)). Furthermore,
all of the poles of Gν2,n are ν2 and thus Gν2,n is
analytic in P(ν1, |ν2 − ν1|). Thus G − Gν2,n is ana-
lytic in P(ν1, ρ(G, ν1)) ∩ P(ν1, |ν2 − ν1|). Since m ≤
rd(G − Gν2,n) − 1, Lemma 5.1 implies that, for all z ∈
P(ν2, ρ(G, ν2)) ∩ P(ν1, ρ(G, ν1)) ∩ P(ν1, |ν2 − ν1|),
Lν1,m

{
G(z) − Gν2,n(z)

} = 0. Therefore, for all z ∈
P(ν2, ρ(G, ν2)) ∩ P(ν1, ρ(G, ν1)) ∩ P(ν1, |ν2 − ν1|),

Lν1,m{G(z)} = Lν1,m{Gν2,n(z)} + Lν1,m
{
G(z) − Gν2,n(z)

}
= Lν1,m{Gν2,n(z)}.

Since P(ν2, ρ(G, ν2)) ∩ P(ν1, ρ(G, ν1)) ∩ P(ν1, |ν2 −
ν1|) is a nonempty open set, it follows that the rational
functions Lν1,m{Gν2,n} and Lν1,m{G} are equal. �

Let G be a proper rational function, ν ∈ R, and
n � 1. Then, Proposition 5.1 with ν1 = 0, ν2 = ν, and
m = n implies that L0,n{Gν,n} = L0,n{G}. Therefore, for
all ν ∈ R, the first n components of the impulse responses

of Gν, n and G are the same, as illustrated by the next
example.

Example 5.3: The Laurent series of G(z) = 1/(z − 2) in
P(1, 1) is given by

G(z) =
∞∑
i=1

1
(z − 1)i

.

Thus, G1,3(z) = ∑3
i=1

1
(z−1)i , and the Laurent series of

G1, 3 in P(0, 1) is given by

G1,3(z) =
∞∑
i=1

1
zi

+
∞∑
i=2

i − 1
zi

+
∞∑
i=3

(i − 1)(i − 2)
2zi

= 1
z

+ 2
z2

+ 4
z3

+ 7
z4

+ · · · .

Therefore, L0,3{G1,3(z)} = 1/z + 2/z2 + 4/z3. Further-
more, the Laurent series of G in P(0, 2) is given by

G(z) =
∞∑
i=1

2i−1

zi
= 1

z
+ 2

z2
+ 4

z3
+ 8

z4
+ · · · ,

and thus L0,3{G(z)} = 1/z + 2/z2 + 4/z3. Hence, in
accordance with Proposition 5.1, L0,3{G1,3} = L0,3{G},
which shows that the first three components of the
impulse responses of G1, 3 and G are the same.

6. Filter construction

In this section, we present a method for constructing
the FIR filters α and β in (9) such that β/α = Gν, n.
Theorem 6.1 shows thatα and β can be constructed using
ν and the first nMarkov parameters (i.e. {Hi}ni=0 in (16))
of G, which can be obtained from system identification
methods. This technique thus circumvents the need to
determine the coefficients {Li}ni=0 of the Laurent expan-
sion of G in P(ν, ρ(G, ν)) in (15), for which there is no
known identification method.
Theorem 6.1: Let G be a proper rational function, ν ∈ R,
and n � 1, and define the rational functions

α(z) �= (z − ν)n

zn
(21)

and

β
�= L0,n{αG0,n}. (22)

Then

β = αGν,n = L0,n{αG}. (23)
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., ρ(G, ν) = , and ρm = max {ρ(G, ), |ν| + ρ(G, ν)} = max {.,
.+ }= ..

Proof: Using (16), there existH ′
0, … ,H ′

2n ∈ R such that,
for all z � 0,

α(z)G0,n(z) = (z − ν)n

zn

n∑
i=0

Hi

zi
=

2n∑
i=0

H ′
i

zi
, (24)

and thus

L0,n{α(z)G0,n(z)} =
n∑

i=0

H ′
i

zi
. (25)

On the other hand, (15) implies that there existH ′′
0 , …,

H ′′
n such that, for all z ∈ {z ∈ C : z �= 0, z �= ν},

α(z)Gν,n(z) = (z − ν)n

zn

n∑
i=0

Li
(z − ν)i

=
n∑

i=0

Li(z − ν)n−i

zn
=

n∑
i=0

H ′′
i

zi
. (26)

Define ρm
�= max{ρ(G, 0), |ν| + ρ(G, ν)} ∈ R.

Then P(0, ρm) ⊆ P(0, ρ(G, 0)) and P(0, ρm) ⊆
P(ν, ρ(G, ν)), as shown in Figure 5. Note that
0 �∈ P(0, ρm) and ν �∈ P(0, ρm). Therefore, for all
z ∈ P(0, ρm), (15), (16), and (24)–(26) hold.

Using (15), (16), (24), and (26) yields, for all z ∈
P(0, ρm),

α(z)G(z) =
n∑

i=0

H ′′
i

zi
+ fν (z)

=
n∑

i=0

H ′
i

zi
+

2n∑
i=n+1

H ′
i

zi
+ f0(z), (27)

where the rational functions fν and f0 are defined by

fν (z)
�= α(z)(G(z) − Gν,n(z)) =

∞∑
i=n+1

Li
zn(z − ν)i−n ,

f0(z)
�= α(z)(G(z) − G0,n(z)) =

∞∑
i=n+1

Hi(z − ν)n

zi+n ,

which are analytic in P(0, ρm). Note that rd(fν) � n + 1
and rd(f0) � n + 1, and thus, by Lemma 5.1, L0,n{ fν} =
L0,n{ f0} = 0. Therefore, it follows from (27) that, for all
z ∈ P(0, ρm),

n∑
i=0

H ′′
i

zi
= L0,n

{ n∑
i=0

H ′′
i

zi

}
= L0,n

{ n∑
i=0

H ′
i

zi

}
=

n∑
i=0

H ′
i

zi
.

(28)

Thus, (22), (25), (26), and (28) imply that, for all z ∈
P(0, ρm),

β(z) = L0,n{α(z)G0,n(z)}

=
n∑

i=0

H ′
i

zi
=

n∑
i=0

H ′′
i

zi
= α(z)Gν,n(z).

Furthermore, L0,n{ f0} = 0 implies that, for all z ∈
P(0, ρm),

L0,n{α(z)G0,n(z)} = L0,n{α(z)G(z)} − L0,n{ f0(z)}
= L0,n{α(z)G(z)}.

Since P(0, ρm) is a nonempty open set, it follows that the
rational functions β , αGν, n, and L0,n{αG} are equal. �

The next example illustrates Theorem 6.1.

Example 6.1: We reconsider Example 5.3, where
G(z) = 1/(z − 2), G1,3(z) = ∑3

i=1
1

(z−1)i , and G0, 3(z)
= 1/z + 2/z2 + 4/z3. Let n = 3 and ν = 1 so that α(z) =
(z − 1)3/z3. Thus, for all z � 0,

β(z) = L0,3
{
α(z)G0,3(z)

}
= L0,3

{
(z − 1)3

z3

[
1
z

+ 2
z2

+ 4
z3

]}

= L0,3

{
1
z

+ −1
z2

+ 1
z3

+ −7
z4

+ 10
z5

+ −4
z6

}

= 1
z

+ −1
z2

+ 1
z3

.
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Furthermore, for all z ∈ {z ∈ C : z �= 0, z �= 1},

α(z)G1,3(z) = (z − 1)3

z3

[
1

z − 1
+ 1

(z − 1)2
+ 1

(z − 1)3

]

= 1
z

+ −1
z2

+ 1
z3

.

Moreover, for all z ∈ P(0, ρ(αG, 0)),

L0,3 {α(z)G(z)}
= L0,3

{
(z − 1)3

z3(z − 2)

}

= L0,3

{
1
z

+ −1
z2

+ 1
z3

+ 1
z4

+ 2
z5

+ 4
z6

+ · · ·
}

= 1
z

+ −1
z2

+ 1
z3

,

where ρ(αG, 0) = 2. Since 0 �∈ P(0, 2) and 1 �∈ P(0, 2),
it follows that, for all z ∈ P(0, 2), β(z) = α(z)G1,3(z) =
L0,3{α(z)G(z)}. Since P(0, 2) is a nonempty open set, it
follows that β = αG1,3 = L0,3{αG}, in accordance with
(23).

It follows from (23) that, for all ν ∈ R and n � 1,
Gν, n = β/α. Note that α and β are not constructed using
the transfer functionG. Instead, α is constructed using ν,
and β is constructed using α and H0,H1, …,Hn of G. By
viewing α and β as FIR filters, β can be constructed by
using the α-filtered impulse response of G. In practice,
H0,H1, …,Hn can be obtained either by impulsing the
plant from zero initial conditions or from system iden-
tification. Guidelines for choosing ν are given in the next
section.

7. Application of shifted Laurent series to RCAC

In this section, we apply Theorem 6.1 to the RCAC algo-
rithm given by (4), (9), (13), and (14). The filters α and β

in (9) are chosen as in (21) and (22), respectively, where z
is replaced by q in order to obtain the time-domain oper-
ators

α(q) = (1 − νq−1)nf (29)

and

β(q) = L0,nf {α(q)G0,nf (q)}. (30)

The following assumption about the plant transfer
function Gzu(z)

�= E1(zI − A)−1B facilitates the applica-
tion of Theorem 6.1 to RCAC. This assumption provides
conditions under which a limited number of Markov
parameters can be used to capture the modelling data

required for RCAC. Complete assumptions are given in
Hoagg and Bernstein (2012) along with a proof of con-
vergence. Roughly speaking, the following assumption
requires that none of the NMP zeros of Gzu be contained
in a disk centred at a point in the interval (−1, 1) that
contains all of the poles of Gzu.

Assumption 7.1: If Gzu is NMP, then assume there exists
ν � (−1, 1) such that ρ(Gzu, ν) < 1 and {λ ∈ C :
Gzu(λ) = 0 and |λ| ≥ 1} ⊂ P(ν, ρ(Gzu, ν)).

If Gzu is NMP, then Assumption 7.1 requires that all
of the NMP zeros ofGzu are contained in P(ν, ρ(Gzu, ν))

and that ρ(Gzu, ν) < 1. It can be seen that, if Assumption
7.1 is satisfied, then there exists a unit disk that contains
all the poles of Gzu, ρ(Gzu, 0) < 2, and no NMP zero of
Gzu can be contained in a line segment connecting a pair
of poles ofGzu. Figure 6 shows examples of NMP transfer
functions for which Assumption 7.1 is or is not satisfied.

Note that Assumption 7.1 applies only to the case
where Gzu is NMP. In fact, if Gzu is minimum phase,
then it is shown in Hoagg et al. (2008) that Theorem 6.1
can be applied to RCAC with ν = 0 and nf =
rd(Gzu) without requiring ρ(Gzu, ν) < 1. In addi-
tion, if Gzu is minimum phase, then {λ ∈ C : Gzu(λ) =
0 and |λ| ≥ 1} = ∅ ⊂ P(ν, ρ(Gzu, ν)). Thus, Assump-
tion 7.1 is not needed in the case where Gzu is minimum
phase.

It is shown in Hoagg and Bernstein (2012) that the
zeros of α are the poles of the ideal closed-loop associ-
ated with RCAC. Thus, it is assumed in Hoagg and Bern-
stein (2012) that the absolute value of the zeros of α are
smaller than 1. Therefore, since the zeros of α are located
at ν, we require ν � (−1, 1).On the other hand, limi → �Li
= 0 is a necessary condition for Gν, n to approximate Gzu.
Furthermore, Proposition 4.1 implies that limi → �Li =
0 if and only if ρ(Gzu, ν) < 1. Thus ρ(Gzu, ν) < 1 is
required in order for Gν, n to approximate Gzu. In addi-
tion, every NMP zero of Gzu is required to be contained
in P(ν, ρ(Gzu, ν)) so that it can be approximated by one
of the zeros of Gν, n for sufficiently large n.

Note that, if Gzu is not asymptotically stable, then
ρ(Gzu, 0) � 1, and thus Assumption 7.1 cannot be sat-
isfied with ν = 0. Thus, if Gzu is NMP and not asymptot-
ically stable, then ν must be nonzero in order to satisfy
Assumption 7.1. If Gzu is NMP and asymptotically stable,
then ρ(Gzu, ν) < 1 can be achieved by ν = 0. However,
ν � 0 can still be beneficial if ρ(Gzu, ν) < ρ(Gzu, 0), as
shown in Example 8.1 in the next section.

8. Numerical examples

In this section, we consider command following
problems, where, in (1)–(3), w(k) = r(k) ∈ R is the
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Figure . Examples to illustrate Assumption .. (a) Let Gzu(z) = z−1.5
(z−0.8)(z−0.9)

and ν = , and thus ρ(Gzu, )= .. The shaded region is
P(0, ρ(Gzu, 0)). Note that ρ(Gzu, ) = . <  and all of the NMP zeros of Gzu are contained in P(0, ρ(Gzu, 0)). Thus Assumption . is
satisfied with ν = . (b) LetGzu(z) = (z−1.5)(z−0.5)(z+1)

(z−1.2)3(z−0.9)
and ν = ., and thus ρ(Gzu, .)= .. The shaded region isP(0.8, ρ(Gzu, 0.8)).

Note thatρ(Gzu, )= .<  and all of theNMP zeros ofGzu are contained inP(0.8, ρ(Gzu, 0.8)). Thus Assumption . is satisfiedwith ν =
.. Note that Assumption . does not require that the minimum-phase zeros of Gzu be contained in P(ν, ρ(Gzu, ν)). (c) Let Gzu(z) =

(z−0.8−0.1j)(z−0.8+0.1j)(z−1.5+0.1j)(z−1.5−0.1j)
(z−1.2+0.3 j)(z−1.2−0.3 j)(z−0.9−0.1j)2(z−0.9+0.1j)2 and ν = ., and thus ρ(Gzu, .) = .. The shaded region is P(0.8, ρ(Gzu, 0.8)). Note that
ρ(Gzu, )= .<  and all of the NMP zeros ofGzu are contained inP(0.8, ρ(Gzu, 0.8)). Thus Assumption . is satisfiedwith ν = .. Note
that all of the poles and zeros of Gzu are complex. (d) Let Gzu(z) = (z−2)

(z+0.7)(z−1.7) . Note that there does not exist a unit disk that contains
all of the poles of Gzu. Thus Assumption . cannot be satisfied. For example, let ν = ., which is the midpoint between−. and .. The
shaded region isP(0.5, ρ(Gzu, 0.5)). Sinceρ(Gzu, .)= .> , Assumption . is not satisfiedwith ν = .. (e) LetGzu(z) = (z−2.5)

(z−1.5)(z−2.1) .
Note that ρ(Gzu, )= .> . Thus Assumption . cannot be satisfied. Different from the case in (d), there exists a unit disk that contains
all of the poles of Gzu. For example, let ν = .. The shaded region isP(1.8, ρ(Gzu, 1.8)). Note that ρ(Gzu, .)= .<  and all of the NMP
zeros of Gzu are contained inP(1.8, ρ(Gzu, 1.8)). However, since Assumption . requires ν � (−, ), Assumption . is not satisfiedwith ν

= .. (f ) Let Gzu(z) = (z−1.25)2
(z−0.5)2(z−1.5) . Note that the NMP zero . is contained in the line segment connecting the poles . and .. Thus

Assumption . cannot be satisfied. For example, let ν = .. The shaded region is P(0.8, ρ(Gzu, 0.8)). Note that ρ(Gzu, .) = . < .
However, since the NMP zero . is not contained in P(0.8, ρ(Gzu, 0.8)), Assumption . is not satisfied with ν = ..
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Figure . Example . [Trapezoidal-command following for the asymptotically stable, NMP plant Gzu given by ()]. (a) shows that
Assumption . is satisfied with ν = . H, H, H, H are used. (d) shows that the command-following error z is about . for k= .

command to be followed, D1 = D2 = 0, E0 = 1, and
E1 = C. The goal is to investigate the ability of RCAC
to achieve asymptotic command following for NMP
plants that satisfy Assumption 7.1 without using direct
knowledge of the NMP zeros of Gzu. All of the examples
in this section satisfy Assumption 7.1.

The tuning parameters required by the RCAC con-
troller (4), (9), (13), (14), (29), and (30) are nc, Rz, Rθ , ν,
nf. Once these parameters are chosen, the only modelling
information needed by RCAC is the Markov parame-
ters H1, H2, . . . , Hnf . Since Gzu with McMillian degree
n can be reconstructed from H1,H2, …,H2n + 1 using
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Figure . Example . [Trapezoidal-command following for the asymptotically stable, NMP plant Gzu given by ()]. (a) shows that
Assumption . is satisfied with ν = .. H, H, H are used.(d) shows that the command-following error z is about . × −

for k= .

Ho-Kalman realisation theory, we choose nf � 2n for
all of the examples in this section. Moreover, we do not
require knowledge of the characteristics of the reference
command r. In particular, the height of a step, the offset
and slope of a ramp, the frequency of a harmonic, and the

type of the reference command need not be known. Since
feedforward control is not used, the signal r is not used
directly within RCAC. In addition, we choose the initial
controller coefficients θ (0) = 02nc×1 for all of the exam-
ples in this section.
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Figure . Example . [Trapezoidal-command following for the exponentially unstable, NMP plant Gzu given by ()]. (a) shows
that Assumption . is satisfied with ν = .. H, H, H are used. (d) shows that the command-following error z is about .
for k= .

Example 8.1: Consider the asymptotically stable, NMP
transfer function

Gzu(z) = z − 2
(z − 0.9)2

, (31)

which satisfies Assumption 7.1 for all ν � (−0.1, 1). Let r
be the trapezoidal command r(k) = min (1, 0.005k).

Figure 7(a) illustrates Assumption 7.1 with ν = 0.
Hence, we choose nc = 5, Rz = 1, Rθ = I10, ν = 0, and
nf = 4. Then, (29) and (30) yield

α(q) = 1, β(q) = q−1 − 0.2q−2 − 1.17q−3 − 1.944q−4.

Figure 7 shows the performance in this case. Figure 7(d)
shows that the command-following error z is about 0.03
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Figure . Example . [Ramp-command following for the exponentially unstable, NMP plant Gzu given by ()]. We choose the same
tuning parameters as in Figure . H, H, H are used.(b) shows that the command-following error z is about . for k= .

for k = 5000. Smaller value of nf do not yield error con-
vergence. Figure 8(a) illustrates Assumption 7.1 with ν =
0.8. Hence, we choose nc = 5, Rz = 1, Rθ = 0.00001I10,
ν = 0.8, and nf = 3. Then, (29) and (30) yield

α(q) = 1 − 2.4q−1 + 1.92q−2 − 0.512q−3,

β(q) = q−1 − 2.6q−2 + 1.23q−3.

Figure 8 shows the performance in this case. Figure 8(d)
shows that the command-following error z is about 1.7×
10−6 for k = 5000.

Note that nf = 3 suffices for ν = 0.8, but nf = 4 is
required for ν = 0. Hence less modelling information is
required for ν = 0.8 than for ν = 0. Moreover, compar-
ing Figures 7 and 8, it can be seen that it is more bene-
ficial to choose ν = 0.8 than ν = 0 in terms of control
performance. An intuitive reason is that ρ(Gzu, 0.8) =
0.1 < ρ(Gzu, 0) = 0.9. In other words, the spectral radius
ofGzu relative to ν = 0.8 is smaller than the spectral radius

ofGzu relative to ν = 0, which implies thatGzu looksmore
‘stable’ relative to ν = 0.8 compared with ν = 0.

Example 8.2: Consider the exponentially unstable, NMP
transfer function

Gzu(z) = (z − 2)(z − 0.85)2

(z − 1.2)2(z − 0.5)3
, (32)

which satisfiesAssumption 7.1 for all ν � (0.2, 1). Figure 9
(a) illustrates Assumption 7.1 with ν = 0.7. Hence, we
choose nc = 8, Rz = 1, Rθ = 0.00001I16, ν = 0.7,
and nf = 3. Then, (29) and (30) yield

α(q) = 1 − 2.1q−1 + 1.47q−2 − 0.343q−3,

β(q) = q−2 − 1.9q−3. (33)

Let r be the trapezoidal command r(k) = min (1,
0.005k). Figure 9(d) shows that the command-following
error z is about 0.0005 for k= 5000.Next, let r be the ramp
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Figure . Example . [Harmonic-command following for the exponentially unstable, NMP plant Gzu given by ()]. We choose the same
tuning parameters as in Figure . H, H, H are used. (b) shows that the largest absolute value of the command-following error z in the
last period is about ..

r(k)= 1+ 0.01k. Figure 10 (b) shows that the command-
following error z for k = 5000 is about 0.05. Finally, let
r(k)= sin (0.002πk). Figure 11 (b) shows that the largest
absolute value of the command-following error z in the
last period is about 0.07.

Example 8.3: Alternatively, we apply the method given
in Hoagg and Bernstein (2012) to (32), where the NMP

zeros are assumed to be known. In this case, α(q) and
β(q) are constructed as

α(q) = 1, β(q) = Hdq−d
nζ∏
i=1

(1 − ζiq−1), (34)

Table . Transient performance and steady-state performance using (), (), and ()
forGzu given by (). The steady-state performance is given by |z()| for trapezoidal
and ramp commands, and by the maximum value of |z| in the last period for the har-
monic command. The transient performance is givenby themaximumvalueof |z| over
the entire simulation, which occurs in the first  steps for all cases.

Transient performance Steady-state performance

r(k) Using () Using () Using () Using () Using () Using ()

min (, .k) . . . . . .
+ .k . .  . . .
sin (.πk) . . . . . .
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Figure . Example . [Comparison of command-following performance using (), (), and () for the exponentially unstable, NMP
plant Gzu given by ()]. (a), (c), and (e) show that the steady-state performance using () is better than using (). However, (b), (d),
and (f ) show that the transient of z using () is larger than using (). In addition, () and () have better transient and steady-state
performance than () for all three types of commands.

where d �= rd(Gzu), nζ is the number of NMP zeros of
Gzu, and ζ1, . . . , ζnζ

are the NMP zeros of Gzu. We use
(34) with the actual NMP zero 2 of (32), which implies

α(q) = 1, β(q) = q−2(1 − 2q−1) = q−2 − 2q−3.

(35)

In addition, to compare with (33) and (35), we use (34)
with the NMP zero 1.9 ofG0.7, 3 (the NMP zero of β(q) in
(33)), which implies

α(q) = 1, β(q) = q−2(1 − 1.9q−1) = q−2 − 1.9q−3.

(36)
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To compare (33), (35), and (36), we choose the same tun-
ing parameters for all three methods, specifically, nc = 5,
Rz = 1, and Rθ = 0.00001I10, which differ from the tun-
ing parameters in Example 8.2, where nc = 8, Rz = 1, and
Rθ = 0.00001I16. Different tuning parameters are chosen
due to the fact that (36) does not yield error convergence
for a ramp command with the latter tuning parameters.

Figure 12 compares the command-following per-
formance using (33), (35), and (36) for trapezoidal,
ramp, and harmonic commands. Table 1 summarises
the transient performance and steady-state performance.
Figure 12 and Table 1 show that (35) achieves better
steady-state performance than (33). However, it can be
seen that (35) causes larger transient responses than
(33). In addition, (33) and (35) have better transient and
steady-state performance than (36) for all three types of
commands.

9. Conclusion

A method is developed for constructing an approximate
transfer function using two FIR filters based on Markov
parameters, where the ratio of the FIR filters is equal to
a truncated Laurent expansion of Gzu centred at ν ∈ R.
This technique avoids the need for direct knowledge of
the NMP zeros ofGzu as required inHoagg and Bernstein
(2012). This method can be considered as an extension
of Santillo and Bernstein (2010), where ν = 0. With this
extension, RCAC is shown to be effective for command
following for a class of unstable, NMP systems.

Numerical examples show that this method can
achieve asymptotic command following for unstable,
NMP systems without direct knowledge of the NMP
zeros but using Markov parameters instead. The number
ofMarkov parameters used in each example is insufficient
reconstructing Gzu using Ho-Kalman realisation theory.
In addition, knowledge of the properties of the command
signal is not needed. Future work includes improvements
on the optimisation methods, proof of closed-loop con-
vergence, and the quantification of robustness to uncer-
tainty in the Markov parameters as well as sensor noise.
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Appendices

Appendix 1. Definition and lemmas for the proof of
Proposition 4.1

DefinitionA1: The sequence {pn}∞n=1 ⊂ C is almost peri-
odic if, for all ε > 0, there exists lε ∈ N such that,
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for all n ∈ N, there exists τ ε, n � {1, …, lε} such that
|pn − pn+τε,n | < ε.

LemmaA1: Let c1, …, cr be nonzero complex numbers, let
θ1, …, θ r � (−π ,π] be distinct, and, for all n ∈ N, define

En
�=

r∑
i=1

ciejnθi . (A1)

Then, the following statements hold:

(1) There exists n0 � {1, …, r} such that En0 �= 0.
(2) {En}∞n=1 is almost periodic.
(3) lim supn→∞ |En| is a positive number.

Proof: Toprove 1), suppose thatE1 = ���=Er = 0. Thus

⎡
⎢⎢⎢⎢⎢⎣

ejθ1 · · · ejθr
ej2θ1 · · · ej2θr
... · · · ...

ejrθ1 · · · ejrθr

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
c1
c2
...
cr

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0
0
...
0

⎤
⎥⎥⎥⎦ . (A2)

Fact 5.16.3 in Bernstein (2009, p. 387) implies that the
r × rmatrixM in (A2) satisfies

detM =
( r∏

i=1

ejθi
) ∏

1≤i< j≤r

(
ejθi − ejθ j

)
. (A3)

Since θ1, …, θ r � (−π , π] are distinct, it follows that
ejθ1, . . . , ejθr are distinct, and thus M is nonsingular.
Hence c1 = ��� = cr = 0, which contradicts the assump-
tion that c1, …, cr are nonzero. Hence, there exists n0 �
{1, …, r} such that En0 �= 0.

To prove 2), note that Remark 2 of Proposition 3.1 of
Corduneanu (2006, p. 39) and Proposition 7.2 of Cor-
duneanu (2006, p. 116) imply that {En}∞n=1 is almost peri-
odic.

To prove 3), note that 2) and Definition A1 imply that,
for all k ∈ N, there exists lk ∈ N such that, for all n ∈ N,
there exists τ n, k � {1, …, lk} such that |En − En+τn,k | <
1
k2 , and thus

|En − En+kτn,k | ≤ |En − En+τn,k | + |En+τn,k − En+2τn,k |
+ · · · + |En+(k−1)τn,k − En+kτn,k | ≤ k

1
k2

= 1
k
.

Thus, for all n ∈ N,

lim
k→∞

En+kτn,k = En. (A4)

By 1), there exists n0 � {1, …, r} such thatEn0 �= 0. Set-
ting n= n0 in (A4) yields limk→∞ En0+kτn0,k = En0 . Thus,

lim sup
n→∞

|En| ≥ lim sup
k→∞

|En0+kτn0,k |
= lim

k→∞
|En0+kτn0,k | = |En0 | > 0.

Furthermore, (A1) implies that

lim sup
n→∞

|En| = lim sup
n→∞

|
r∑

i=1

ciejnθi | ≤
r∑

i=1

|ci| < ∞.

Hence 0 < lim supn→∞ |En| < ∞, and thus 3) is
proved. �
Lemma A2: Let G be the rational function

G(z) =
r∑

i=1

ki∑
j=1

ci, j
(z − pi) j

, (A5)

where r is the number of distinct poles of G, ki is the
order of the pole z = pi, and, for all i = 1, …, r and
j = 1, …, ki, ci, j ∈ C and ci,ki �= 0. Let 1 � r0 � r be

such that, ρ
�= ρ(G, 0) = |p1| = · · · = |pr0 | > |pr0+1| ≥

· · · ≥ |pr|. Let 1 ≤ r′0 ≤ r0 be such that kmax
�= |k1| =

· · · = |kr′0 | > |kr′0+1| ≥ · · · ≥ |kr0 |. Then, defining {Ln}∞n=0
as in (15) with ν = 0 and assuming ρ � 0, for all n �
max {k1, …, kr},

Ln =
r∑

i=1

ki∑
j=1

ci, j p
n− j
i

(n − 1)!
( j − 1)!(n − j)!

=
⎛
⎝ r∑

i=1

ki∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

⎞
⎠ ρn (n − 1)!

(n − kmax)!

(A6)

and

lim sup
n→∞

∣∣∣∣∣∣
r∑

i=1

ki∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

∣∣∣∣∣∣
= lim sup

n→∞

∣∣∣∣∣∣
r′0∑
i=1

ci,kmax

pkmax
i (kmax − 1)!

pni
ρn

∣∣∣∣∣∣ . (A7)

Proof: To prove (A6), we first give the Laurent series of
1/(z − p)k in P(0, |p|), where p ∈ C. Note that, for all
z ∈ P(0, |p|),

1
z − p

= 1
z

∞∑
n=0

( p
z

)n
. (A8)
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Differentiating both side of (A8) yields, for all z ∈
P(0, |p|) and k � 1,

dk−1

dzk−1

1
z − p

= (−1)k−1(k − 1)!
1

(z − p)k

= (−1)k−1
∞∑
n=0

pn
(n + k − 1)!

n!
z−n+k.

Hence, for all z ∈ P(0, |p|) and k � 1,

1
(z − p)k

=
∞∑
n=0

pn
(n + k − 1)!
(k − 1)!n!

z−n+k

=
∞∑
n=k

pn−k (n − 1)!
(k − 1)!(n − k)!

z−n. (A9)

Next, substituting (A9) into (A5) and comparing
coefficients with (15) with ν = 0 yields, for all n �
max {k1, …, kr},

Ln =
r∑

i=1

ki∑
j=1

ci, j p
n− j
i

(n − 1)!
( j − 1)!(n − j)!

=
⎛
⎝ r∑

i=1

ki∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

⎞
⎠ ρn (n − 1)!

(n − kmax)!
,

which proves (A6).
To prove (A7), note that, for all n � max {k1, …, kr},

r∑
i=1

ki∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

=
r′0∑
i=1

ci,kmax

pkmax
i (kmax − 1)!

pni
ρn + fn + f ′

n + f ′′
n , (A10)

where

fn
�=

r′0∑
i=1

kmax−1∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

,

f ′
n

�=
r0∑

i=r′0+1

ki∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

,

f ′′
n

�=
r∑

i=r0+1

ki∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

.

Note that ρ = |p1| = · · · = |pr′0 | implies that

lim
n→∞ | fn| = lim

n→∞

∣∣∣∣
r′0∑
i=1

kmax−1∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

× 1
(n − j)(n − j − 1) · · · (n − kmax + 1)

∣∣∣∣ = 0;
(A11)

ρ = |pr′0+1| = · · · = |pr0 | and ki < kmax for all i = r′0 +
1, . . . , r0 implies that

lim
n→∞ | f ′

n| = lim
n→∞

∣∣∣∣
r0∑

i=r′0+1

ki∑
j=1

ci, j
p j
i ( j − 1)!

× pni
ρn

1
(n − j)(n − j − 1) · · · (n − kmax + 1)

∣∣∣∣ = 0;
(A12)

and ρ > |pr0+1| ≥ · · · ≥ |pr| implies that

lim
n→∞ | f ′′

n | = lim
n→∞

∣∣∣∣∣∣
r∑

i=r0+1

ki∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

∣∣∣∣∣∣ = 0.

(A13)

Since, by (A11)–(A13), limn→∞
∣∣ fn + f ′

n + f ′′
n

∣∣ = 0,
(110) and 2.4.19 in Kaczor and Nowak (2000, p. 45)
imply

lim sup
n→∞

∣∣∣∣∣∣
r′0∑
i=1

ci,kmax

pkmax
i (kmax − 1)!

pni
ρn

∣∣∣∣∣∣
= lim sup

n→∞

⎛
⎝

∣∣∣∣∣∣
r′0∑
i=1

ci,kmax

pkmax
i (kmax − 1)!

pni
ρn

∣∣∣∣∣∣ − ∣∣ fn + f ′
n + f ′′

n
∣∣
⎞
⎠

≤ lim sup
n→∞

∣∣∣∣∣∣
r∑

i=1

ki∑
j=1

ci, j
p j
i ( j − 1)!

pni
ρn

(n − kmax)!
(n − j)!

∣∣∣∣∣∣
≤ lim sup

n→∞

⎛
⎝

∣∣∣∣∣∣
r′0∑
i=1

ci,kmax

pkmax
i (kmax − 1)!

pni
ρn

∣∣∣∣∣∣ + ∣∣ fn + f ′
n + f ′′

n

∣∣
⎞
⎠

= lim sup
n→∞

∣∣∣∣∣∣
r′0∑
i=1

ci,kmax

pkmax
i (kmax − 1)!

pni
ρn

∣∣∣∣∣∣ .
Hence, (A7) is proved. �

Appendix 2. Proof of Proposition 4.1

Proof: For convenience and without loss of generality, we
consider on the case where ν = 0. If ν � 0, then z can be
replaced by z − ν.
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To prove 1), first suppose that ρ(G, 0) = 0. Then all of
the poles of G are 0, and thus (15) is a finite sum. Hence
ρ(G, 0) = lim supi→∞ |Li|1/i = 0. Alternatively, suppose
that ρ(G, 0) > 0 and define

Ĝ(ẑ) �=
{
G( 1ẑ ), ẑ ∈ C\{0},
0, ẑ = 0.

Then (15) implies that, for all ẑ ∈ D(0, ρi(Ĝ, 0)),
Ĝ(ẑ) = ∑∞

i=0 Liẑ
i. Thus, the Cauchy-Hadamard for-

mula (Gamelin, 2001, p. 142) implies that ρi(Ĝ, 0) =
1/lim supi→∞ |Li|1/i. Note that

ρi(Ĝ, 0) = min{|ẑ| : ẑ is a pole of Ĝ}
= min{|ẑ| : 1/ẑ is a pole of G}
= min{1/|z| : z is a pole of G}
= 1/max{|z| : z is a pole of G} = 1/ρ(G, 0).

Thus, ρ(G, 0) = 1/ρi(Ĝ, 0) = lim supi→∞ |Li|1/i, and
thus 1) is proved.

To prove 2), 3), and 4), we first prove sufficiency in each
statement and then prove necessity using contradiction.

For the following development we write G in the form
(A5). Thus, assuming ρ � 0, (A6) implies that, for all n�
max {k1, …, kr},

Ln = gnρn (n − 1)!
(n − kmax)!

, (B1)

where, for all n � max {k1, …, kr},

gn
�=

r∑
i=1

ki∑
j=1

ci, j
p j
i ( j − 1)!

(n − kmax)!
(n − j)!

pni
ρn .

Note that (A7) implies that

lim sup
n→∞

|gn| = lim sup
n→∞

∣∣∣∣∣∣
r′0∑
i=1

ci,kmax

pkmax
i (kmax − 1)!

pni
ρn

∣∣∣∣∣∣ . (B2)

For all i = 1, . . . , r′0, since |pi| = ρ, it follows that there
exists θ i � (−π , π] such that ejnθi = pni /ρn. Thus,

lim sup
n→∞

|gn| = lim sup
n→∞

∣∣∣∣∣∣
r′0∑
i=1

ci,kmax

pkmax
i (kmax − 1)!

ejnθi

∣∣∣∣∣∣ .
(B3)

Since p1, . . . , pr′0 are distinct complex numbers, it fol-
lows that θ1, …, θ r � (−π , π] are distinct, thus 3) of
Lemma A1 implies that g∞

�= lim supn→∞ |gn| is a pos-
itive number.

To prove sufficiency in 2), we first consider the case
where ρ

�= ρ(G, 0) ∈ (0, 1). It follows that

lim
n→∞ ρn (n − 1)!

(n − kmax)!
= 0.

Since {gn}∞n=max{k1, ..., kr} is bounded, (B1) implies that

lim
n→∞ Ln = lim

n→∞ gnρn (n − 1)!
(n − kmax)!

= 0.

Next, in the case where ρ = 0, it follows that the num-
ber of nonzero components of {Ln}∞n=0 is finite, and thus
limn → �Ln = 0. Hence, sufficiency in 2) is proved.

To prove sufficiency in 3), note that, since ρ
�=

ρ(G, 0) = 1 and G has no repeated poles in S(0, 1), it
follows that kmax = 1. Substituting kmax = 1 and ρ =
1 into (B1) yields, for all n � max {k1, …, kr}, Ln = gn,
and thus 0 < g∞ = lim supn→∞ |Ln| < ∞. Hence, suffi-
ciency in 3) is proved.

To prove sufficiency in 4), we first consider the
case where ρ

�= ρ(G, 0) = 1 and G has at least one
repeated pole in S(0, 1), that is kmax � 2. Hence
limn→∞ |ρn (n−1)!

(n−kmax)!
| = ∞. Next, in the case where ρ �

(1, �], it follows that limn→∞ |ρn (n−1)!
(n−kmax)!

| = ∞. Hence,
in the case where either ρ � (1, �] or both ρ = 1 and G
has at least one repeated pole in S(0, 1), it follows that

lim
n→∞

∣∣∣∣ρn (n − 1)!
(n − kmax)!

∣∣∣∣ = ∞. (B4)

Next, lim supn→∞ |gn| = g∞ > 0 implies that there exists
a subsequence {gnj}∞j=1 of {gn}∞n=1 such that, for all j � 1,
|gnj | ≥ 1

2g∞ > 0. Replacing n in (B1) by nj yields

lim sup
j→∞

|Lnj | = lim sup
j→∞

∣∣∣∣gnjρ
nj

(nj − 1)!
(nj − kmax)!

∣∣∣∣
≥ 1

2
g∞ lim sup

j→∞

∣∣∣∣ρnj
(nj − 1)!

(nj − kmax)!

∣∣∣∣ . (B5)

Since, by (B4), lim sup j→∞ |ρnj (nj−1)!
(nj−kmax)!

| = ∞, (B5)
implies that

lim sup
n→∞

|Ln| ≥ lim sup
j→∞

|Lnj | = ∞.

Hence sufficiency in 4) is proved.
To prove necessity in 2), suppose that ρ(G, 0) = 1

and every pole of G in S(0, 1) is not repeated. Then,
sufficiency in 3) implies that 0 < lim supn→∞ |Ln| <

∞, which contradicts limn → �Ln = 0. Next,
suppose that either ρ(G, 0) � (1, �] or both ρ(G, 0) =
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1 and G has at least one repeated pole in S(0, 1). Then,
sufficiency in 4) implies that lim supn→∞ |Ln| = ∞,
which contradicts limn → �Ln = 0. Thus, limn → �Ln = 0
implies ρ(G, 0) � [0, 1). Hence, necessity in 2) is proved.

To prove necessity in 3), suppose that ρ(G, 0) �
[0, 1). Then, sufficiency in 2) implies that limn → �Ln
= 0, which contradicts 0 < lim supn→∞ |Ln| < ∞.
Next, suppose that either ρ(G, 0)� (1,�] or both ρ(G, 0)
= 1 and G has at least one repeated pole in S(0, 1). Then,
sufficiency in 4) implies that lim supn→∞ |Ln| = ∞,
which contradicts 0 < lim supn→∞ |Ln| < ∞. Thus,
0 < lim supn→∞ |Ln| < ∞ implies that ρ(G, 0) = 1

and every pole of G in S(0, 1) is not repeated. Hence,
necessity in 3) is proved.

To prove necessity in 4), suppose that ρ(G, 0) �
[0, 1). Then, sufficiency in 2) implies that limn → �Ln
= 0, which contradicts lim supn→∞ |Ln| = ∞. Next,
suppose that ρ(G, 0) = 1 and every pole of G
in S(0, 1) is not repeated. Then, sufficiency in 3)
implies that 0 < lim supn→∞ |Ln| < ∞, which contra-
dicts lim supn→∞ |Ln| = ∞. Thus, lim supn→∞ |Ln| = ∞
implies that either ρ(G, 0) � (1, �] or both ρ(G, 0) = 1
and G has at least one repeated pole in S(0, 1). Hence,
necessity in 4) is proved. �
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