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T
he problem of estimating the state of a dynamical
system based on limited measurements arises in
many applications. For the case of a linear system
with known dynamics and Gaussian noise, the
classical Kalman filter (KF) provides the optimal

solution [1], [2]. However, state estimation for nonlinear
systems remains a challenging problem of intense research
interest. Optimal nonlinear filters [3] are often infinite
dimensional and thus are difficult to implement [4]. Within
a deterministic setting, nonlinear observers are available for
systems of special structure [5], [6]. Except for systems of
special structure, however, approximate filters are usually
implemented in practice.

Two main approaches are available for approximate non-
linear filtering. The first approach is based on analytically or
numerically linearizing the nonlinear dynamics and
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measurement map and then employing the classical KF
equations. For example, the extended KF (EKF) [1], [2]
uses nonlinear dynamics to propagate the state estimate
as well as the Jacobians of the dynamics and output maps
to propagate the pseudo error covariance. The EKF is
often highly effective, and documented applications
cover an extraordinarily broad range of disciplines, from
motor control [7] to weather forecasting [8].

The second approach to approximate nonlinear state
estimation uses a collection of state samples to approxi-
mate the state estimate and its error covariance. These par-
ticle-filter approaches include the unscented KF (UKF)
[14]–[16] and ensemble [17], [18] KFs. In particular, the
UKF does not propagate the error covariance (or pseudo
error covariance) using a Riccati equation but rather deter-
ministically constructs the covariance by combining a col-
lection of state-estimate samples.

Sufficient conditions on the initial esti-
mation error and noise properties that
guarantee that the estimation error is
exponentially bounded in mean
square are given for EKF in
[9]–[11] and UKF in [12] and [13].
Although conditions that ensure
stability and convergence are often
conservative for specific applica-
tions, these results provide a rationale
for the EKF and UKF formalisms.

The goal of this article is to illustrate
and compare EKF and UKF for the problem of
satellite trajectory estimation, also known as orbit deter-
mination [19]. Various problems and alternative formula-
tions can be considered for orbit determination based on
the number and type of available measurements, includ-
ing range, range rate, and angle (azimuth and elevation).
The orbital dynamics of each body can be formulated
either in terms of the six orbital parameters or the three
instantaneous positions and three instantaneous velocities
along the orbit. The differential equations for the orbital
parameters can be found, for example, in [20, pp.
273–307]. These equations are singular, however, for the
basic case of circular orbits due to division by the eccen-
tricity. For orbits that are constant over long periods of
time, static parameter estimation can alternatively be used
to estimate the piecewise constant orbital parameters,
although the complexity of the resulting nonlinear pro-
gramming problem is an open question. In the present
article, we adopt the Cartesian formulation due to its sim-
plicity in deriving and applying estimation methods for-
mulated in terms of continuous-time differential
equations. The resulting problem provides a benchmark
test of nonlinear estimation algorithms, which is our prin-
cipal motivation for this study.

Since the orbital dynamics and the measurement map
are nonlinear, nonlinear estimation techniques are need-

ed. In addition, since measurements are available with a
specified sample interval, we consider the sampled-data
EKF (SDEKF) of [2, p. 188] and the sampled-data UKF
(SDUKF) of [16] as approximate solutions to the spacecraft
trajectory estimation problem.

Range-only orbit determination is considered in [21]
and [22] using least-squares approaches and orbital-ele-
ment state representations. The use of angle-only data is
considered in [23], which develops a specialized filter to
exploit the monotonicity of angles in orbital motion.
Orbit determination using range and angle measure-
ments from a fixed-location radar tracking system is
considered in [24],  where UKF is found to have
improved performance relative to EKF in relation to ini-
tialization with clustered measurements available dur-
ing a limited portion of each satellite pass. Issues that

arise in the use of range-rate (Doppler) mea-
surements are discussed in [25].

Orbit determination with measure-
ments provided by a constellation

of satellites is considered in [26]
and [27]. The tracking and data
relay satellite system (TDRSS)
uses satellites in geostationary
orbits to track satellites in low-

Earth orbit (LEO), while the global
positioning system (GPS) uses a

constellation of satellites with
pseudorange measurements, that is,

range measurements with clock differentials, to
determine the location of the user.

In this article we illustrate and compare SDEKF and
SDUKF by considering a constellation of six spacecraft in
circular LEO that tracks a satellite in geosynchronous orbit.
Unlike the GPS configuration, we assume that all six satel-
lites are in equatorial orbits. This assumption renders the
estimation problem more difficult due to loss of observ-
ability as the target satellite leaves its equatorial orbit due
to a change-in-inclination maneuver. Although inclining
the orbits of the observing satellites makes the problem
easier—and thus is the logical choice in practice—we con-
sider the equatorial case because of the challenge it poses
to nonlinear estimation algorithms. We also suspect,
although we do not investigate this point, that unobserv-
ability can arise for alternative orbital configurations. If so,
the deliberate choice of equatorial orbits provides a trans-
parent case in which unobservability arises. In any event,
the principles and methods discussed in this article can
readily be applied to alternative configurations of the tar-
get and spacecraft.

Since the observing spacecraft have much shorter peri-
ods than the target satellite, we must account for blockage
by the Earth, and thus the number of available measure-
ments varies with time. We are particularly interested in
the ability of the observing spacecraft to acquire and track
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the target satellite with sparse measurements, that is, with
a large sample interval. This objective is motivated by the
need for satellites to simultaneously track a large number
of objects. We thus compare the performance of the estima-
tors for a range of sample intervals.

We focus on three main problems. First, we investi-
gate the ability of the constellation of observing satel-
lites to acquire the target satellite under poor initial
information. Next, we consider the ability to track the
eccentricity of the target satellite’s orbit when it remains
in an equatorial orbit. Finally, we consider the ability of
the filters to track the target satellite when it changes its
inclination away from the equatorial plane. Numerical
examples are given to analyze the performance of both
filters for each problem.

EQUATIONS OF MOTION
We consider a single body, called the target, orbiting the
Earth. We assume a uniform, spherical Earth. The posi-
tion vector �r of the target relative to the center of the
Earth satisfies

�̈r = −μ

r3
�r + �w , (1)

where r � |�r| is the distance from the target to the center
of the Earth, �w denotes perturbing forces, such as
thrusting, drag, and solar pressure, per unit mass acting
on the target, μ � 398, 600 km3/s2 is the Earth’s gravita-
tional parameter, and (ignoring forces applied to Earth)
the frame derivatives are taken with respect to an arbi-
trary inertial frame I. Introducing the velocity vector
�v � �̇r, we can rewrite (1) as

�̇r = �v , (2)

�̇v = −μ

r3
�r + �w . (3)

It is traditional to choose the inertial reference frame
I so that the X-axis points toward the Sun on the first
day of spring (the vernal equinox line), the Z-axis points
through the geographic North pole of the Earth along its
axis of rotation, and the Y-axis completes a right-handed
coordinate system. The location of the origin of I is irrel-
evant [28] but is traditionally taken to be the center of
the Sun. This description is approximate since the
Earth’s rotational axis is not fixed inertially [29, pp.
150–153]. However, such details play no role in the sub-
sequent analysis.

Resolving �r, �v, and �w in I according to

�rI =
⎡
⎣ x

y
z

⎤
⎦ , �vI =

⎡
⎣ vx

vy

vz

⎤
⎦ , �wI =

⎡
⎣ wx

wy

wz

⎤
⎦ ,

the equations of motion (2) and (3) become

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
ż
v̇x

v̇y

v̇z

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

−(μ/r3)x + wx

−(μ/r3)y + wy

−(μ/r3)z + wz

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4)

where r �
√

x2 + y2 + z2. We can rewrite (4) as

Ẋ(t) = f (X(t)) + W(t), (5)

where (omitting the argument t on the right-hand side)

X(t) �

⎡
⎢⎢⎢⎢⎢⎢⎣

x
y
z
vx

vy

vz

⎤
⎥⎥⎥⎥⎥⎥⎦

, f (X(t)) �

⎡
⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

−(μ/r3)x
−(μ/r3)y
−(μ/r3)z

⎤
⎥⎥⎥⎥⎥⎥⎦

,

W(t) �

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

wx

wy

wz

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

The vector X = X(t) ∈ R6 provides a complete repre-
sentation of the target’s state, which is characterized by
its position and velocity. When the satellite is moving
along an orbit, such as a circle, ellipse, parabola, or
hyperbola, it is often useful to represent the satellite
motion in terms of the six orbital parameters given by
the specific angular momentum ha, the inclination i, the
right ascension of the ascending node �, the eccentrici-
ty e, the argument of perigee ω, and the true anomaly
ν(t). The angles �, i, and ω comprise a (3, 1, 3) sequence
of Euler rotations that transform the inertial frame I to
the orbital frame. The angular momentum ha and eccen-
tricity e specify the size and shape of the orbit, while
the true anomaly ν(t) is a time-dependent parameter
that represents the position of the satellite along its
orbit. The nonlinear transformations that convert posi-
tion and velocity into orbital elements are given in
“Orbital Elements.”

MEASUREMENT MODELS
We consider the case in which satellites in LEO are observ-
ing a target satellite in a geostationary orbit. We assume
that the LEO satellites are spaced uniformly around the
Earth in circular equatorial orbits. All available satellite
measurements are assumed to occur simultaneously at a
fixed sample interval of size h.
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Measurements from the ith satellite are unavailable
when the line-of-sight path between the ith satellite
and the target is blocked by the Earth. To determine
blockage, we note that the Earth’s surface blocks the
path from the ith satellite, located at (xi, yi, zi), to the
target, located at (x, y, z), if and only if there exists
α ∈ [0, 1] such that Di(α) < RE, where RE � 6378 km is
the radius of the Earth and

Di(α)�√
[(1 − α)xi+αx]2 + [(1−α)yi + αy]2+[(1 − α)zi + αz]2.

The smallest value of Di(α) is attained for α = αi, where

αi � − xi(x − xi) + yi(y − yi) + zi(z − zi)

(x − xi)
2 + (y − yi)

2 + (z − zi)
2 .

Here, we present a method for calculating the six orbital ele-

ments ha, i,�, e, ω, and ν from the target position �r and

velocity �v. Figure S1 illustrates the spacecraft orbit and orbital

elements. The inertial reference frame I, defined in the main text,

is denoted by unit vectors �I , �J, �K . First, we calculate the norm of

the orbital distance �r , the norm of the orbital velocity �v, and the

radial velocity vr by means of

r
�=

√
�r · �r , (S1)

v
�=

√
�v · �v , (S2)

vr
�= �r · �v

r
. (S3)

Note that vr > 0 indicates that the target is moving away from

perigee.

The specific angular momentum �ha lies normal to the orbital

plane and is obtained by

�ha
�= �r × �v , (S4)

ha
�=

√
�ha · �ha . (S5)

Inclination i is the angle between the equatorial plane and the

orbital plane. Equivalently, inclination is the angle between the

inertial Z-axis and �ha, which is normal to the orbital plane, so that

i
�= cos−1

( �ha · �K
ha

)
(S6)

Next, we calculate the node line �N and its magnitude N by

�N �= �K × �ha , (S7)

N
�=

√
�N · �N , (S8)

which locate the point at which the target’s orbit ascends from the

equatorial plane. The right ascension of the ascending node

�
�= cos−1

( �N · �I
N

)
(S9)

represents the angle between the inertial X-axis and the node line
�N . Note that, if �N · �J ≥ 0, then 0◦ ≤ � < 180 ◦ whereas, if
�N · �J < 0, then 180◦ ≤ � < 360◦ .

The eccentricity vector �e, which points toward the target

orbit’s perigee, is obtained by

�e �= 1
μ

[(
v2 − μ

r

)
�r − r vr �v

]
, (S10)

e
�=

√
�e · �e. (S11)

The argument of perigee ω denotes the angle between the node

line and the eccentricity vector, that is,

ω
�= cos−1

( �N · �e
Ne

)
. (S12)

Note that, if �e · �K ≥ 0, then 0◦≤ ω < 180◦, whereas, if �e · �K < 0,

then 180◦≤ ω < 360◦. Finally, the true anomaly ν, which repre-

sents the angle between the eccentricity vector and the target’s

position vector, is calculated by

ν = cos−1
( �e · �r

er

)
. (S13)

Note that, if vr ≥ 0, then 0◦ ≤ ν < 180◦ whereas, if vr < 0, then

180◦ ≤ ν < 360◦ .

These nonlinear transformations along with a Matlab routine

are given in [29].

FIGURE S1  Orbit orientation with respect to the geocentric-equato-
rial frame. The six orbital elements are the specific angular
momentum ha, inclination i , right ascension of the ascending node
�, eccentricity e, argument of perigee ω, and true anomaly ν.
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Hence, we compute αi, determine whether αi lies in the
interval [0, 1], and then check the blockage condition
Di(αi) < RE.

Range-Only Measurements
For range-only trajectory estimation, we assume that range
measurements are available from pk satellites at times
t = kh, where k = 1, 2, . . . . Note that the number pk of
satellites observing the target at time kh is a function of k
due to blockage by the Earth. The measurement
Y = Y(kh) ∈ Rpk is given by (omitting the argument kh on
the right-hand side)

Y(kh) =

⎡
⎢⎣

d1(x, y, z, x1, y1, z1)
...

dpk(x, y, z, xpk , ypk , zpk)

⎤
⎥⎦ +Vd(kh), (7)

where, for i = 1, . . . , pk,

di(x, y, z, xi, yi, zi) � [(x − xi)
2 + (y − yi)

2 + (z − zi)
2]1/2

(8)

is the distance from the ith satellite to the target, and
Vd(kh) ∈ Rpk denotes range-measurement noise.

Range and Angle Measurements
We now assume that azimuth- and elevation-angle data
are used in conjunction with range data. Azimuth refers to
the counterclockwise angle from the inertial X-axis to the
target projected onto the inertial XY-plane, while elevation
refers to the angle (positive above the XY-plane) from the
projection of the target onto the inertial XY-plane to the
target. The measurement Y = Y(kh) ∈ R3pk is given by
(again omitting the argument kh)

Y(kh) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1(x, y, z, x1, y1, z1)
...

dpk(x, y, z, xpk , ypk , zpk)

A1(x, y, z, x1, y1, z1)
...

Apk(x, y, z, xpk , ypk , zpk)

E1(x, y, z, x1, y1, z1)
...

Epk(x, y, z, xpk , ypk , zpk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[

Vd(kh)
Vθ (kh)

]
, (9)

where, for i = 1, . . . , pk, with j = √−1,

Ai(x, y, z, xi, yi, zi) � 	 (x − xi + j (y − yi)) , (10)

Ei(x, y, z, xi, yi, zi) � 	
(√

(x − xi)
2 + (y − yi)

2 + j (z − zi)

)
,

(11)

are the azimuth and elevation angles, respectively, from
the ith satellite to the target, and Vθ (kh) ∈ R2pk is the angle-
measurement noise.

Range-rate measurements can be used to further aug-
ment the available measurements. For i = 1, . . . , pk,

ḋi(x, y, z, xi, yi, zi, ẋ, ẏ, ż, ẋi, ẏi, żi) �
(x − xi)(ẋ − ẋi) + (y − yi)(ẏ − ẏi) + (z − zi)(ż − żi)

di(x, y, z, xi, yi, zi)

is the range-rate measurement from the ith satellite to the
target. Simulations (not included) that incorporate range-
rate measurements show little estimation improvement over
the use of range and angle measurements alone. Hence,
range-rate measurements are not considered further.

For generality, we write the measurement map given by
(7) for range-only data and given by (9) for range and
angle data as

Y(kh) = g(X(kh)) +V(kh), (12)

where V(kh) =Vd(kh) for range-only data and

V(kh) =
[

Vd(kh)
Vθ (kh)

]

for range and angle data.

FORECAST AND DATA-ASSIMILATION STEPS
SDEKF and SDUKF are two-step estimators. In the forecast
step, model information is used during the interval
[(k − 1)h, kh], while, in the data-assimilation step, a data
update is performed at each time t = kh. We denote the
forecast state estimate X̂f(t) by

X̂f(t) �
[

x̂f ŷf ẑf v̂f
x v̂f

y v̂f
z

]T

and the forecast error covariance Pf
0(t) by

Pf
0(t) � E

[
(X(t) − X̂f(t))(X(t) − X̂f(t))T

]

before data updates. After data updates, the data-
assimilation state estimate X̂da(kh) is given by

X̂da(kh) �
[

x̂da ŷda ẑda v̂da
x v̂da

y v̂da
z

]T
,

while the data-assimilation error covariance Pda
0 (kh) is

given by

Pda
0 (kh) � E[(X(kh) − X̂da(kh))(X(kh) − X̂da(kh))T].

In the following sections, we present the SDEKF and
SDUKF filters. Since these filters are approximate, we can-
not propagate the true forecast and data-assimilation error
covariances Pf

0(t) and Pda
0 (kh). Rather, we propagate the

pseudo forecast-error covariance Pf(t) and the pseudo
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data-assimilation error covariance Pda(kh). Let X̂da(0) and
Pda(0) denote the initial state estimate and the initial error
covariance, respectively. Pda(0) accounts for uncertainty in
the initial estimate.

SAMPLED-DATA EXTENDED KALMAN FILTER
In this section we summarize the equations for SDEKF. For
details, see [1] and [2].

Forecast Step
The forecast (data-free) step of SDEKF consists of the state-
estimate propagation

˙̂X
f
(t) = f (X̂f(t)), t ∈ [(k − 1)h, kh] , (13)

as well as the forecast pseudo-error covariance propagation

Ṗf(t) = Â(t)Pf(t)+ Pf(t)ÂT(t)+ Q, t ∈ [(k − 1)h, kh], (14)

where

Â(t) � ∂ f (X(t))
∂ t

∣∣∣∣
X(t)=X̂f(t)

is the Jacobian of f evaluated along the trajectory of (13).
In the traditional linear setting, Q represents the state noise
covariance, while, in the orbit-estimation problem, Q
accounts for unmodeled effects such as perturbing forces.
The Jacobian Â(t) is given by

Â(t) �
[

03×3 I3
Â0(t) 03×3

]
,

where (omitting the argument t)

A0(t) � μ

⎡
⎢⎢⎣

3(x̂ f)2

(r̂ f)5 − 1
(r̂ f)3

3x̂ f ŷf

(r̂ f)5
3x̂ f ẑ f

(r̂ f)5

3x̂ f ŷf

(r̂ f)5
3(ŷf)2

(r̂ f)5 − 1
(r̂ f)3

3ŷf ẑ f

(r̂ f)5

3x̂ f ẑ f

(r̂ f)5
3ŷf ẑ f

(r̂ f)5
3(ẑ f)2

(r̂ f)5 − 1
(r̂ f)3

⎤
⎥⎥⎦ ,

where r̂f �
√

(x̂f)2 + (ŷf)2 + (ẑf)2 .
A timing diagram illustrating the sequence of calcula-

tions is shown in Figure 1. Equations (13) and (14) are
numerically integrated online from (k − 1)h to kh with ini-
tial values obtained from the data-assimilation step
described below, that is, X̂f((k − 1)h) = X̂da((k − 1)h) and
Pf((k − 1)h) = Pda((k − 1)h). Since no data injection occurs
during the time interval [(k − 1)h, kh], variable-step-size
integration with specified tolerance is used for efficiency
and accuracy as long as the integration of (13) and (14) is
completed before time kh occurs. Let X̂f(kh) and Pf(kh)
denote the values of X̂f and Pf at the right-hand endpoint
of the interval [(k − 1)h, kh]. The overall system can be
viewed as a sampled-data system in which continuous-
time dynamics are interrupted by instantaneous state
jumps [30].

Data-Assimilation Step
Let xi(kh), yi(kh), zi(kh) denote the inertial-frame coordi-
nates of the ith satellite at time kh, assumed to be known
accurately. For the data-assimilation step, the linearized
measurement map

Ĉ(k) � ∂g(X(kh))
∂k

∣∣∣∣
X(kh)=X̂f(kh)

for range-only data is given by
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FIGURE 1  Timing diagram for the sampled-data extended Kalman filter. The forecast and data-assimilation steps are assumed to occur in
zero time at time t = kh.
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Ĉ(k) �

⎡
⎢⎢⎢⎣

x̃f
1(k)

d̂f
1(k)

ỹf
1(k)

d̂f
1(k)

z̃f
1(k)

d̂f
1(k)

01×3

...
...

...
...

x̃f
pk

(k)

d̂f
pk

(k)

ỹf
pk

(k)

d̂f
pk

(k)

z̃f
pk

(k)

d̂f
pk

(k)
01×3

⎤
⎥⎥⎥⎦ , (15)

where, for i = 1, . . . , pk,

x̃f
i(k) � x̂f(kh) − xi(kh),

ỹf
i(k) � ŷf(kh) − yi(kh),

z̃f
i(k) � ẑf(kh) − zi(kh),

d̂f
i(k) � di(x̂

f(kh), ŷf(kh), ẑf(kh), xi(kh), yi(kh), zi(kh)),

and di(·) is defined by (8). For range and angle data, the
linearized measurement map is given by

Ĉ(k) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃f
1(k)

d̂f
1(k)

ỹf
1(k)

d̂f
1(k)

z̃f
1(k)

d̂f
1(k)

01×3

...
...

...
...

x̃f
pk

(k)

d̂f
pk

(k)

ỹf
pk

(k)

d̂f
pk

(k)

z̃f
pk

(k)

d̂f
pk

(k)
01×3

− ỹf
1(k)

(δ̂f
1(k))

2

x̃f
1(k)

(δ̂f
1(k))

2 0 01×3

...
...

...
...

− ỹf
pk

(k)

(δ̂f
pk

(k))2

x̃f
pk

(k)

(δ̂f
pk

(k))2 0 01×3

− x̃f
1(k)z̃

f
1(k)

δ̂f
1(k)(d̂f

1(k))
2

− ỹf
1(k)z̃

f
1(k)

δ̂f
1(k)(d̂f

1(k))
2

δ̂f
1(k)

(d̂f
1(k))

2
01×3

...
...

...
...

− x̃f
pk

(k)z̃f
pk

(k)

δ̂f
pk

(k)(d̂f
pk

(k))2
− ỹf

pk
(k)z̃f

pk
(k)

δ̂f
pk

(k)(d̂f
pk

(k))2

δ̂f
pk

(k)

(d̂f
pk

(k))2
01×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

where, for i = 1, . . . , pk,

δ̂f
i(k) �

√(
x̃f

i(k)
)2 +

(
ỹf

i(k)
)2

.

Furthermore, the data-assimilation gain K(k) is given by

K(k) = Pf
xy(k)[P

f
yy(k)]

−1, (17)

where the pseudo forecast cross covariance and pseudo
forecast innovation covariance are, respectively, given by

Pf
xy(k) = Pf(kh)ĈT(k), (18)

Pf
yy(k) = Ĉ(k)Pf(kh)ĈT(k) + R, (19)

where R is the covariance of the measurement noise V(kh).
The data-assimilation state estimate is given by

Xda(kh) = X̂f(kh) + K(k)[Y(kh) − Ŷf(k)], (20)

Pda(kh) = Pf(kh) − K(k)Pf
yy(k)KT(k), (21)

where, for range-only data,

Ŷf(k) �
[

d̂f
1(k) · · · d̂f

pk
(k)

]T
(22)

and, for range and angle data,

Ŷf(k) �
[

d̂f
1(k) · · · d̂f

pk
(k) Âf

1(k) · · · Âf
pk

(k) Êf
1(k) · · · Êf

pk
(k)

]T
,

(23)

where, for i = 1, . . . , pk,

Âf
i(k) � Ai(x̂

f(kh), ŷf(kh), ẑf(kh), xi(kh), yi(kh), zi(kh)),

Êf
i(k) � Ei(x̂

f(kh), ŷf(kh), ẑf(kh), xi(kh), yi(kh), zi(kh)),

where Ai(·) and Ei(·) are defined by (10) and (11). The
values X̂da(kh) and Pda(kh) are used to initialize (13) and
(14) in the next interval [kh, (k + 1)h].

UNSCENTED KALMAN FILTER
An alternative approach to state estimation for an nth-
order nonlinear system is UKF [14]. Unlike EKF, UKF does
not rely on linearization of the dynamical equations and
measurement map. Instead, UKF uses the unscented trans-
form (UT) [15], which is a numerical procedure for approx-
imating the posterior mean and covariance of a random
vector obtained from a nonlinear transformation. 

Let X denote a random vector whose mean X̄ ∈ Rn

and covariance P̄ ∈ Rn×n are assumed to be known.
Also, let Y be a random vector with mean Ȳ ∈ Rp and
covariance P̄yy ∈ Rp×p obtained from the nonlinear
transformation Y = g(X). The application of UT to esti-
mate Ȳ and P̄yy begins with a set of deterministically
chosen sample vectors Xj ∈ Rn, j = 0, . . . , 2n, known as
sigma points. To satisfy

2n∑
j=0

γx, jXj = X̄

and

2n∑
j=0

γP, j(Xj − X̄)(Xj − X̄)T = P̄ ,

the sigma-point matrix given by X � [X0 X1 . . . X2n]
∈ Rn×(2n+1) is chosen as

X � X̄11×(2n+1) + √
n + λ [ 0n×1 PCh −PCh ] ,

with weights
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γx,0 � λ

n + λ
, γP,0 � λ

n + λ
+ (1 − α2 + β),

γx, j = γP, j �
1

2(n + λ)
, j = 1, . . . , 2n,

where PCh ∈ Rn×n is the lower triangular Cholesky square
root satisfying

PChPT
Ch = P̄,

0 < α ≤ 1, β > 0, κ > 0, and λ � α2(n + κ) − n > −n deter-
mines the spread of the sigma points around X̄. In practice,
α, β , and κ are chosen by numerical experience to improve
filter convergence [15]. Propagating each sigma point
through g yields

Yj = g(Xj), j = 0, . . . , 2n,

such that

Ȳ =
2n∑

j=0

γx, jYj,

P̄yy =
2n∑

j=0

γP, j[Yj − Ȳ][Yj − Ȳ]T.

UT yields the true mean Ȳ and true covariance P̄yy if
g = g1 + g2, where g1 is linear and g2 is quadratic [15]. Oth-
erwise, Ȳ is a pseudo mean, and P̄yy is a pseudo covariance.

SAMPLED-DATA UNSCENTED KALMAN FILTER
In this section we present the equations for SDUKF devel-
oped in [16]. As in the case of SDEKF, the procedure con-

sists of a forecast step and a data assimilation step. These
equations are presented for the case n = 6 in accordance
with the satellite equations of motion (5) and (6).

Forecast Step
The forecast step of SDUKF consists of the sigma-point
propagation

X (t) = X̂f(t)11×13 + √
λ + 6 [ 06×1 Pf

Ch(t) −Pf
Ch(t) ] ,

t ∈ [(k − 1)h, kh], (24)

˙̂X
f
(t) �

12∑
j=0

γx, j f (Xj(t)), t ∈ [(k − 1)h, kh], (25)

as well as the pseudo error covariance propagation

Ṗf(t) =
12∑

j=0

γP, j[Xj(t) − X̂f(t)][ f (Xj(t)) − ˙̂X
f
(t)]T

+
12∑

j=0

γP, j[ f (Xj(t)) − ˙̂X
f
(t)][Xj(t) − X̂f(t)]T + Q,

t ∈ [(k − 1)h, kh]. (26)

A timing diagram illustrating the sequence of calculations
of SDUKF is shown in Figure 2. Equations (25) and (26) are
numerically integrated online with initial values
Xf((k − 1)h) = Xda((k − 1)h) and Pf((k − 1)h)=Pda((k − 1)h)
given by the data-assimilation step at time (k − 1)h. Let
X̂f(kh) and Pf(kh) denote, respectively, the values of X̂f and
Pf at the right-hand endpoint of the interval [(k − 1)h, kh].

Data-Assimilation Step
The data update step is given by
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FIGURE 2  Timing diagram for the sampled-data unscented Kalman filter. The forecast and data-assimilation steps are assumed to occur in
zero time at time t = kh.
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X (kh) = X̂f(kh)11×13 + √
λ + 6

×
[

06×1 Pf
Ch(kh) −Pf

Ch(kh)
]
, (27)

X̂da(kh) = X̂f(kh) + K(k)[Y(kh) − Ŷf(k)], (28)

Pda(kh) = Pf(kh) − K(k)Pf
yy(k)KT(k), (29)

where

K(k) = Pf
xy(k)

[
Pf

yy(k)
]−1

, (30)

Ŷf(k) =
12∑

j=0

γx, jYj(k), (31)

Pf
xy(k) =

12∑
j=0

γP, j [Xj(kh) − X̂f(kh)][Yj(k) − Ŷf(k)]T, (32)

Pf
yy(k) =

12∑
j=0

γP, j [Yj(k) − Ŷf(k)][Yj(k) − Ŷf(k)]T + R. (33)

For j = 0, . . . , 12, Yj(k) is given for range measurements by

Yj(k) � [D1(k) · · · Dpk(k) ]T , (34)

where, for i = 1, . . . , pk,

Di(k) � di(Xi,1(kh),Xi,2(kh),Xi,3(kh), xi(kh), yi, (kh)zi(kh))

and di(·) is defined in (8). Alternatively, for range and
angle measurements, Yj(k) is given by (35), shown at the
bottom of the page, where, for i = 1, . . . , pk,

Ai(k) � Ai(Xi,1(kh),Xi,2(kh),Xi,3(kh), xi(kh), yi(kh), zi(kh)),

Ei(k) � Ei(Xi,1(kh),Xi,2(kh),Xi,3(kh), xi(kh), yi(kh), zi(kh)),

and Ai(·) and Ei(·) are defined in (10) and (11), respective-
ly. The values X̂da(kh) and Pda(kh) are used to initialize
(25) and (26) in the next interval [kh, (k + 1)h].

NUMERICAL EXAMPLES
We consider the case in which six satellites in circular LEO
at a radius of 6600 km are observing a target satellite in an
equatorial geosynchronous orbit at a radius of 42,164 km.
The number six represents the smallest number of satel-
lites for which at least three satellites are always able to
view the target. In fact, with six satellites in circular LEO,
pk switches between three and four. 

Assuming perfect knowledge of the target’s initial con-
dition and assuming that the target is not maneuvering

and all perturbing forces such as drag and solar pressure
are known, it is possible to predict the target’s motion with
arbitrary accuracy without using measurements. However,
when either the initial state is unknown, the target is
maneuvering, or perturbing forces are present, measure-
ments are needed to track the target. We consider the first
two cases using both SDEKF and SDUKF.

Performance Assessment
Since SDEKF and SDUKF provide suboptimal estimates of
the spacecraft trajectory, we use four metrics to compare
their performance over an m-run Monte Carlo simulation.
Let X̂da

i, j (kh) denote the state estimate of Xi(kh), i = 1, . . . , 6,
for the jth Monte Carlo simulation, where j = 1, . . . , m.

First, the accuracy of the state estimates X̂da
i, j (kh) given by

(20) and (28), respectively, over [k0, kf] and over m Monte
Carlo simulations is quantified by the root mean square
error (RMSE) index

RMSEi � 1
m

m∑
j=1

⎡
⎣

√√√√ 1
kf − k0 + 1

kf∑
k=k0

(
Xi(kh) − X̂da

i, j (kh)
)2

⎤
⎦ ,

i = 1, . . . , 6, (36)

where Xi(kh) is the true value of the state.
We measure how biased the state estimate X̂da

i, j (kh) is by
evaluating the RMSE of the sample mean of the estimate error
over [k0, kf] and over m Monte Carlo simulations, that is,

Bi �

√√√√√ 1
kf − k0 + 1

kf∑
k =k0

⎡
⎣ 1

m

m∑
j=1

(
Xi(kh) − X̂da

i, j (kh)
)⎤
⎦

2

,

i = 1, . . . , 6. (37)

Simulation results (not included) show that the indices
RMSEi and Bi are similar. Hence, Bi is not considered fur-
ther. Note that, to calculate RMSEi and Bi, X(kh) must be
known, and thus these indices are restricted to simulation
studies and cannot be evaluated in practice.

Next, let Pda
j (kh) denote the pseudo error covariance

for the jth Monte Carlo simulation, where j = 1, . . . , m.
Then we assess how informative [31] the state estimate
X̂da

j (kh) is by evaluating the mean trace (MT) of Pda
j (kh)

given by (21) and (29) over [k0, kf] and over m Monte
Carlo simulations, that is,

MT � 1
m

m∑
j=1

⎡
⎣ 1

kf − k0 + 1

kf∑
k =k0

tr Pda(kh)

⎤
⎦ . (38)

Yj(k) � [D1(k) · · · Dpk(k) A1(k) · · · Apk(k) E1(k) · · · Epk(k) ]T , (35)
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Note that MT quantifies the uncertainty in the esti-
mate X̂da(kh).

Finally, we measure the computational effort of SDEKF
and SDUKF needed to compute X̂da(kh) from
X̂da((k − 1)h). We present the average CPU processing
time per time step h.

Initialization
To obtain X̂f(t) and Pf(t), we integrate (13), (14), (25), and
(26) using the variable-step-size Runge-Kutta algorithm
ode45 of Matlab with tolerance set to 10−12. This tolerance
is necessitated by the pseudo error covariance propagation
(26) between measurements. We test various values of
X̂da(0) corresponding to values of the initial true-anomaly
error. To enhance the stability of the filters [1], [2], [14],
[16], we set Q = 10−2I6.

Furthermore, we initialize Pda(0) as the diagonal matrix
Pda(0) = diag(100, 100, 1, 1, 1, 0.1) . In doing so, however,
Figure 3(a) shows that convergence is not attained for
SDEKF for initial true-anomaly errors larger than 90◦. In
fact, the third column of the linearized measurement map
Ĉ(k) given by (15) for range-only measurements, represent-
ing the out-of-plane position component, is zero when the
observing satellites are in an equatorial orbit and the out-
of-plane position estimate ẑf(kh) is zero. Since the lin-
earized measurement map is used to update the filter gain
K(k) and covariance Pda(kh), depending on the choice of
Pda(0) , the out-of-plane position estimate ẑf(kh) is
unchanged at each time step regardless of the z-component

of the target satellite’s position. This difficulty is thus due
to the lack of observability of the linearized dynamics.

However, by choosing Pda(0) to be the nondiagonal
matrix Pda(0) = diag(100, 100, 1, 1, 1, 0.1) + 10−2 16×6 , both
filters exhibit global convergence, that is, convergence is
attained for all initial true-anomaly errors between ±180◦;
see Figure 3(b). For the remainder of this article, we use
this choice of Pda(0).

Alternatively, we can overcome the convergence issue
discussed above either by considering the case in which
the geometry of the observing satellites is not entirely
coplanar or by including angle (azimuth and elevation)
measurements in addition to range data. Simulations (not
included) show that, for these cases, no substantial
improvement in the accuracy of the estimates is obtained
over the case in which a nondiagonal Pda(0) is chosen.

To implement SDUKF, we set α = 1, β = 2, and κ = 0.
For further details, see [14].

Target Acquisition
We first consider the ability of SDEKF and SDUKF to
acquire the target, that is, to locate the target despite ini-
tial position and velocity errors. We set the sample inter-
val to be h = 1 s and introduce Gaussian measurement
noise with a standard deviation of 0.1 km, which corre-
sponds to R = 0.01I6 km2 in (19) and (33). For initial esti-
mates that are erroneous by 180◦, Figure 4 shows that the
SDUKF estimates are more accurate than the SDEKF esti-
mates. This case is illustrated in Figure 3(b). The same
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FIGURE 3  Sampled-data extended Kalman filter (SDEKF) and sampled-data unscented Kalman filter (SDUKF) target-position estimates ×
and ◦, respectively, with an initial true-anomaly error of 180◦ . The initial location of the target is at 3:00. In (a), we set
Pda(0) = diag(100, 100, 1, 1, 1, 0.1), while in (b), we set a nondiagonal Pda(0) = diag(100, 100, 1, 1, 1, 0.1) + 10−2 16×6 . Range is mea-
sured with sample interval h = 1 s from six low-Earth-orbit (LEO) satellites (whose tracks are shown), and with Gaussian measurement
noise whose standard deviation is 0.1 km and thus with R = 0.01I6 km2 in (19) and (33). SDEKF does not converge for case (a), while
SDUKF approaches the vicinity of the target within about 300 s for case (a). Both SDEKF and SDUKF approach the target within about 250
s for case (b). The Earth and all LEO locations are drawn to scale.
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result (not shown) is verified for an initial true-anomaly
error of −90◦.

Based on a 100-run Monte Carlo simulation, Table 1
shows that SDUKF yields more accurate estimates for z and
vz than does SDEKF. However, the SDUKF processing time is
about twice as large as the SDEKF processing time. More-
over, although SDUKF presents a larger value of MP (with-
out accounting for the components z and vz), which indicates
less informative estimates, note that the SDEKF estimates for
the position coordinate x do not remain inside the confidence
interval defined by ±3

√
Pda

1,1(kh) [see Figure 5(a)], even with a
larger value of Q. Consequently, Pda

1,1(kh) of SDEKF is not sta-
tistically consistent with the SDEKF x-error estimates.

Next we consider the ability of the filters to acquire
the target under time-sparse range-only measurements
with a measurement standard deviation of 0.1 km. For
an initial true-anomaly error of 10◦, Figure 6 shows the
SDEKF and SDUKF position-estimate errors for
h = 1, 10, 50, 100, 600 s. The SDUKF estimates are more

accurate than the SDEKF estimates for all sample inter-
vals investigated. Also, SDEKF does not converge for
h ≥ 100 s, whereas SDUKF converges for h ≤ 600 s.

Finally, we consider the case in which six satellites in
circular equatorial LEO at a radius of 6600 km are observ-
ing a target satellite in a polar orbit at a radius of 42,164
km. We set the sample interval to be h = 1 s and intro-
duce Gaussian measurement noise with a standard devia-
tion of 0.1 km. For an initial estimate that is erroneous by
180◦ in the argument of perigee, that is, ẑda(0) = −z(0)

and v̂da
z (0) = −vz(0) , we compare the performance of

SDEKF and SDUKF. For this example, we set Pda(0) =
diag (100, 100, 1010, 1, 1, 0.1) + 10−2 16×6 , where Pda

3,3(0) is
set to a large value to reflect the large initial uncertainty in z.
Because of the polar orbit, the range-only output map from
all of the observing spacecraft has even symmetry, and thus
ambiguity can occur. Figure 7 shows that SDUKF approach-
es the vicinity of the target within about 30 s, while SDEKF
converges to the mirror image of the z-position component.
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FIGURE 4  (a) Target position-estimate and (b) velocity-estimate errors with an initial true-anomaly error of 180◦ and nondiagonal
Pda(0) = diag(100, 100, 1, 1, 1, 0.1) + 10−2 16×6 . The range data are measured with sample interval h = 1 s from six LEO satellites, and
with Gaussian measurement noise whose standard deviation is 0.1 km and thus with R = 0.01I6 km2 in (19) and (33). After 600 s, the sam-
pled-data unscented Kalman filter (SDUKF) estimates are more accurate than the sampled-data extended Kalman filter (SDEKF) estimates.
In particular, note that the SDUKF velocity estimates are two orders of magnitude more accurate than the SDEKF velocity estimates.
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TABLE 1 RMSEi , mean trace (MT), and average CPU processing time for t ∈ [500, 1500] s and for a 100-run Monte Carlo
simulation using the sampled-data extended Kalman filter (SDEKF) and the sampled-data unscented Kalman filter (SDUKF).
Range is measured with sample interval h = 1 s from six low-Earth-orbit satellites and with Gaussian measurement noise
whose standard deviation is 0.1 km. All initial estimates are erroneous by −90◦. P da

3,3 and P da
6,6 are not included in the

calculation of MT because their values are much greater than the remaining diagonal entries.

RMSEi
x (km) y (km) z (km) vx (km/s) vy (km/s) vz (km/s)

SDEKF 0.1128 0.2996 63.93 0.0351 0.0841 0.5149
SDUKF 0.5525 0.3175 13.80 0.0958 0.0849 0.2450

MT (excluding P da
3,3 and P da

6,6)
SDEKF 0.1661
SDUKF 0.5998

Average CPU processing time (ms)
SDEKF 19.5
SDUKF 41.8



FIGURE 5  Target x, y, and z position-estimate errors (——) around the confidence interval (· · · ) defined by ±3
√

P da
1,1(kh), ±3

√
P da

2,2(kh), and
±3

√
P da

3,3(kh), respectively. (a), (c), and (e) refer to sampled-data extended Kalman filter estimates, while (b), (d), and (f) refer to sampled-
data unscented Kalman filter estimates. We consider an initial true-anomaly error of −90◦. The range data are measured with sample inter-
val h = 1 s from six low-Earth-orbit satellites, and with Guassian measurement noise whose standard deviation is 0.1 km. As shown in (e)
and (f), the z-position error is close to zero. However, due to a lack of observability, P da

3,3(kh) becomes large.
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Intermeasurement Tracking Accuracy
Next, we assess the ability of SDEKF and SDUKF to track
the target along an equatorial orbit. To see how the posi-
tion and velocity estimates degrade between data updates,
we consider an initial true-anomaly error of −30◦ and a

sample interval of h = 50 s with measurement noise hav-
ing a standard deviation of 0.1 km, that is, R = 0.01 I6 km2.
Figure 8 shows the growth of the position and velocity
errors between range-only measurements as well as the
position and velocity error reduction that occurs due to
data injection.

Eccentricity Estimation
We now consider the case in which the target performs an
unknown thrust maneuver that changes the eccentricity of
its orbit. In particular, the target is initially in a circular
orbit as in the previous examples. At time t = 1000 s, the
target performs a 1-s burn that produces a specific thrust
(that is, acceleration) w = [0 0.5 0]T km/s2, while, at time
t = 1500 s, the target performs a 1-s burn that produces a
specific thrust w = [0 0.3 0]T km/s2. With an initial eccen-
tricity of e = 0, corresponding to a circular orbit, the eccen-
tricity after the first burn is e ≈ 0.35, while the eccentricity
after the second burn is e ≈ 0.59. The initial true-anomaly
error is set to −30◦. Assuming measurement noise with a
standard deviation of 0.1 km, that is, R = 0.01 I6 km2,
along with range-only measurements available with a
sample interval of h = 10 s, the SDEKF and SDUKF eccen-
tricity estimates are shown in Figure 9.

For a 100-run Monte Carlo simulation, we obtain
RMSE indices of 0.0862 and 0.0731, respectively, for the
eccentricity estimates using SDEKF and SDUKF over
t ∈ [500, 2500] s. These indices indicate that SDUKF yields
more accurate eccentricity estimates than does SDEKF.

Inclination Estimation with Range-Only Measurements
We now consider the case in which the target performs an
unknown thrust maneuver that changes its inclination. The
target is initially in a circular orbit with inclination i = 0
rad. At time t = 3000 s, the target performs a 1-s burn that
produces a specific thrust w = [0 0 0.5]T km/s2, while, at
time t = 5000 s, the target performs a 1-s burn that

FIGURE 6  (a) Sampled-data extended Kalman filter (SDEKF) and (b) sampled-data unscented Kalman filter (SDUKF) target position-esti-
mate errors for sample intervals h = 1, 10, 50, 100, 600 s with range measurements from six low-Earth-orbit satellites with measurement-
noise standard deviation of 0.1 km, that is, R = 0.01I6 km2. The SDUKF estimates are more accurate than the SDEKF estimates for all
sample intervals investigated. Also, SDEKF does not converge for h ≥ 100 s.

0 1000 2000 3000 4000 5000 6000 7000
−2

0

2

4

6

8
lo

g 10
 P

os
iti

on
 E

rr
or

 (
km

)

Time (s)

 
h = 1 
h = 10
h = 50
h = 100
h = 600

(a)

0 1000 2000 3000 4000 5000 6000 7000
−2

0

2

4

6

8

lo
g 10

 P
os

iti
on

 E
rr

or
 (

km
)

Time (s)

(b)

FIGURE 7  Sampled-data extended Kalman filter (SDEKF) and
sampled-data unscented Kalman filter (SDUKF) target-position
estimates × and ◦, respectively. The initial location of the target
is above the North Pole in a polar orbit, but we initialize both fil-
ters with an initial argument-of-perigee error of 180◦ , that is,
over the South Pole. We set P da(0) = diag(100, 100, 1010,

1, 1, 0.1) +10−2 16×6. Range is measured with sample interval
h = 1 s from six low-Earth-orbit (LEO) satellites (whose tracks are
shown), and with Gaussian measurement noise whose standard
deviation is 0.1 km. SDUKF approaches the vicinity of the target
within about 30 s, while SDEKF converges to the mirror image of
the z-position state. The Earth and all LEO locations are drawn to
scale. We note that both filters fail to acquire the target when
P da(0) = diag(100, 100, 1010, 1, 1, 0.1).
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produces a specific thrust w = [0 0 − 0.2]T km/s2 . The
inclination after the first burn is i ≈ 0.16 rad, whereas the
inclination after the second burn is i ≈ 0.097 rad. We
assume range-only measurements with measurement-noise
standard deviation of 0.032 km, and assume an initial true-
anomaly error of −30◦. For numerical conditioning, we set
R = 0.01 I6 km2. The SDEKF and SDUKF inclination esti-
mates are shown in Figure 10(a). After an initial transient,
SDEKF is able to track changes in the target’s inclination.
On the other hand, even though SDUKF yields more accu-
rate estimates over t ∈ [0, 3000] s, SDUKF yields erroneous
inclination estimates close to zero after the target’s maneu-
ver. In this case, unlike SDEKF, SDUKF yields highly
biased estimates for the position z for t > 3000 s.

The inability of SDUKF to detect changes in the inclina-
tion due to the target’s maneuvers can also be overcome
by initializing the estimated inclination to a small nonzero
value, specifically, −0.1 rad. However, if the estimate con-
verges to zero, then the filter can fail to detect further
changes in the target’s inclination. Alternatively, we can
slightly alter the inclination of the observing satellites so
that the geometry is not entirely coplanar. We thus change
the orbit of two observing satellites by giving them an
inclination of −0.1 rad and −0.2 rad, respectively. After an
initial transient (from t = 3000 s to t = 3200 s), Figure
10(b) shows the ability of both filters to track the true
inclination, despite an initial inclination estimate of 0 rad.
Note that, according to Figure 10(b), SDEKF yields less
accurate inclination estimates than SDUKF over
t ∈ [0, 3000] s.

Inclination Estimation with Range 
and Angle Measurements
With all six observing satellites in an equatorial orbit, the
target performs an unknown thrust maneuver that
changes its inclination as in the previous subsection. We

now augment the range measurements with angle
(azimuth and elevation) data. We assume range and
angle measurement-noise standard deviations of 0.032 km
and 0.032 rad, respectively, and assume an initial true-
anomaly error of −30◦ with all remaining parameters as
in Figure 10. For numerical conditioning, we set
R = diag (0.01 I6 km2, 0.001 I12 rad2) . The inclination esti-
mates obtained from SDEKF and SDUKF are shown in
Figure 11(a).

FIGURE 8  (a) Target position-estimate and (b) velocity-estimate errors with an initial true-anomaly error of −30◦, sample interval h = 50
s, and range measurements with measurement-noise standard deviation of 0.1 km, that is, R = 0.01I6 km2. The position-estimate error
between measurements slowly grows with time and thus is not discernible in (a). The growth of the velocity-estimate error between mea-
surements can be seen as well as the position and velocity-error reduction that occurs due to data injection. The sampled-data unscent-
ed Kalman (SDUKF) filter estimates are more accurate than the sampled-data extended Kalman filter (SDEKF) estimates.
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FIGURE 9  Estimated eccentricity with the sample interval h = 10 s,
with an initial true-anomaly error of −30◦, and with range measure-
ments having measurement-noise standard deviation of 0.1 km, that
is, R = 0.01I6 km2. The target performs unknown 1-s burns at
t = 1000 s and t = 1500 s. The initial eccentricity is e = 0, corre-
sponding to the initial circular orbit, while the eccentricity after the
first burn is e ≈ 0.35, and the eccentricity after the second burn is
e ≈ 0.59. These results show the sensitivity of the eccentricity esti-
mates to measurement noise.
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Figure 11(a) shows that, after the orbital maneuver, the
filters track the inclination changes. The addition of angle
measurements enables SDUKF to detect changes in the tar-
get’s inclination. Moreover, Figure 11(b) shows that, when
the geometry of the observing satellites is not entirely
coplanar [as in Figure 10(b)] and angle measurements are

used in addition to range data, the inclination estimates are
more accurate than the estimates shown in Figure 10(a).

Table 2 compares the performance of SDEKF and
SDUKF for the case in which the target is maneuvering
such that its inclination changes, h = 1, and the initial
true-anomaly error is −30◦. We consider a 100-run Monte
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FIGURE 11  (a) Estimated inclination with the sample interval h = 1 s, with an initial true-anomaly error of −30◦ and range and angle measure-
ment-noise standard deviations of 0.032 km and 0.032 rad, respectively. In (b), we slightly change the orbit of two observing satellites by giv-
ing them inclinations of −0.1 rad and −0.2 rad, respectively. In both cases, angle (azimuth and elevation) measurements in addition to range
measurements from the observing satellites allow the sampled-data extended Kalman filter (SDEKF) and the sampled-data unscented
Kalman filter (SDUKF) to detect changes in the target’s inclination.
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FIGURE 10  Estimated inclination with the sample interval h = 1 s, with an initial true-anomaly error of −30◦, and with range measure-
ments having measurement-noise standard deviation 0.032 km. In (a), the sampled-data unscented Kalman filter (SDUKF) fails by getting
stuck in estimating i ≈ 0, while the sampled-data extended Kalman filter (SDEKF) detects changes in the target’s inclination. In (b), we
slightly change the orbit of two observing satellites by giving them inclinations of −0.1 rad and −0.2 rad, respectively. After an initial tran-
sient, both filters provide improved estimates of the target’s inclination.
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Carlo simulation where i) range-only measurements are
used, ii) range-only measurements are used together with
noncoplanar observing satellites, iii) range and angle mea-
surements are used, and iv) range and angle measure-
ments are used together with noncoplanar observing
satellites. Comparing the indices RMSEi, we observe that
SDUKF outperforms SDEKF for z and vz, SDEKF outper-
forms SDUKF for x and vx, and the filters have similar
accuracy for y and vy. Regarding the inclination estimates,
except for case i) for which SDUKF fails to track the incli-
nation changes, SDUKF yields more accurate estimates
than SDEKF. Also, with the inclusion of angle measure-
ments, both filters yield similar MT indices. Moreover, the
SDUKF processing time is twice as long as the SDEKF
processing time.

CONCLUSIONS
The goal of this article is to illustrate and compare two
algorithms for nonlinear sampled-data state estimation.
Under idealized assumptions on the astrodynamics of bod-
ies orbiting the Earth, we apply SDEKF and SDUKF for
range-only as well as range and angle observations provid-

ed by a constellation of six LEO satellites in circular, equa-
torial orbits. We study the ability of the filters to acquire
and track a target satellite in geosynchronous orbit as a
function of the sample interval, initial uncertainty, and
type of available measurements.

For target acquisition, SDUKF yields more accurate
position and velocity estimates than SDEKF. Moreover, the
convergence of SDEKF is sensitive to the initialization of
the error covariance; in fact, a nondiagonal initial covari-
ance is found to be more effective than a diagonal initial
covariance. Like SDUKF, by properly setting a nondiago-
nal initial error covariance, SDEKF also exhibits global
convergence, that is, convergence is attained for all initial
true-anomaly errors. However, when the target is in a
polar orbit and the observing satellites are in an equatorial
orbit, unlike SDUKF, SDEKF does not converge for an ini-
tial argument-of-perigee error of 180◦. In this case, SDEKF
yields z-position estimates that are the mirror image of the
true value.

Under time-sparse range-only measurements, SDEKF is
not able to track the target for a time step h ≥ 100 s. On the
other hand, the SDUKF estimates converge for h ≤ 600 s.
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TABLE 2 RMSEi , mean trace (MT), and average CPU processing time for t ∈ [500, 6000] s and for a 100-run Monte Carlo
simulation using the sampled-data extended Kalman filter (SDEKF) and the sampled-data unscented Kalman filter (SDUKF).
The target is maneuvering such that its inclination changes, h = 1 s, and the initial true-anomaly error is −30◦. We consider
the following cases: i) range-only measurements are used, ii) range-only measurements are used with the geometry of the
observing satellites not entirely coplanar, iii) range and angle measurements are used, and iv) range and angle measurements
are used with the geometry of the observing satellites not entirely coplanar.

RMSEi
x (km) y (km) z (km) vx (km/s) vy (km/s) vz (km/s) i (rad)

SDEKF i) 0.0653 0.0957 613.6 0.0128 0.0261 0.4369 0.0658
ii) 0.0648 0.1158 22.78 0.0133 0.0263 0.1478 0.0389
iii) 0.0610 0.0953 18.47 0.0128 0.0261 0.1808 0.0562
iv) 0.0630 0.1154 12.57 0.0130 0.0262 0.1205 0.0372

SDUKF i) 0.2573 0.1313 605.7 0.0341 0.0276 0.3392 0.1080
ii) 0.1279 0.1193 17.38 0.0210 0.0266 0.1142 0.0355
iii) 0.0900 0.0965 14.30 0.0113 0.0260 0.1560 0.0485
iv) 0.0805 0.1160 10.38 0.0121 0.0262 0.1116 0.0344

MT (excluding P da
3,3 and P da

6,6)
SDEKF i) 0.2057

ii) 0.2621
iii) 0.2013
iv) 0.2601

SDUKF i) 0.7229
ii) 0.4190
iii) 0.2239
iv) 0.2734

Average CPU processing time (ms)
SDEKF i) 20.4

ii) 20.5
iii) 20.3
iv) 20.9

SDUKF i) 38.6
ii) 39.2
iii) 38.5
iv) 39.7



When the target is maneuvering such that its eccentrici-
ty changes, SDUKF tracks the target’s eccentricity more
accurately than SDEKF.

Unlike SDEKF, SDUKF is not able to detect changes in the
target’s inclination when the target is maneuvering. Never-
theless, either by having the observing satellites not entirely
coplanar or by including angle measurements, convergence
is attained for both filters. Furthermore, when angle mea-
surements are also available, SDUKF yields more accurate
inclination estimates than SDEKF. Finally, the SDUKF pro-
cessing time is about twice the SDEKF processing time.
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