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Abstract

In this paper we explore the applicability of the implicit small-gain guaranteed cost bound for
controller synthesis. For #exibility in controller synthesis, we adopt the approach of "xed-
structure controller design which allows consideration of arbitrary controller structures, includ-
ing order, internal structure, and decentralization. A numerical example that has been
addressed in the literature by means of alternative guaranteed cost bounds is presented to
demonstrate the "xed-structure/implicit small-gain approach to robust controller syn-
thesis. ( 2000 The Franklin Institute. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Robust stability; Robust performance; Guaranteed cost bounds; Fixed-structure controllers;
Implicit small gain theorem

1. Introduction

One of the principal objectives of robust control theory is to synthesize feedback
controllers with a priori guarantees of robust stability and performance. In k synthesis
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[1] these guarantees are achieved by means of bounds involving frequency-dependent
scales and multipliers which account for the structure of the uncertainty as well as its
real or complex nature. An alternative robustness approach involves bounding the
e!ect of real or complex uncertain parameters on the H

2
performance of the closed-

loop system. These guaranteed cost bounds take the form of modi"cations to the
usual Lyapunov equation to provide bounds for robust stability andH

2
performance.

A diverse collection of guaranteed cost bounds have been developed. An overview
of many of the early guaranteed cost bounds can be found in [2], while positive-real-
type guaranteed cost bounds are discussed in [3]. More recently, Popov-type guaran-
teed cost bounds have provided links with frequency-dependent scales and multipliers
while providing reliable bounds for the peak real structured singular value [4}6].
Finally, the introduction of shift terms has been shown to reduce the conservatism of
guaranteed cost bounds [7,8] for structured real uncertainty without requiring fre-
quency-dependent scales and multipliers.

The goal of this paper is to explore the applicability of the implicit small-gain
guaranteed cost bound of Haddad et al. [7] to controller synthesis. As shown in [7],
unlike the quadratic stability bounded-real-type bound of Petersen and Hollot [9]
and Khargonekar et al. [10], the implicit small gain bound can distinguish between
real and complex uncertainty and is particularly e!ective in capturing internal
uncertainty structure. For #exibility in controller synthesis, we adopt the approach of
"xed-structure controller synthesis [11] which allows consideration of arbitrary
controller structures, including order, internal structure, and decentralization [12].
Finally, to demonstrate the "xed-structure/implicit small gain approach to robust
controller synthesis, we consider a #exible structure example that has been addressed
in the literature by means of alternative guaranteed cost bounds.

In this paper we use the following standard notation. Let R, Rn, and RnCm denote
real numbers, n]1 real column vectors, and n]m real matrices, respectively. Let
AT denote the transpose of A and let M*0 (resp., M'0) denote the fact that the
Hermitian matrix M is nonnegative (resp., positive) de"nite. Furthermore, let Sn

(resp., Nn) denote the set of n]n symmetric (resp., nonnegative de"nite) matrices.
Finally, E denotes the expectation operator and R(A) denotes the range space of the
matrix A.

2. Robust stability and performance

In this section we state the robust stability and performance problem. This problem
involves a set ULRnCn of uncertain perturbations * A of the nominal system matrix
A. The objective of this problem is to determine a "xed-order, strictly proper dynamic
compensator (A

#
,B

#
, C

#
) that stabilizes the plant for all variations in U and minimizes

the worst-case H
2

norm of the closed-loop system.
Robust Stability and Performance Problem: Given the nth-order stabilizable and

detectable plant

x5 (t)"(A#*A)x(t)#Bu(t)#D
1
w(t), t3[0,R), (1)

y(t)"Cx(t)#D
2
w(t), (2)
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where w( ) ) denotes a unit-intensity white noise signal, determine an n
#
th-order

dynamic compensator

x5
#
(t)"A

#
x
#
(t)#B

#
y(t), (3)

u(t)"C
#
x
#
(t), (4)

such that the closed-loop system (1)}(4) is asymptotically stable for all *A3U and the
performance criterion

J(A
#
, B

#
, C

#
)O sup

*A|U
lim sup

t?=

1

t
EP

t

0

[xT(s)R
1
x(s)#uT(s)R

2
u(s)] ds, (5)

is minimized, where R
1
*0 and R

2
'0.

For each uncertain variation *A3U, the closed-loop system (1)}(4) can be written
as

x85 (t)"(AI #*AI )x8 (t)#DI w(t), t3[0,R), (6)

where

x8 (t)OC
x(t)

x
#
(t)D, AI OC

A BC
#

B
#
C A

#
D, *AI OC

*A 0

0 0D, DI OC
D

1
B
#
D

2
D,

and where the closed-loop disturbance DI w(t) has intensity

<I ODI DI T"C
<

1
0

0 B
#
<

2
BT
#
D ,

where <
1
OD

1
DT

1
, <

2
OD

2
DT

2
'0, and <

12
OD

1
DT

2
"0.

3. Su7cient conditions for robust stability and performance

In this section we assign explicit structure to the set U and provide robust stability
and performance guarantees in terms of a solution to a modi"ed Riccati equation.
Speci"cally, the uncertainty set U is de"ned by

U"G*A3RnCn : *A"

r
+
i/1

d
i
A

i
, Dd

i
D)c~1, i"1,2, rH, (7)

where c is a positive number and, for i"1,2, r, A
i
3RnCn is a "xed matrix denoting

the structure of the parametric uncertainty and d
i
is an uncertain real parameter. Note

that U given by (7) includes repeated parameters without loss of generality. For
example, if d

1
"d

2
, then discard d

2
and replace A

1
by A

1
#A

2
. Furthermore,
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U includes real full block uncertainty. For example, if

*A"C
d
1

d
2

d
3

d
4
D,

then *A"

4
+
i/1

d
i
A

i
, where

A
1
"C

1 0

0 0D
and likewise for A

2
, A

3
, and A

4
.

With the uncertainty set U given by (7), the closed-loop system (6) has structured
uncertainty of the form

*AI "
r
+
i/1

d
i
AI

i
, (8)

where

AI
i
OC

A
i

0

0 0D, i"1,2, r.

We now introduce a modi"ed Riccati equation whose solution guarantees
robust stability and robust performance for the closed-loop system (6) with U given
by (7). For i"1,2, r, let SI

i
3Rn8 Cn8 and de"ne ZI

i
O[(SI

i
#SI T

i
)2]1@2. Note that

!ZI
i
)a(SI

i
#SI T

i
))ZI

i
for all a3[!1, 1]. If SI

i
is skew symmetric then ZI

i
"0.

Furthermore, for i"1,2, r, de"ne II
i
O [SI

i
AI T

i
][SI

i
AI T

i
]s, where ()s denotes the

Moore}Penrose generalized inverse. Note that II
i
is symmetric and idempotent, that

is, II
i
"II T

i
"II 2

i
. Furthermore, since II

i
[SI

i
AI T

i
]"[SI

i
AI T

i
], it follows that II

i
SI
i
"SI

i
and AI

i
II
i
"AI

i
. If SI

i
"AI

i
and AI

i
is an EP matrix [13], that is, R(AI

i
)"R(AI T

i
), then

II
i
"AI s

i
AI

i
. Recall that normal matrices (and thus symmetric and skew-symmetric

matrices) are EP.
For convenience in stating the next result, de"ne the shifted dynamics matrix

AI
4cOAI #c~2+r

i/1
a
i
b
i
AI

i
SI
i
and de"ne

RI O C
R

1
0

0 CT
#
R

2
C

#
D.

Theorem 3.1 (Haddad et al. [7]). For i"1,2, r, let a
i
3R, b

i
'0, and let SI

i
3Rn8 Cn8 .

Furthermore, suppose there exists an n8 ]n8 nonnegative-dexnite matrix PI satisfying

0"AI T
4cPI #PI AI

4c#
r
+
i/1

[c~2(a2
i
SI T
i
SI
i
#b2

i
PI AI

i
AI T

i
PI )

#c~1b~1
i

Da
i
DZI

i
#b~2

i
II
i
]#RI . (9)
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Then (AI #*AI , EI ) is detectable for all *A3U if and only if AI #*AI is asymptotically
stable for all *A3U. In this case,

J(A
#
, B

#
, C

#
))tr PI <I . (10)

Remark 3.1. If AI
4c is asymptotically stable then the existence of a nonnegative-

de"nite matrix PI satisfying (9) is equivalent to the existence of a frequency-domain
condition guaranteeing robust stability of AI #*AI , *A3U, in terms of an implicit
small gain condition involving the shifted dynamics matrix AI

4c which is a function of
the uncertainty set bound c. For details see [7].

To apply Theorem 3.1 to controller synthesis, we use the Riccati Eq. (9) to
guarantee that the closed-loop system is robustly stable. This leads to the following
optimization problem.

Optimization Problem. Determine (A
#
, B

#
,C

#
) that minimizesJ(A

#
, B

#
,C

#
)O tr PI <I ,

where PI 3Nn8 satis"es (9) and such that (A
#
, B

#
,C

#
) is controllable and observable.

The relationship between the Optimization Problem and the Robust Stability and
Performance Problem is straightforward, as shown by the following proposition.

Proposition 3.1. Let (A
#
,B

#
,C

#
) be given. If PI 3Nn8 satisxes (9) and (AI #*AI ,EI ) is

detectable for all *A3U, then AI #*AI is asymptotically stable for all *A3U, and
J(A

#
, B

#
, C

#
))J(A

#
, B

#
, C

#
).

Proof. Since (9) has a solution PI 3Nn8 and (AI #*AI , EI ) is detectable for all *A3U, the
hypotheses of Theorem 3.1 are satis"ed so that robust stability and robust perfor-
mance are guaranteed. Now, J(A

#
,B

#
,C

#
))J(A

#
,B

#
,C

#
) is merely a restatement of

(10). h

It follows from Proposition 3.1 that the satisfaction of (9) along with the generic
detectability condition leads to robust stability along with an upper bound for the
H

2
performance. Hence, by deriving necessary conditions for the Optimization

Problem we obtain su$cient conditions for characterizing dynamic output feedback
controllers guaranteeing robust stability and performance.

4. Robust controller synthesis via the implicit small-gain guaranteed cost bound

In this section we state constructive su$cient conditions for characterizing "xed-
order (i.e., full- and reduced-order) robust controllers. These results are obtained by
minimizing the worst-case H

2
cost bound (10) subject to (9). To apply Theo-

rem 3.1 to robust controller synthesis, let SI
i
, i"1,2, r, have the form

SI
i
"C

S
i

0
nCn#

0
n#Cn

0
n#Cn#

D, (11)
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where S
i
3RnCn. With SI

i
, i"1,2, r, given by (11) it can be shown that

II
i
"C

IK
i

0
nCn#

0
n#Cn

0
n#Cn#

D, ZI
i
"C

Z
i

0
nCn#

0
n#Cn

0
n#Cn#

D,
where IK

i
"[S

i
AT

i
][S

i
AT

i
]s and Z

i
"[(S

i
#ST

i
)2]1@2. Furthermore, for conveni-

ence in stating the main theorem, de"ne the notation A
4cOA#c~2+r

i/1
a
i
b
i
A

i
S
i
,

&OBR~1
2

BT, and &1 OCT<~1
2

C.

Theorem 4.1. Let n
#
)n and suppose there exist n]n nonnegative-dexnite matrices

P,Q,PK ,QK satisfying

0"AT
4cP#PA

4c#R
1
#

r
+
i/1

[c~2(a2
i
ST
i
S
i
#b2

i
PA

i
AT

i
P)#c~1b~1

i
Da

i
DZ

i

#b~2
i

IK
i
]!P&P#qT

M
P&Pq

M
, (12)

0"CA4c#
r
+
i/1

c~2b2
i
A

i
AT

i
(P#PK )DQ#QCA4c#

r
+
i/1

c~2b2
i
A

i
AT

i
(P#PK )D

T

#<
1
!Q&M Q#q

M
Q&M QqT

M
, (13)

0"AA4c!Q&M #
r
+
i/1

c~2b2
i
A

i
AT

i
PB

T
PK #PK AA4c!Q&M #

r
+
i/1

c~2b2
i
A

i
AT

i
PB

#

r
+
i/1

c~2b2
i
PK A

i
AT

i
PK #P&P!qT

M
P&Pq

M
, (14)

0"AA4c!&P#

r
+
i/1

c~2b2
i
A

i
AT

i
PBQK #QK AA4c!&P#

r
+
i/1

c~2b2
i
A

i
AT

i
PB

T

#Q&M Q!q
M
Q&M QqT

M
, (15)

rank QK "rank PK "rank QK PK "n
#
, (16)

QK PK "GTM!, !GT"I
n#

, M3Rn#Cn# , qOGT!, q
M
OI

n
!q, (17)

and let A
#
, B

#
, and C

#
be given by

A
#
"!(A

4c!Q&M !&P#c~2
r
+
i/1

b2
i
A

i
AT

i
P)GT, (18)

B
#
"!QCT<~1

2
, (19)

C
#
"!R~1

2
BTPGT. (20)
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Then (AI #*AI , EI ) is detectable for all *A3U if and only if AI #*AI is asymptotically
stable for all *A3U. In this case, the worst-case H

2
performance criterion satisxes the

bound

J(A
#
, B

#
, C

#
))trCP<1

#QAP&P!qT
M
P&Pq

M
!c~2

r
+
i/1

PK A
i
AT

i
PK BD

"tr[QR
1
#P(Q&M Q!q

M
Q&M QqT

M
)

!QK A
r
+
i/1

c~2a2
i
ST
i
S
i
#c~1b~1

i
Da

i
DZ

i
#b~2

i
IK
iBD. (21)

Proof. The proof is constructive in nature. We "rst obtain necessary conditions for
the Optimization Problem and show by construction that these conditions serve as
su$cient conditions for closed-loop stability. Speci"cally, it can be shown (see [14] for
a similar construction) that the existence of P, Q, PK , QK 3Nn satisfying Eqs. (12)}(15)
implies the existence of PI 3Nn8 satisfying (9) where PI is given by

PI "C
P#PK !PK GT

!GPK GPK GTD.
Now, the proof of robust stability and the upper bound on H

2
performance (5) for all

uncertain perturbations *A3U follows from Theorem 3.1.
Next, to optimize Eq. (10) subject to constraint (9) over the open set

SOG(PI ,A#
,B

#
, C

#
): PI '0, AI

4c#c~2
r
+
i/1

A
i
bT
i
b
i
AT

i
PI

is asymptotically stable and (A
#
,B

#
,C

#
) is minimalH

form the Lagrangian

L(A
#
, B

#
,C

#
,QI ,PI ,j)O tr CjPI <I #QI GAI T4cPI #PI AI

4c#RI

#

r
+
i/1

[c~2(a2
i
SI T
i
SI
i
#b2

i
PI AI

i
AI T

i
PI )

# c~1b~1
i

Da
i
DZI

i
#b~2

i
II
i
]HD, (22)

where the Lagrange multipliers j*0 and QI 3Rn8 Cn8 are not all zero. We thus obtain

LL
LPI

"AAI 4c#c~2
r
+
i/1

b2
i
A

i
AT

i
PI BQI #QI AAI 4c#c~2

r
+
i/1

b2
i
A

i
AT

i
PI B

T
#j<I . (23)
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Setting LL/LPI "0 yields

0"AAI 4c#c~2
r
+
i/1

b2
i
A

i
AT

i
PI BQI #QI AAI 4c#c~2

r
+
i/1

b2
i
A

i
AT

i
PI B

T
#j<I . (24)

Since AI
4c#c~2+r

i/1
b2
i
A

i
AT

i
PI is assumed to be asymptotically stable, setting j"0

implies QI "0. Hence, it can be assumed, without loss of generality, that j"1.
Furthermore, QI is nonnegative de"nite. The remainder of the proof follows as in [14].
Brie#y, the principal steps are as follows.

Step 1: Compute LL/LA
#
, LL/LB

#
, and LL/LC

#
.

Step 2: Partition (9) and (24) into six equations (a)}(f ) corresponding to the n]n,
n]n

#
, and n

#
]n

#
sub-blocks of PI and QI , respectively. Next, since the compensator

triple (A
#
, B

#
, C

#
) is controllable and observable, using a minor extension of the result

from Albert [15] and Lemma 12.2 of Wonham [16], (c) implies that the lower-right
n
#
]n

#
block of PI is positive de"nite. Using similar arguments we can show that the

lower-right n
#
]n

#
block of QI is positive de"nite. See [14] for details.

Step 3: Form (b) times the n]n
#
sub-block of QI plus the n

#
]n

#
sub-block of QI times

(c) to de"ne the projection matrix q and the new variables P, Q, PK , QK , G, and !.
Step 4: Use the result of Steps 1 and 3 to solve for the compensator gains (18)} (20).
Step 5: Manipulate (a), (b), (d), and (e) to yield (12)}(15).
Step 6: Use the results of Step 3 to show that (10) is equivalent to (21).
For a detailed exposition of a similar proof, see [14]. h

Remark 4.1. In the full-order case, set n
#
"n so that G"!"q"I

n
and q

M
"0. In

this case the last term in each of (12)} (15) is zero and (15) is super#uous.

Theorem 4.1 provides constructive su$cient conditions that yield dynamic feed-
back gains A

#
, B

#
, and C

#
for robust stability and performance. When solving

(12)}(15) numerically, the values of c, a
i
, b

i
, and S

i
, i"1,2, r, can be adjusted to

examine tradeo!s between H
2

performance and robustness. As discussed in [7], to
further reduce conservatism, one can view the scalars a

i
, b

i
, and the matrix S

i
as free

parameters and optimize the worst-case H
2

performance bound J with respect to a
i
,

b
i
, and S

i
. Speci"cally, by using LJ/La

i
"0, LJ/Lb

i
"0, and LJ/LS

i
"0 within

a numerical optimization algorithm, the optimal robust reduced-order controllers
and scaling parameters a

i
, b

i
, S

i
, i"1,2, r, can be determined simultaneously. For

further details, see [7].

5. Flexible structure example

Consider the dynamic system shown in Fig. 1, which represents a #exible structure
with uncertain high-frequency dynamics [17]. The equations of motion for this system
are

m
1
xK
1
#c

1
x5
1
!c

2
(x5

2
!x5

1
)#k

1
x
1
!k

2
(x

2
!x

1
)"u,

m
2
xK
2
#c

2
(x5

2
!x5

1
)#k

2
(x

2
!x

1
)"0.
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Fig. 1. Two-mass system.

Here we consider the case of a colocated sensor and actuator pair, where the output
is given by y

#0-
"x5

1
. Letting m

1
"1, m

2
"10, k

1
"k

2
"1, and c

1
"c

2
"0.01 and

transforming to real normal coordinates yields the plant state-space realization

x5 "C
!0.0002 0.2208 0 0

!0.2208 !0.0002 0 0

0 0 !0.0103 1.4320

0 0 !1.4320 !0.0103Dx#C
!0.1439

0.2168

!0.0426

1.1890 Du,

y
#0-

"[!0.0545 0.0819 !0.0352 0.8181]x.

As in [17], the matrices D
1
, D

2
, E

1
, and E

2
are chosen to be

D
1
"C

0 0

1 0

0 0

0 0D, D
2
"C0 1D, E

1
"C

1 0 0 0

0 0 0 0D, D
1
"C

0

1D,

so that the LQG compensator places a notch at the second modal frequency.
Uncertainty in the damped natural frequency of the second mode u

$2
"1.432 is

modeled by choosing

A
1
"C

0 0 0 0

0 0 0 0

0 0 0 1

0 0 !1 0D.
A quasi-Newton optimization algorithm was used to compute full-order controllers

(n
#
"n) that minimize the cost bound J for several values of c. In particular, the

algorithm is a continuation algorithm with correction steps performed using quasi-
Newton corrections with the BFGS inverse Hessian update. The line-search portions
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Fig. 2. Dependence of the H
2

cost on the damped natural frequency of the second mode.

of the algorithm were modi"ed to include a constraint-checking subroutine which
decreases the length of the search direction vector until it lies entirely within the set of
parameters that yield a stable closed-loop system. This modi"cation ensures that the
cost functionJ remains de"ned at every point in the line search process. For details of
the algorithm, see [12]. The actual H

2
cost was computed for a range of values of the

damped natural frequency of the second mode for the LQG controller and for the
implicit small gain (with S

1
"A

1
and a

1
and b

1
obtained by LJ/La

i
"0 and

LJ/Lb
i
"0) and scaled Popov controllers [6] corresponding to c"15, 7, and 2. The

cost dependence is shown in Fig. 2. As c decreases, the H
2

cost of the nominal
closed-loop system increases while the H

2
cost of the perturbed closed-loop system

remains near the nominal value for a larger range of perturbations. The LQG
controller stabilizes the closed-loop system for only small perturbations in the dam-
ped natural frequency of the second mode, while the implicit small gain controllers
stabilize the closed-loop system and provide performance close to the optimal level
even for large perturbations. Hence, robust performance over a large range of the
uncertain parameter is achieved for only a small increase in the H

2
cost above the

optimal. Also note that the robustness/performance tradeo!s of the implicit small gain
controllers are comparable to those of the scaled Popov controllers which are
obtained using frequency-dependent multipliers [6].

The frequency responses of the LQG controller and the implicit small-gain control-
lers with c"15, 7, and 2 are shown in Fig. 3. The LQG controller is unstable and
achieves closed-loop stability and nominal performance by placing a notch at the
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Fig. 3. Frequency responses of implicit small gain controllers.

nominal damped natural frequency u
$2

of the uncertain second mode. Hence, closed-
loop performance degrades considerably when the damped natural frequency of the
second mode is perturbed. The implicit small-gain controller with c"7 has only
a shallow notch near the damped natural frequency of the second mode, while the
controller with c"2 has no notch near that frequency. Hence, these controllers
sacri"ce nominal performance for improved robust performance over a larger range of
the uncertain damped natural frequency. As c decreases, the controllers guarantee
robust performance over a larger range of d. Note that the controller obtained with
c"2 is positive real. Since the plant is a model of a #exible structure with a colocated
sensor and actuator pair, it is also positive real, and thus the closed-loop system is
asymptotically stable for all values of the uncertain damped natural frequency.

6. Conclusion

This paper extended the implicit small-gain guaranteed cost bound [7] to control-
ler synthesis. Speci"cally, the implicit small-gain guaranteed cost bound was used to
address the problem of robust stability and H

2
performance via "xed-order dynamic

compensation. A quasi-Newton optimization algorithm was used to obtain robust
controllers for an illustrative example. The design example considered demonstrated
the e!ectiveness of the implicit small-gain guaranteed cost bound. Finally, we note
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that the conservatism of the proposed implicit small-gain guaranteed cost bound
is di$cult to predict and will depend upon the actual value of PI determined by
solving (9).
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