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Abstract— We consider the notion of persistency within a
deterministic, finite-data context, namely, in terms of the rank
and condition number of the regressor matrix, which contains
input and output data. The novel contribution of this work
is the technique of zero buffering, in which the input signal
begins with a sequence of zeros. We show that the degree of
persistency of the input, which is the order of the minimal
AR model that can generate the input signal, is increased
by zero buffering. We then demonstrate the effectiveness of
zero buffering in increasing the degree of persistency of a
Schroeder-phased signal, which, without zero buffering, yields
a poorly conditioned regressor matrix. We also investigate the
feasibility of estimating the dynamic order in terms of the
singular values of the regressor matrix by showing that the rank
of the regressor matrix is related to the degree of persistency
of the input, the order of the model, and the order of the true
system. Under reasonable signal to noise ratios, this technique
provides a useful estimate of the true system order.

I. INTRODUCTION

Persistency is a bedrock requirement of system identi-

fication. Roughly speaking, persistency guarantees that the

inputs to the system and the resulting outputs have sufficient

richness in spectral content to ensure that the system dynam-

ics can be determined to a desired level of accuracy. These

comments apply to both time-domain and frequency-domain

identification objectives.

In the frequency-domain context, necessary and sufficient

conditions are established in [1] for the degree of richness

of the input to generate an informative experiment. One

of these conditions is equivalent to the requirement that

the spectral density of the input be nonzero at a specified

number of frequencies. These conditions are also extended

to closed-loop identification. In [2], signals that maximize

persistency as defined by various cost criteria are examined,

whereas in [3], persistency in the time domain is based on the

informative value of the state. Persistency within a behavioral

context is developed in [4].

All of these persistency conditions are defined in terms

of either the statistics of the input and output signals, or

in terms of the asymptotic nature of these signals, see,

for example, [1]. This approach is especially applicable to

stochastic analysis in which unbiasedness (zero mean of the

error probability distribution) and consistency (convergence

with probability 1 to the true value in the limit of infinite

data) are desired properties of the estimate.
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In the present paper we reconsider the notion of per-

sistency within a deterministic, finite-data context. Instead

of stochastic analysis, we approach persistency in terms of

the condition number of the regressor matrix, which plays

a fundamental role in the effect of noise on the estimated

parameters. In particular, we consider an input model in

the form of an autogressive (AR) model, and then analyze

the resulting rank and condition number of the regressor

matrix. We make no assumption about the input or output

of the system prior to the start of the data record, nor

do we assume that the system begins at rest. The novel

contribution of this work is the technique of zero buffering,

in which the input signal begins with a sequence of zeros. We

show that the degree of persistency of the input is increased

by zero buffering. This simple technique is shown to be

effective in increasing the persistency of both impulsive

and sinusoidal inputs. In particular, we demonstrate the

effectiveness of zero buffering in increasing the degree of

persistency of a Schroeder-phased signal, which minimizes

the peak-to-peak amplitude of a multi-sine signal [5], and

which, without zero buffering, yields an extremely poorly

conditioned regressor matrix. Thus, without zero buffering,

the Schroeder-phased signal has limited value in time-domain

least squares identification.

This paper also investigates the feasibility of estimating

the dynamic order in terms of the rank or singular values of

the regressor matrix. In particular, we show that the rank of

the regressor matrix is related to the degree of persistency

of the input, the order of the model, and the order of the

true system, providing an easily implementable technique for

estimating the order of the true system. Although noise in the

input and output signals corrupts this order estimate, under

moderate signal to noise ratios, the order of the true system

can be estimated with useful accuracy.

The contents of the paper are as follows. In Section II, we

examine several signals, including multi-sines and impulses,

and present numerical and analytical results concerning the

singular values of the regressor matrix for a finite impulse

response (FIR) model with these signals. We also define

degree of persistency and prove its relation to the rank of

the FIR regressor matrix. In Section III, we examine an

auto-regressive model with exogenous inputs (ARX), and we

provide conditions on the order of the model and degree of

persistency of the input such that the regressor matrix has full

rank. In Section IV, we introduce zero buffering and prove

that it can increase the persistency of a signal. In Section V,

we give a numerical example in which a Schroeder-phased

signal is zero buffered, and show that zero buffering can

render the regressor matrix well-conditioned. In Section VI,
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we introduce a rank-estimation technique and present two

examples. Lastly, in Section VII, we consider the effect of

zero buffering in the presence of noise with a numerical

example.

II. FIR IDENTIFICATION

Consider the nth-order finite impulse response (FIR)

model,

y(k) = H0u(k) + H1u(k − 1) + · · · + Hnu(k − n), (1)

where n ≥ 0 and H0, . . . , Hn are Markov parameters.

Choosing a model of the order n̂ and sampling the system

n̂+ l times, we have the overdetermined system of equations

ΘA = b, (2)

where

Θ ,
[

Ĥ0 · · · Ĥn̂

]

∈ R
1×(n̂+1), (3)

A ,







u(n̂) · · · u(2n̂) · · · u(n̂ + l − 1)
...

. . .
...

...
u(0) · · · u(n̂) · · · u(l − 1)






∈ R

(n̂+1)×l,

(4)

b , [ y(n̂) · · · y(n̂ + l − 1) ] ∈ R
1×l. (5)

Note that we do not use y(0), y(1), · · · , y(n̂ − 1) because

we do not assume that u(k) is known for k < 0.

A. Sinusoidal Persistency

The persistency of a signal is related to the rank of

the regressor matrix (4). Roughly speaking, if the regressor

matrix (4) has a moderate condition number for large n̂, then

u(k) is highly persistent. On the other hand, if the regressor

matrix (4) has a large condition number or does not have

full row rank for moderate values of n̂, then u(k) is weakly

persistent.

Consider the multi-sine signals

u(k) =

20
∑

i=1

cos

([

2πi

T

]

k

)

, (6)

v(k) =

20
∑

i=1

cos

(

10

[

2πi

T

]

k

)

, (7)

w(k) =
20
∑

i=1

cos

(

100

[

2πi

T

]

k

)

, (8)

where T = 1000 s and k = 1, . . . , 1000. Figures 1-3

display the power spectral densities of (6)-(8). Note that all

of the signals have 20 sinusoidal components, although their

frequency content is spread out differently.

Figure 4 shows that the regressor matrix (4) is poorly

conditioned for n̂ = 39 and all of the signals (6)-(8).

However, note that, in Figure 4, the signal w(k), which has

the largest bandwidth of (6)-(8), is also the most persistent.

Therefore, Figure 4 and additional examples suggest that

multi-sine signals with larger bandwidths are more persistent

than those with dense frequency spectra.
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Fig. 1. Power spectral density of u(k) given by (6).
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Fig. 2. Power spectral density of v(k) given by (7).
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Fig. 3. Power spectral density of w(k) given by (8).

B. Impulse Persistency

Consider the unit impulse for identification, that is,

u(k) =

{

1, k = 0,

0, k > 0,
(9)
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Fig. 4. Normalized singular values of the regressor matrix (4) with n̂ = 39
and the signals (6)-(8)

which yields the regressor matrix

A =













0 · · · · · · 0
...

. . .
...

0
. . .

...
1 0 · · · 0













. (10)

Since rank A = 1, the solution Θ of (2) is unique if and

only if n̂ = 0.

Now consider the shifted impulse

us(k) = δ(k − n̂), (11)

where δ(·) is the unit impulse function. The input yields the

regressor matrix

A =
[

In̂+1 0(n̂+1)×(l−n̂−1)

]

, (12)

where rank A = n̂+1, and thus A has full row rank. Hence

shifting the impulse n̂ time steps yields a unique solution of

(2).

C. Degree of Persistency

Definition 2.1: Let u(0), . . . , u(l) ∈ R, where

u(0), . . . , u(l) are not all zero. Then the degree of persistency

of u(0), . . . , u(l) is the smallest positive integer m such that

there exist c1, . . . , cm ∈ R that satisfy the auto-regressive

(AR) model

u (k + m) = c1u (k + m − 1) + · · · + cmu (k) , (13)

for k = 0, . . . , l−m. That is, C(q)u(k) = 0, where q denotes

the forward shift operator and C(q)= qm+c1qm−1+· · ·+cm.

Theorem 2.1: Let m denote the degree of persistency

of u(0), . . . , u(l), and let n̂ denote the order of (1). Then

rank A = min(n̂ + 1, m), (14)

where A is given by (4).

Proof 2.1: Let rowi(A) denote the ith row of A. If

m ≤ n̂, then

row1(A) =
m

∑

i=1

cirowi+1(A),

where c1, . . . , cm are given by Definition 2.1. Therefore

rank A = m. Conversely, let m ≥ n̂ + 1 and assume that

rank A < n̂ + 1. Then there exist d1, . . . , dn̂ such that

row1(A) =

n̂
∑

i=1

dirowi+1(A).

Therefore, for all k ∈ [0, l − m],

u (k + n̂) = d1u (k + n̂ − 1) + · · · + dn̂u (k) .

Hence m ≤ n̂, which is a contradiction. 2

III. ARX MODEL IDENTIFICATION

Consider the ARX model

A(q)y(k) = B(q)u(k), (15)

where

A(q) = qn + a1qn−1 + · · · + anq0, (16)

B(q) = b0qn + b1qn−1 + · · · + bnq0. (17)

Sampling u(k) and y(k) n̂ + l times yields the regressor

matrix

A =

[

Ay

Au

]

, (18)

where

Ay ,







y(n̂ − 1) · · · y(2n̂ − 2) · · · y(n̂ + l − 2)
...

. . .
...

...
y(0) · · · y(n̂ − 1) · · · y(l − 1)







Au ,







u(n̂) · · · u(2n̂) · · · u(n̂ + l − 1)
...

. . .
...

...
u(0) · · · u(n̂) · · · u(l − 1)






. (19)

Proposition 3.1: If A given by (18) has full row rank,

then the degree of persistency m of u(k) must be greater

than n̂.

Proof 3.1: Since A has full row rank, both Ay and Au

have full row rank. Also, from Theorem 2.1, since Au has

full row rank, then m > n̂. 2

The following fact will be used as a basis for later

developments in rank estimation.

Fact 3.1: If n̂ > n, then

row1(A) = −
n

∑

i=1

airowi+1(A) +
n

∑

i=0

birowi+n̂+1(A). (20)

Thus if A given by (18) has full row rank, then n̂ ≤ n.
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IV. ZERO BUFFERING

The structure of the regressor matrix A given by (12)

due to the shifted impulse (11) suggests an advantage in

starting the input signal with a sequence of zeros. We call this

procedure zero buffering. With zero buffering, the regressor

matrix of the FIR model (1) has the form

A =













u(0) · · · · · · · · · · · · u(n̂ + l − 1)

0
. . .

...
...

. . .
...

0 · · · 0 u(0) · · · u(l − 1)













. (21)

Note that if there exists k ∈ [0, l − 1] such that u(k) 6= 0,

then A has full row rank and hence there exists a unique

solution of (2).

Theorem 4.1: Let m > 0 denote the degree of persis-

tency of u(0), . . . , u(l). Then there exist c1, . . . , cm such that

u(k) satisfies the AR model

u (k + m) = c1u (k + m − 1) + · · · + cmu (k) , (22)

for k = 0, . . . , l − m. That is, C(q)u(k) = 0. Furthermore,

let m̄ ≤ m be the smallest positive integer such that

u (m̄) = c1u (m̄ − 1) + · · · + cm̄u (0) . (23)

Then, for each nonnegative integer r, the degree of persis-

tency of the zero-buffered signal

uzb,r(k) =

{

0, k = 0, . . . , r − 1,

u(k − r), k ≥ r.
(24)

is r+ m̄ ≥ m, where uzb,0(k) = u(k) and uzb,r satisfies the

AR model

qr+m̄−mC(q)uzb,r(k) = 0, (25)

for k = 0, . . . , l + r − m.

Proof 4.1: Suppose that uzb,r satisfied the (m̄+r−1)th

order AR model

uzb,r (k + m̄ + r − 1) = α1uzb,r (k + m̄ + r − 2)+

· · · + αm̄+r−1uzb,r (k) .

Then for k = 0 it follows that

uzb,r (m̄ + r − 1) = α1uzb,r (m̄ + r − 2)+

· · · + αm̄+r−1uzb,r (0) ,

or, equivalently,

u (m̄ − 1) = α1u (m̄ − 2) + · · · + αm̄−1u (0) ,

which contradicts the assumption that m̄ is the smallest

positive integer that satisfies (23). 2

Note that typically the degree of persistency of uzb,r is

m + r.

Example 4.1: Let u(k) = {1, 1, 0, 0, 1, 1, 0, 0, . . .}.

Then u(k+3) = u(k+2)−u(k+1)+u(k), for k = 0, 1, . . . ,
and hence u(k) has a degree of persistency of 3. Also, from

Theorem 4.1, m̄ = 2. Thus uzb,2(k) = {0, 0, u(k)} has a

degree of persistency of 3 as well.

Corollary 4.1: Let n̂ denote the order of the FIR model

(1). If u(0), . . . , u(l) are not all zero and u(0), . . . , u(l) is

zero-buffered by n̂, then the FIR regressor matrix (4) has

full row rank.

Proof 4.2: Since u(0), . . . , u(l) are not all zero, the

degree of persistency of u(0), . . . , u(l) is m > 0. Then by

Theorem 4.1, the degree of persistency of the zero-buffered

signal

uzb(k) =

{

0, k = 0, . . . , n̂ − 1,

u(k − n̂), k ≥ n̂,

is p = m̄ + n̂, where m̄ is the smallest nonnegative integer

such that (23) is satisfied. Since m̄ ≥ 1, it follows that p ≥
n̂ + 1, and Theorem 2.1 states that the FIR regressor matrix

(4) has full row rank. 2

Fact 4.1: If the degree of persistency of u(k) is m1 and

the degree of persistency of v(k) is m2, then the degree of

persistency of u(k)+ v(k) is less than or equal to m1 +m2.

Proof 4.3: Let C(q)u(k) = 0 and D(q)v(k) = 0,

where C(q) and D(q) are of order m1 and m2, respectively.

Then C(q)D(q) [u(k) + v(k)] = 0. Hence the degree of

persistency of u(k) + v(k) must be less than or equal to

m1 + m2. 2

V. SCHROEDER-PHASED SIGNALS

Schroeder-phased signals minimize the peak-to-peak am-

plitude of multi-sine signals through judicious phasing [5, 6].

A Schroeder-phased signal with flat power spectrum has the

form

uS(k) =
N

∑

i=1

cos

([

2πi

T

]

k −
πi2

N

)

. (26)

Consider a Schroeder-phased multi-sine signal with N =
20 for k = 0, . . . , 999, and the zero-buffered signal

uzb,40(k) =

{

0, k = 0, . . . , 39,

uS(k − 39), k ≥ 39.
(27)

Now consider the normalized singular values of a 39th order

FIR regressor matrix with the Schroeder-phased multi-sine

and its zero-buffered form. Figure 5 shows that the regressor

matrix with the Schroeder-phased signal is poorly condi-

tioned, whereas with the zero-buffered signal, the regressor

matrix has a good condition number and thus full row rank.

VI. RANK ESTIMATION

Rank estimation is often performed by using the eigensys-

tem realization algorithm (ERA), where the rank estimate is

taken to be the rank of the Markov block Hankel matrix

[7]. However, this approach pre-supposes knowledge of the

system’s Markov parameters. Here we show that a rank

estimate can be obtained directly from the ARX regressor

matrix (18).

Theorem 6.1: Consider an ARX system of the form

(15). Let the degree of persistency of u(k) be m, the order
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Fig. 5. Comparison of the normalized singular values of a 39th order
FIR regressor matrix with a Schroeder-phased and zero-buffered Schroeder-
phased signal.

of the true system be n, and the order of the model (15) be

n̂. Then

min(n̂ + 1, m) ≤ rank A ≤ min(n̂, n) + min(n̂ + 1, m),
(28)

where A is the ARX regressor matrix (18).

Proof 6.1: Note that rank Au ≤ rank A. Hence, from

Theorem 2.1, min(n̂ + 1, m) ≤ rank A. Next, suppose that

n < n̂. Then

row1(A) = −

n
∑

i=1

airowi+1(A) +

n
∑

i=0

birowi+n̂+1(A),

and rank Au = min(n̂ + 1, m). Therefore, at most n rows

of Ay are linearly independent of Au and it follows that

rank A ≤ n + min(n̂ + 1, m). If n̂ ≤ n, then all of the

rows of Ay may be independent of Au and it follows that

rank A ≤ n̂ + min(n̂ + 1, m). 2

Numerical testing suggests that rank A = min(n̂, n) +
min(n̂ + 1, m) for almost all initial conditions of y(k),
although for some initial conditions of y(k), rank A <
min(n̂, n) +min(n̂ +1, m). The following example demon-

strates a specific case in which rank A < min(n̂, n) +
min(n̂ + 1, m).

Example 6.1: Consider the system

y(k) = ay(k − 1) + u(k), (29)

for k ≥ 1, where y(0) = y0 and u(k) = rk . Note that since

u(k) satisfies u(k) = ru(k − 1) its degree of persistency is

1. Then letting n̂ ≥ 1 and y0 be given by

y0 =
r

r − a
, (30)

it follows that y(k) = y0u(k) and hence rank A = 1 <
min(n̂, n)+min(n̂+1, m). However, for all other values of

y0, rank A = 2 = min(n̂, n) + min(n̂ + 1, m).
The usefulness of Theorem 6.1 is due to the fact that

the degree of persistency m of the input can be computed

separately from the rank of the regressor matrix A given by

(18). Hence when n̂ > n and the rank equality holds, that

is, rank A = min(n̂, n) + min(n̂ + 1, m), then

n = rank A − min(n̂ + 1, m). (31)

The following examples demonstrate this technique.

Example 6.2: Consider the system

G(z) =
z − 1

(z2 − 1.5z + 0.8)
3 , (32)

the input

u(k) = cos(k/10), k = 0, . . . , 999, (33)

and model order n̂ = 10. Hence n = 6 and m = 2. Then by

(28), we expect

rank A = min(n̂, n) + min(n̂ + 1, m)

= 6 + 2 = 8,

which is verified in Figure 6 by the normalized singular

values of the regressor matrix A given by (18).
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Fig. 6. Normalized singular values of the regressor matrix A given by
(18) for the system (32), input (33), and order of the model n̂ = 10.

Example 6.3: Consider the system (32), the model order

n̂ = 10, and the zero-buffered input

uzb,11(k) =

{

0, k = 0, . . . , 10,

cos ([k − 11]/10) , k ≥ 11.
(34)

Then n = 6, n̂ = 10, and m = 13. Hence by (28) we expect

rank A = min(n̂, n) + min(n̂ + 1, m)

= 6 + 11 = 17,

which is verified in Figure 7 by the normalized singular

values of the regressor matrix A given by (18).
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Fig. 7. Normalized singular values of the regressor matrix A given by
(18) for the system (32), input (34), and order of the model n̂ = 10.

VII. ARX ESTIMATION IN THE PRESENCE OF NOISE

In this section, we consider a periodic Schroeder-phased

signal and a periodic, zero-buffered, Schroeder-phased signal

for identifying an ARX system in the presence of output

measurement noise. Specifically, we consider zero-mean

Gaussian white noise superimposed on the output with a

specified signal-to-noise ratio (SNRs). The SNR is taken to

be the RMS value of the true signal divided by the RMS

value of the noise superimposed on that signal.

Consider the Schroeder-phased multi-sine signal

uS(k) =
50
∑

i=1

cos

([

2πi

200

]

k −
πi2

50

)

, (35)

where k = 0, . . . , 999 and the periodic, zero-buffered signal

uzb,10(k + 210l) =

{

0, k = 0, . . . , 9,

uS(k − 10), k ≥ 10,
(36)

where l ∈ [0, 4] and k = 0, . . . , 209, although only

uzb,10(0), . . . , uzb,10(999) is considered so that uS and

uzb,10 have the same length.

Also, consider the system

G(z)=
(z − 0.75)(z − 0.85)(z2 − 1.6z + 0.6425)

(z−0.8)(z2+0.01)(z2+0.04)(z2+0.9025)
, (37)

and the performance metric

ε(k) ,
‖H − Ĥ(k)‖

µ‖H‖
, (38)

H = [H0 · · · Hµ−1] , (39)

Ĥ(k) =
[

Ĥ0(k) · · · Ĥµ−1(k)
]

, (40)

where H0, . . . , Hµ−1 are the true Markov parameters and

Ĥ0, . . . , Ĥµ−1 are the estimated Markov parameters, which

are obtained by computing the impulse response of the

estimated system. Choosing µ = 10 and n̂ = 10, 1000

trials are run in which (37) is estimated with standard least-

squares. Figure 8 shows that the Schroeder-phased signal

is worse than the zero-buffered signal for identifying the

ARX model (37) according to the performance metric (38).

Note that although the regressor matrix Au given by (19) for

the Schroeder-phased signal has full row rank, it is poorly

conditioned and hence poor estimates are obtained.
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Fig. 8. Comparison of the performance metric (38) averaged over
1000 trials when the Schroeder-phased signal (35) and the zero-buffered
Schroeder-phased signal (36) are used to estimate the ARX model (37)
with standard least-squares.

VIII. CONCLUSION

We have considered a new notion of persistency within

a deterministic, finite-data context. Furthermore, we have

introduced the technique of zero buffering, where the input

signal begins with a sequence of zeros. We showed that this

technique increases the richness of the input, the condition

number of the regressor matrix, and the accuracy of the least-

squares estimates of an ARX system. Conditions for rank

estimation were also presented and demonstrated.
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