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Abstract— We investigate the accuracy of least-squares-based
algorithms for estimating system zeros in the presence of known
or unknown order and known or unknown relative degree.
Specifically, we use least-squares to estimate the parameters
of ARX and µ-Markov models from which zero estimates
are calculated directly using the numerator polynomial as
well as indirectly using the truncated Laurent expansion or
the eigensystem realization algorithm (ERA). To employ the
truncated Laurent expansion or ERA, we consider the Markov
parameters estimated from the µ-Markov model. Lastly, we
investigate the spurious zeros of the µ-Markov model and
truncated Laurent expansion to determine to what extent these
zeros behave in a predictable manner.

I. INTRODUCTION

The role of nonminimum-phase (NMP) zeros in systems

and control theory [1] motivates the need to develop identi-

fication methods for estimating the presence and location of

these zeros. In this paper we compare the accuracy of several

identification techniques when used specifically to estimate

NMP zeros. Although some of these techniques also provide

estimates of system poles, the accuracy of the pole estimates

is not of interest in this study.

The techniques that we compare numerically for SISO

systems include least squares estimation of the numerator

coefficients as well as Markov-parameter-based techniques

that use either the truncated Laurent expansion or Ho-

Kalman realization theory [2], [3]. The problem of estimating

Markov parameters is considered in [4] and the references

given therein.

For model structures, least squares estimation is used with

either the standard IIR model or the µ-Markov model [5], [6],

which provides an overparameterized model structure that

explicitly displays µ Markov parameters in the numerator

polynomial. As shown in [5], [6] these Markov parameters

can be estimated consistently (probability-1 convergence

under asymptotically large data sets) under certain types of

noise. However, the remaining coefficient estimates are not

generally consistent, and thus their accuracy can adversely

impact the accuracy of the zero estimates.

To reflect practical application, we apply these methods

within the context of four cases, namely, known system

order and known relative degree; known system order and

unknown relative degree; unknown system order and known

relative degree; and unknown system order and unknown

relative degree. Of particular interest, especially within the

context of the adaptive control method developed in [7], [1]
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is the location of the spurious zeros due to underestimated

relative degree. In addition, the µ-Markov model yields

spurious zeros due to overparameterization.

II. PROBLEM FORMULATION

Consider the SISO ARX model

A(q)y0(k) = B(q)u0(k), (1)

where q is the forward shift operator, u0 is the true input,

and y0 is the true output. A(q) and B(q) are given by

A(q) = 1 + a1q−1 + · · · + anq−n (2)

B(q) = bdq−d + · · · + bnq−n, (3)

where 0 ≤ d ≤ n, bd 6= 0, and d represents the relative

degree. We also assume that the true input is known exactly

but the output is measured with additive Gaussian white noise

w of unknown variance σ2
w, that is, y(k) = y0(k) + w(k).

Here we present a numerical comparison of the accuracy

of the estimated zeros of B(q). To this end, we consider

several least-squares-based techniques when the order n and

relative degree d are either known or unknown.

III. MODEL STRUCTURES

A. ARX Model

The ARX model structure is given by

y(k) = − α1y(k − 1) − · · · − αnmod
y(k − nmod) (4)

+ βdmod
u(k − dmod) + · · · + βnmod

u(k − nmod),

where nmod is the model order, dmod is the model relative

degree, and βdmod
is the first nonzero Markov parameter

Hdmod
. We assume that an upper bound on n and a lower

bound on d are known so that nmod ≥ n and dmod ≤ d. The

number of spurious zeros is thus nmod − n + d − dmod.

B. µ-Markov Model

The µ-Markov model structure is an ARX model with µ-

step prediction given by

y(k)=−

nmod+µ−1
∑

i=µ

α′

iy(k− i) +

dmod+µ−1
∑

i=dmod

Hiu(k− i) +

nmod+µ−1
∑

i=dmod+µ

β′

iu(k− i).

(5)

Note that (5) is an overparameterized ARX model

with µ ≥ 1 explicitly displayed Markov parameters

Hdmod
, . . . , Hdmod+µ−1. The µ-Markov model contains nmod−

n + d− dmod + µ spurious zeros. As shown in [5], when the

input is persistently exciting, the first µ Markov parameters

of the µ-Markov model can be estimated consistently using

least-squares in the presence of colored process noise of

which white output measurement noise is a special case. Note

that (4) is a special case of (5) with µ = 1.
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IV. ZERO-ESTIMATION METHODS

We are concerned with least squares estimation of (1)

using ARX and µ-Markov models. From the estimated

models, zero estimates are obtained in several ways.

A. Numerator Polynomial

When the system order n and relative degree d are known,

the zero estimates are given by the roots of the estimated

ARX numerator polynomial. However, when µ > 1, the µ-

Markov model contains spurious poles and zeros. Letting

Bµ(q) and Aµ(q) denote the numerator and denominator of

the µ-Markov model, respectively, we have that

Bµ(q) = B(q)pµ(q), Aµ(q) = A(q)pµ(q), (6)

where the polynomial

pµ(q), q−(µ−1)+ p1q−(µ−2)+ · · · + pµ−2q−1+ pµ−1, (7)

is uniquely determined by






pµ−1

...

p1






= −







a0 0
...

. . .

aµ−2 · · · a0







−1





a1

...

aµ−1






, (8)

with ai = 0 for i > n [8]. In contrast to (6), let BARX(q) and

AARX(q) denote the numerator and denominator polynomials

of the ARX model, respectively, with nmod > n. In this case,

BARX(q) = B(q)r(q) and AARX(q) = A(q)r(q), where

r(q) is an arbitrary polynomial of order nmod − n.

B. Truncated Laurent Expansion

Let Hi denote the ith Markov parameter of the discrete

transfer function G(z). Then the Laurent expansion of G(z)
about z = ∞ is given by

G(z) =
∞
∑

i=0

z−iHi, (9)

which converges uniformly on all compact subsets of

{z : |z| > ρmax}, where ρmax denotes the radius of the

largest pole of G(z) [9], [1]. Truncating the Laurent ex-

pansion (9), we obtain the approximate transfer function

GN (z) =
∑N

i=0 z−iHi, whose numerator is the N th-order

Markov parameter polynomial (MPP). Since GN (z) approx-

imates G(z) for |z| > ρmax, we examine how well the

roots of the N th-order MPP with radius greater than ρmax

approximate the true system zeros. Consider the ARX model

G(q) = (q − 0.9) / (q − 0.8) . (10)

Letting z denote the largest root of the N th-order MPP and

z0 denote the true zero of G(q), Figure 1 shows that, as the

order of the MPP increases, the absolute value of the error

between z and z0 tends toward zero. This is a result of G(z)
being analytic outside the disk of radius ρmax.

C. Realization

The eigensystem realization algorithm (ERA) requires

at least 2nmod + 1 Markov parameters to produce a state

space model of order nmod [2]. System zeros can then be

calculated using the reconstructed state space model. Here

we use 2nmod + 1 Markov parameters estimated with a

µ-Markov model. Note that when more than 2nmod + 1
Markov parameters are used in ERA, alternative methods are

available [2], [3], although these are not considered here.
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Fig. 1. Accuracy of the approximate zero of (10) using the MPP.

V. MODEL UNCERTAINTY

We consider cases in which the model order and relative

degree are either known or unknown. For the following

examples we consider the ARX model

GARX(q) =
(q − 1.2) (q − 0.8) (q − 0.1)

(q − 0.4) (q − 0.6) (q2 + 0.36)
, (11)

which has the NMP zero z1 = 1.2, two minimum-phase

zeros z2 = 0.8 and z3 = 0.1, and a relative degree d = 1. We

consider a white, Gaussian input signal with zero mean and

variance σ2
u = 1. We also consider white, Gaussian output

measurement noise with zero mean and variance σ2
w = 0.04,

which is uncorrelated with the input. The results are averaged

over N trials, each with a new realization of w, to obtain

statistical regularity. Except where noted, we set N = 2, 000.

We choose the performance metric

εi =
1

N

N
∑

j=1

min
z∈Ẑ(j)

|z − zi| , (12)

where i = {1, 2, 3}, εi represents the average estimation

error of zi, zi represents the true zero of (11), and Ẑ(j)
represents the set of estimated zeros for the jth data set.

For instance, ε1 represents the average estimation error of

the zero at 1.2. Note that the performance metric εi is not

affected by spurious zeros since it considers only the zero

estimate closest to the true zero.

A. Known Order, Known Relative Degree

Assume that the system order and relative degree of (11)

are known, that is, nmod = n and dmod = d. We consider the

accuracy of the zero estimates according to the performance

metric (12) for the ARX and ERA reconstructed models as

well as the effect of increasing µ on the accuracy of the NMP

zero estimate for both the µ-Markov and truncated Laurent

approach. For all of these tests we consider the effect of

increasing data to examine the consistency of the estimates.

We begin by comparing the accuracy of the zero estimates

using an ARX model as more data are made available. Figure

2 shows that the zeros of the estimated ARX model are not

consistent and that the accuracy of the estimates are inversely

proportional to the magnitude of the zeros being estimated.

Next, we consider the NMP zero estimate extracted from

the MPP. Figure 3 suggests that, for each µ, the NMP zero

estimate is not consistent, although the error decreases with

increasing µ and the number of samples.
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Fig. 2. Accuracy of the three zero estimates obtained from the ARX
numerator when the relative degree and order are both known.
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Fig. 3. Accuracy of the NMP zero estimate obtained from the MPP
for various polynomial orders when both the relative degree and order are
known.

Third, we consider the NMP zero estimate obtained from

the estimated µ-Markov numerator. Figure 4 suggests consis-

tency with improved estimation accuracy for the NMP zero

compared to the ARX and truncated Laurent approaches. The

results also appear to be moderately insensitive to the choice

of µ.
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Fig. 4. Accuracy of the NMP zero estimate obtained from the µ-Markov
numerator for various µ when both the relative degree and order are known.

Lastly, we consider the accuracy of the zero estimates ob-

tained from the reconstructed ERA model. Figure 5 indicates

consistency of the estimates as well as comparable or better

accuracy than the previous approaches.

Since the ARX model fails to provide consistent zero

estimates and is the least accurate method when the order

and relative degree are known, we do not consider it for the

remaining cases.
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Fig. 5. Accuracy of the three zero estimates obtained from the ERA
reconstructed numerator when both the relative degree and order are known.

B. Known Order, Unknown Relative Degree

We now assume that the order is known but the relative

degree is unknown. Hence nmod = n and dmod = 0 < d.

First, we consider the NMP zero estimate extracted from

the MPP. Figure 6 indicates that, for each µ, the NMP

zero estimate is not consistent, although the error appears

to decrease with increasing µ and the number of samples.
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Fig. 6. Accuracy of the NMP zero estimate obtained from the MPP for
various polynomial orders when the relative degree is unknown and the
order is known.

Second, we consider the NMP zero estimate from the

estimated µ-Markov numerator. Figure 7 suggests that the

estimate is consistent for all µ and more accurate than

the MPP approach for small µ. The results appear to be

insensitive to the choice of µ.
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Fig. 7. Accuracy of the NMP zero estimate obtained from the µ-Markov
numerator for various µ with unknown relative degree and known order.

Lastly, we consider the three zero estimates obtained from

the reconstructed ERA model. Figure 8 suggests that the zero
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estimates are consistent although with less accuracy than the

known relative degree case shown in Figure 5.
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Fig. 8. Accuracy of the three zero estimates obtained from the ERA
reconstructed numerator when the relative degree is unknown and the order
is known.

C. Unknown Order, Known Relative Degree

Now assume that the order is unknown but the relative

degree is known. Hence nmod ≥ n and dmod = d.

First, we consider the NMP zero estimate obtained from

the estimated µ-Markov numerator with µ = 5 for various

model orders. Figure 9 suggests that the estimate is consistent

for all model orders with similar accuracy to the case of

unknown relative degree shown in Figure 7. The results also

appear to be insensitive to the model order.
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Fig. 9. Accuracy of the NMP zero estimate obtained from the µ-Markov
numerator for various nmod when µ = 5, the relative degree is known, and
the order is unknown.

Next, we consider the NMP zero estimate obtained from

the ERA reconstructed model. To show the effect of in-

creasing model order, 2nmod +1 Markov parameters must be

estimated, meaning that, for nmod = 12, approximately three

times as many Markov parameters are estimated compared

to the case nmod = 4. Figure 10 indicates consistency of the

estimate with slightly increased accuracy compared to the

unknown relative degree case shown in Figure 8.

D. Unknown Order, Unknown Relative Degree

Finally, we assume that both the order n and relative

degree are unknown. Hence we choose nmod ≥ n and

dmod = 0. We compare the accuracy of the NMP zero

estimate for the 5-Markov, 10th-order truncated Laurent,

and ERA approaches. The results are averaged over 10,000

trials with 10,000 samples used in each data set. Figure 11
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Fig. 10. Accuracy of the NMP zero estimate obtained from the ERA
reconstructed numerator when the relative degree is known and the order is
unknown.

indicates that the accuracy of the truncated Laurent and µ-

Markov approaches are approximately independent of model

order and that the ERA NMP zero estimate is comparable

to the other approaches when nmod > n.

4 5 6 7 8 9 10
10

−3

10
−2

10
−1

Model Order n
mod

ε 1

 

 

Truncated Laurent

µ−Markov

ERA

Fig. 11. Accuracy of the NMP zero estimate obtained from the µ-Markov
numerator for various nmod when µ = 5, the relative degree is known, and
the order is unknown.

VI. SPURIOUS ZEROS

We examine the spurious zeros of Bµ(q) and the MPP

when either µ > 1 or dmod = 0 < d. We first look at the

true µ-Markov model with µ > 1, which introduces spurious

zeros. Next, we investigate the MPP with µ > 1, which we

test with the true Markov parameters, the Markov parameters

corrupted by independent noise, and the estimated Markov

parameters. To help us understand the locations of the

spurious zeros when noise is introduced, we compare the

MPP to a random-coefficient polynomial. Lastly, we look at

the spurious zeros of the MPP when dmod = 0 < d.

We begin by examining the effect of pµ(q) on the roots

of Bµ(q) in (6) with a high µ. Figure 12 shows the roots of

Bµ(q) with µ = 50 and indicates that the numerator of the

µ-Markov model contains roots near ρmax.

Next, we investigate the roots of the true MPP for the

nominal model (11). Letting z0 denote the true zeros and zest

denote the roots of the MPP, Figure 13 shows the roots of the

50th-order MPP. In Figure 13 we can see that only the roots

whose magnitude are larger than ρmax are approximated. The

spurious zeros form a ring of radius ρmax.

Next, we note that the estimated Markov parameters are

themselves random variables. As an intermediate step in
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Fig. 12. Roots of Bµ(q) with µ = 50. The additional coefficients in the
µ-Markov numerator due to pµ yield spurious zeros.
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Fig. 13. Roots of the 50th-order MPP compared to the true zeros of (11).

understanding what happens to the roots of the estimated

MPP, we thus consider the mean radius of the roots of

nth-order random-coefficient polynomials whose coefficients

are independent zero-mean Gaussian random variables with

standard deviation σ = 1. Figure 14 shows a histogram of the

mean radius over 10,000 trials, which indicates that, as the

order of the polynomial increases, the roots of a random-

coefficient polynomial approach the unit disk. Note that

Figure 14 displays a numeric result similar to the analytic

result of [10]. Furthermore, fixing the polynomial order n at

15 and comparing the mean radius of the roots for various

standard deviations, Figure 15 indicates that the mean radius

of the roots is independent of the standard deviation of the

coefficients.
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Fig. 14. Histogram of the mean radius of the roots of random-coefficient
polynomials of varying order with standard deviation σ = 1.

Next, we consider the effect of additive Gaussian noise

on the roots of the nth-order MPP of (11). Specifically, we
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Fig. 15. Histogram of the mean radius of the roots of 15th-order random-
coefficient polynomials of varying standard deviation.

compare the radius of the ring of spurious roots due to noise

of varying signal-to-noise ratios (SNRs), where the SNR is

defined to be the ratio of RMS values. Taking the MPP to be

the signal and w to be the noise sequence, the SNR is given

by SNR ,

√

(
∑N

i=0 H2
i )/(

∑N

i=0 w2
i ). Averaging the results

over 1000 trials, Figure 16 indicates that the ring of spurious

zeros moves from ρmax to the unit disk as the polynomial

order increases. Furthermore, the speed with which the ring

moves toward the unit disk appears to be proportional to the

amplitude of the noise superimposed on the MPP.
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Fig. 16. Mean radius of the spurious roots of the nth-order MPP when
additive Gaussian noise of varying SNR is superimposed on the coefficients.

We consider the spurious roots of the identified MPP in

the presence of varying levels of output measurement noise.

Since the MPP was shown in Figure 13 to capture the zeros

of (11) larger than ρmax, we compute the mean radius of the

estimated MPP as ρ̄ =
(
∑n

i=1 |ẑ| − [1.2 + 0.8]
)

/
(

n − 2
)

,

where ρ̄ denotes the average radius, n denotes the order of

the polynomial, ẑ denotes the roots of the identified MPP, and

the adjustment terms account for the approximation of the

two zeros of radius larger than ρmax. Averaging the results

over 1000 trials and using 1000 samples per trial, Figure

17 indicates that the radius of the ring of spurious zeros

approaches the unit disk as the order of the MPP increases.

Furthermore, Figure 17 suggests that the amplitude of the

spurious ring is proportional to the variance of the noise and

the order of the MPP.

As one example of the roots of the identified 40th-order

MPP in the presence of output noise of variance σ2
w = 1,

Figure 18 shows that the radius of the spurious ring is located

at approximately 0.9. Additionally, Figure 18 suggests that
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zeros in the range ρmax < ρ < 1 are not approximated by the

MPP when either the variance of the noise or the polynomial

order is sufficiently high.
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Fig. 17. Mean radius of the spurious roots of the identified nth-order MPP
in the presence of varying levels of output measurement noise.
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Fig. 18. Roots of an identified 40th-order MPP and the true zeros of (11).

Lastly, we look at the effects of underestimating the

relative degree. We consider the system given by

G(q) =
GARX(q)

(q + 0.1) (q + 0.4) (q + 0.6) (q + 0.8)
, (13)

which has a relative degree d = 5, implying that H0 = · · · =
H4 = 0. We simulate the system with a white Gaussian

input of zero mean and variance σ2 = 1. Setting dmod = 0
and corrupting the output with white Gaussian noise of zero

mean, the first 5 estimated Markov parameters are nonzero,

producing 5 spurious zeros. We investigate the location of

these spurious zeros by running trials at varying noise levels,

with µ = 6 to capture all 5 spurious zeros. The radii of all

5 spurious zeros from each trial are averaged, and Figure 19

shows a histogram of the mean radius from 20,000 trials.

From Figure 19, the radii of the spurious zeros are greater

than 1 and tend to group together at the same radius,

generally forming a ring. With increasing noise, the radius

of the ring of spurious zeros approaches the unit disk.

VII. CONCLUSIONS

We investigated the accuracy of least-squares-based al-

gorithms for estimating system zeros in the presence of

known or unknown order and relative degree. Specifically,

we used least-squares to estimate the parameters of ARX

and µ-Markov models from which zero estimates could be

calculated directly using the numerator polynomial as well
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Fig. 19. Histogram of the mean radius of spurious zeros due to under-
estimating the relative degree of (13), with 20,000 trials, 10,000 samples,
nmod = n = 8, and µ = 6 .

as indirectly using the truncated Laurent expansion or the

eigensystem realization algorithm (ERA). To employ the

truncated Laurent expansion or ERA, we considered the

Markov parameters estimated from the µ-Markov model.

The numerical results suggest that both the µ-Markov

and ERA techniques consistently estimate the NMP zero

under all conditions, although the ERA technique requires

estimating 2nmod + 1 Markov parameters and yields slightly

less accurate estimates. The ARX and truncated Laurent

expansion both seem to yield inconsistent estimates of the

zeros, although the truncated Laurent approach can be made

as accurate as the µ-Markov and ERA approaches by choos-

ing a sufficiently high order MPP.

Finally, we investigated the spurious zeros of the µ-

Markov model and truncated Laurent expansion. Numerical

results suggest that when the Markov parameters are known,

the spurious zeros form at ring at ρmax. However, as the order

of the MPP or variance of the measurement noise increases,

the ring of spurious zeros approaches the unit disk. Hence,

for sufficiently large measurement noise or polynomial order,

zeros in the range ρmax < ρ < 1 are no longer contained in

the truncated Laurent expansion approximation.
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