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Abstract— We consider control of a dual rigid-body space-
craft consisting of a bus and an appendage connected by a
compliant joint. Thrust actuators are located on the spacecraft
bus, and performance measurements are obtained from sensors
on the appendage. This problem is challenging due to the flex-
ibility of the joint and the noncolocation between the actuation
and the performance variable. The goal is to motivate and
investigate the challenges arising in control of nonminimum-
phase (NMP) systems with rigid- and flexible-body dynamics.
Exact equations of motion are derived for the spacecraft, and
the invariant zeros of the linearized model are determined.
This paper investigates the robustness of an adaptive control
law to variations in the mass and inertia matrices of the bus
and appendage as well as the geometry and joint stiffness. The
adaptive controller uses no knowledge of the NMP dynamics.

I. INTRODUCTION

Attitude control of flexible spacecraft is a long-studied
problem that remains challenging due to uncertainty, non-
linearity, and dimensionality. Uncertainty arises due to im-
precisely modeled dynamics; nonlinearity is due to large-
angle and high-rate kinematics [1]; and high dimensionality
reflects the continuum mechanics of flexible appendages and
propellant slosh [2].

One of the difficulties of assessing the performance of
control laws for these systems is the fact that models based
on continuum mechanics depend on simplifying assumptions
concerning properties of the material and the structure. In
addition, the relevant partial differential equations are infinite
dimensional, which ultimately requires approximation and
truncation [3]. Since the model used for control design must
depend on approximation and truncation, it is difficult to
assess and compare the performance of attitude control laws.
One way to overcome this difficulty is to derive a spacecraft
model with discrete modes in place of continuum mechanics.
A model of this type can be viewed as possessing idealized
flexible modes that are exactly modeled.

The exact-modeling paradigm for investigating spacecraft
attitude control laws was considered in [4] for a spacecraft
consisting of a rigid bus with a discrete flexible mode as-
sumed to be unmodeled. Retrospective cost adaptive control
(RCAC) was applied. As shown in [5], RCAC uses limited
modeling information: the leading sign of the numerator, the
relative degree, and nonminimum-phase (NMP) zeros.

In the spirit of [4], the present paper considers a spacecraft
consisting of two components, namely, a rigid bus and
a rigid articulated appendage. These bodies are connected
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by a compliance that allows 3DOF relative rotation but
no translation. The spacecraft sensors are assumed to be
placed on the appendage, while thrusters apply torques to the
spacecraft bus. The performance objective is thus to achieve
attitude pointing of the appendage with actuation applied to
the bus. This model may represent, for example, a telescope
mounted on a spacecraft bus. As in the case of [4], this
idealized flexible spacecraft amenable to exact modeling.

The challenging aspect of this spacecraft model is the fact
that the actuation and performance variable are noncolocated.
Because of noncolocation, control torques applied to the bus
induce a rotation of the appendage relative to the bus that
is initially in the opposite direction to the asymptotic angle.
This undershoot phenomenon indicates NMP behavior, and
linearization of the nonlinear equations of motion reveals the
presence of NMP invariant zeros. The main goal of this paper
is thus to investigate the performance of RCAC as applied
to the dual-body spacecraft without using knowledge of the
NMP dynamics as in [5].

II. DUAL RIGID-BODY SPACECRAFT MODEL

Consider a two-body spacecraft consisting of a rigid bus
and a rigid appendage connected by a flexible joint as shown
in Figure 1. The flexible joint allows longitudinal rotation
of the appendage relative to the bus with torsional spring
constant κt and lateral rotation of the appendage relative to
the bus with bending spring constant κb.
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Fig. 1. Dual Rigid-Body Spacecraft. The bus and appendage are connected
by a flexible joint that allows relative motion in torsion and bending.

The spacecraft is controlled by torque-generating actua-
tors, such as thrusters, attached to the spacecraft bus. There
is no onboard stored momentum. We define an inertial frame
FI, a bus-fixed frame FB, and an appendage-fixed frame FA.
Let cb denote the center of mass of the bus, ca denote the
center of mass of the appendage, p denote the flexible joint
connecting the bus and the appendage, and w denote the
center of mass of the spacecraft. The location of the joint
relative to the center of mass of the bus is denoted by

⇀
r p/cb .

Note that “
⇀
x” indicates a component-free physical vector.
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It is assumed that, when the flexible joint is relaxed, the
bus and appendage frames are aligned. In addition, as is
shown in Figure 1, the bus and appendage frames are defined
such that, when the flexible joint undergoes only torsion, then
the appendage frame is related to the bus frame by a rotation
around ı̂A. Likewise, when the flexible joint undergoes only
bending, then the appendage frame is related to the bus frame
by rotation around ̂A and k̂A.

The component-free tensor that rotates FI to FB is denoted
by
→
RB/I. The angular velocity of the bus frame relative to the

inertial frame is given by
⇀
ωB/I, and the angular velocity of

FA relative to FI is denoted by
⇀
ωA/I. The rotation matrices,

angular velocities, and position vectors are resolved in the
bus and appendage frames as

Rb
4
=
→
RB/I

∣∣∣∣
B

, ωb
4
=

⇀
ωB/I

∣∣∣
B
, ρb

4
=

⇀
r p/cb

∣∣∣
B
, µb

4
= ̂B|B

Ra
4
=
→
RA/I

∣∣∣∣
A

, ωa
4
=

⇀
ωA/I

∣∣∣
A
, ρa

4
=

⇀
r ca/p

∣∣∣
A
, µa

4
= ̂A|A

For a vector
⇀
x,

⇀
x
∣∣∣
I

= Rb
⇀
x
∣∣∣
B
, which shows that Rb

transforms components of a vector resolved in FB into the
components resolved in FI.

The kinematic rotation equations are given by

Ṙb = Rbω
×
b , Ṙa = Raω

×
a , (1)

where the superscript × indicates the skew-symmetric cross-
product matrix operator. Since the bus is rigid,

⇀
r p/cb is fixed

in FB. Similarly,
⇀
r ca/p is fixed in FA. Hence, ρ̇b = ρ̇a = 0.

The configuration of the spacecraft is described by Rb and
Ra, and thus the configuration space is SO(3)× SO(3).

III. LAGRANGIAN MECHANICS ON A LIE GROUP

The spacecraft may be subject to disturbance torques that
vary along its orbit. However, we assume that the orbital and
attitude dynamics are decoupled, and thus the center of mass
w of the spacecraft can be viewed as an unforced particle,
which provides a reference point for the rotational kinetic
energy. In effect, the following analysis considers only the
rotational kinetic energy of the spacecraft by ignoring the
net force on the spacecraft and assuming that its translational
kinetic energy is constant.

It follows from the definition of w that
⇀
r cb/w

∣∣∣
I

= − ma

ma +mb
(Rbρb +Raρa), (2)

where ma is the mass of the appendage and mb is the mass
of the bus. It thus follows from (1)–(2) that

I•
⇀
r cb/w

∣∣∣∣∣
I

= − ma

ma +mb
(Rbω

×
b ρb +Raω

×
a ρa). (3)

Using (3), the kinetic energy of the bus Bb relative to w
with respect to FI is given by

TBb/w/I =
1

2
ωT
b Jbωb + α(Rbω

×
b ρb +Raω

×
a ρa)2, (4)

where Jb ∈ R3×3 is the inertia matrix of the bus relative to

its center of mass resolved in FB, and α
4
= 1

2mb( ma

ma+mb
)2.

Similarly, the appendage yields
⇀
r ca/w

∣∣∣
I

=
mb

ma +mb
(Rbρb +Raρa), (5)

I•
⇀
r ca/w

∣∣∣∣∣
I

=
mb

ma +mb
(Rbω

×
b ρb +Raω

×
a ρa). (6)

Using (6), the kinetic energy of the appendage is given by

TBa/w/I =
1

2
ωT
a Jaωa + β(Rbω

×
b ρb +Raω

×
a ρa)2, (7)

where Ja ∈ R3×3 is the inertia matrix of the appendage
relative to ca resolved in FA, and β

4
= 1

2ma( mb

ma+mb
)2.

Using (4) and (7), the kinetic energy of the spacecraft is

TBs/w/I =
1

2
ωT
b Jbγωb +

1

2
ωT
a Jaγωa − γωTb ρ×b R

T
bRaρ

×
a ωa,

Jbγ
4
= Jb − γρ2×b , Jaγ

4
= Ja − γρ2×a , γ

4
=

mamb

ma +mb
.

The potential energy of the flexible joint is given by

U =
κb
2
θ2b +

κt
2
θ2t , (8)

where θb is the angle between
⇀
r p/cb and

⇀
r ca/p, κb is the

bending spring stiffness, and θt is the angle between ̂B and
̂A, κt is the torsional spring stiffness. Hence,

U =
κb
2

acos2ρ̄TbR
T
bRaρ̄a +

κt
2

acos2µ̄TbR
T
bRaµ̄a, (9)

where ρ̄b , ρb
‖ρb‖ and ρ̄a , ρa

‖ρa‖ are the unit vectors along
ρb and ρa, respectively, and µ̄b , µb

‖µb‖ and µ̄a , µa

‖µa‖ are
the unit vectors along µb and µa, respectively.

It follows that the Lagrangian is

L = TBs/w/I − U. (10)

The derivatives of L with respect to ωb, ωa, Rb, Ra are

Dωb
L =

∂L

∂ωb
= Jbγωb − γρ×b R

T
bRaρ

×
a ωa, (11)

DωaL =
∂L

∂ωa
= Jaγωa − γρ×a RTa Rbρ

×
b ωb, (12)

DRb
L =

∂L

∂Rb
= κb

θb
sin θb

Raρ̄aρ̄
T
b + κt

θt
sin θt

Raµ̄aµ̄
T
b

− γRaρ
×
a ωaω

T
b ρ
×
b , (13)

DRaL =
∂L

∂Ra
= κb

θb
sin θb

Rbρ̄bρ̄
T
a + κt

θt
sin θt

Rbµ̄bµ̄
T
a

− γRbρ
×
b ωbω

T
a ρ
×
a . (14)

It follows from [6] that

(T∗eLRb
·DRb

L)Tη0 = 〈DRb
L, δRb〉 = tr (DRb

L)TδRb,
(15)

where T∗eLRb
· DRb

L ∈ R3 is the cotangent lift of the
left translation [7], 〈DRb

L, δRb〉 is the variation of the
Lagrangian with respect to Rb, and δRb is the variation of
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Rb. Furthermore, δRb is given by

δRb =
d

dε

∣∣∣∣
ε=0

Rbe
εη0 = Rbη

×
0 , (16)

where η0 in (15) is the eigenaxis of δRb. Using (13) and
(16), it follows that

〈DRb
L, δRb〉 = tr [(DRb

L)TRbη
×
0 ]

= [κb
θb

sin θb
ρ̄×b R

T
bRaρ̄a + κt

θt
sin θt

µ̄×b R
T
bRaµ̄a

+ γ(ρ×b ωb)×RT
bRaρ

×
a ωa]Tη0. (17)

Comparing (15) and (17) yields

T∗eLRb
·DRb

L =
κbθb
sin θb

ρ̄×b R
T
bRaρ̄a +

κtθt
sin θt

µ̄×b R
T
bRaµ̄a

+ γ(ρ×b ωb)×RT
bRaρ

×
a ωa. (18)

Similarly,

T∗eLRa
·DRa

L =
κbθb
sin θb

ρ̄×a R
T
a Rbρ̄b +

κtθt
sin θt

µ̄×a R
T
a Rbµ̄b

+ γ(ρ×a ωa)×RT
a Rbρ

×
b ωb. (19)

The Euler-Lagrange equations on SO(3)× SO(3) [6] are
given by

d

dt
Dωb

L+ ω×b Dωb
L− T∗eLRb

·DRb
L = Mb, (20)

d

dt
Dωa

L+ ω×a Dωa
L− T∗eLRa

·DRa
L = Ma, (21)

where Mb is the net torque on Bb resolved in FB, and Ma

is the net torque on Ba resolved in FA. It follows that

Mb = Bu+ τdb, Ma = τda, (22)

where u ∈ R3 is the control torque vector resolved in FB,
B ∈ R3×3 determines the applied torque about each axis of
FB due to u, τdb is disturbance torque on Bb resolved in
FB, and τda is disturbance torque on Ba resolved in FA. It
follows from (11), (12), (18), (19)-(22) that

Jbγω̇b − γρ×b R
T
bRaρ

×
a ω̇a = −ω×b Jbγωb

+ γρ×b R
T
bRaω

×
a ρ
×
a ωa + κb

θb
sin θb

ρ̄×b R
T
bRaρ̄a

+ κt
θt

sin θt
µ̄×b R

T
bRaµ̄a +Bu+ τdb

4
= G1, (23)

Jaγω̇a − γρ×a RTa Rbρ
×
b ω̇b = −ω×a Jaγωa

+ γρ×a R
T
a Rbω

×
b ρ
×
b ωb + κb

θb
sin θb

ρ̄×a R
T
a Rbρ̄b

+ κt
θt

sin θt
µ̄×a R

T
a Rbµ̄b + τda

4
= G2. (24)

We assume that the control thrusters are configured such that
B = I3.

Define G =
[
GT

1 GT
2 GT

3 GT
4

]T ∈ R3+3+9+9, where

G3
4
= I3 ⊗ (−ω×b Rb), G4

4
= I3 ⊗ (−ω×a Ra). (25)

The resulting equations of motion can be defined in terms

of the state vector

x
4
=
[
ωT
b ωT

a vec(Rb)T vec(Ra)T
]T ∈ R24, (26)

where “vec” is the column-stacking operator. Using (26) to
rewrite (1), (23), and (24) yields

ẋ
4
= F (x, u)

4
=
[
FT
1 FT

2 FT
3 FT

4

]T
= M(x)−1G(x, u),

(27)

where F1, F2 ∈ R3×1, F3, F4 ∈ R9×1, and M(x) ∈ R24×24

is defined by

M(x)
4
=

[
M̂(x) 06×18

018×6 I18

]
, (28)

where the inertia matrix M̂ ∈ R6×6 is defined by

M̂(x)
4
=

[
Jbγ −γρ×b RTbRaρ

×
a

−γρ×a RTa Rbρ
×
b Jaγ

]
. (29)

The objective of this attitude control problem is to de-
termine control inputs such that Ra follows commanded
attitude trajectory given by rotation matrix Rd. The error
between Ra(t) and Rd(t) is given in terms of the attitude-
error rotation matrix

R̃
4
= RT

dRa,
˙̃R = R̃ω̃×, (30)

where the angular velocity error ω̃ is defined by

ω̃
4
= ωa − R̃Tωd, (31)

where ωd is the desired angular velocity of the appendage.
For the output, which is the command-following error z, R̃
is represented by the vector S defined by

z
4
= S(R̃)

4
=

3∑
i=1

ai(R̃
Tei)× ei =

 a3R̃32 − a2R̃23

a1R̃13 − a3R̃31

a2R̃21 − a1R̃12

 ∈ R3,

(32)

where, for i = 1, 2, 3, ai ∈ R are distinct and positive, and
ei is the ith column of I3.

IV. LINEARIZED EQUATIONS OF MOTION

We consider the equilibrium of (27) given by

(xe, ue)
4
=
[

01×6 eT1 eT2 eT3 eT1 eT2 eT3 01×3
]T
,

(33)

which represents the spacecraft at rest relative to FI with
body frames FB and FA aligned with FI and zero control
torque. Linearizing (27) at (33) yields

δẋ = Acδx+Bcδu, (34)

Ac
4
=
∂F (x, u)

∂x

∣∣∣∣
e

=
[
∂F1

T

∂x
∂F2

T

∂x
∂F3

T

∂x
∂F4

T

∂x

]T∣∣∣∣
e

,

(35)

Bc
4
=
∂F (x, u)

∂u

∣∣∣∣
e

. (36)

Define N
4
= ρ×b ρ

×
a , Z

4
= (Jaγ −m2

aN
TJ−1bγ N)−1, P

4
=
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ZNTJ−1bγ ρ̄
×
b , R

4
= ZNTJ−1bγ µ̄

×
b , Q

4
= γ2NTJ−1bγ ρ

×
b Ejiρ

×
a ,

and W
4
= ρ×a Eijρ

×
b , where Eij

4
= eie

T
j . Assuming that the

mass matrix M(x) is positive definite, it follows that M̂(x)
is also positive definite. In fact, Z is the (2, 2) block of
M̂(x)−1, and thus Z is positive definite. Assuming θb

sin θb
≈

1 , θt
sin θt

≈ 1 and τdb = τda = 03×1 yields

∂F1(x, u)

∂x

∣∣∣∣
e

=
[
∂F1

∂ωb

∂F1

∂ωa

∂F1

∂Rbij

∂F1

∂Raij

]∣∣∣
e
,

∂F1

∂ωb

∣∣∣∣
e

=
∂F1

∂ωa

∣∣∣∣
e

= 03×3,

∂F1

∂Rbij

∣∣∣∣
e

= γ2κbJ
−1
bγ [NPEji +WTP

+NZ(WJ−1bγ ρ̄
×
b +QP +QTP )]ρ̄a

+ γκbJ
−1
bγ [NZρ̄×a Eij + (NZQ+NZQT

+WT)Zρ̄×a ]ρ̄b + κbJ
−1
bγ ρ̄

×
b Ejiρ̄a

+ γ2κtJ
−1
bγ [NREji +WTR

+NZ(WJ−1bγ µ̄
×
b +QR+QTR)]µ̄a

+ γκtJ
−1
bγ [NZµ̄×a Eij + (NZQ+NZQT

+WT)Zµ̄×a ]µ̄b + κtJ
−1
bγ µ̄

×
b Ejiµ̄a. (37)

Replacing Eij in (37) with Eji yields ∂F1

∂Raij

∣∣∣
e
. Also,

∂F2

∂ωb

∣∣∣∣
e

=
∂F2

∂ωa

∣∣∣∣
e

= 03×3,

∂F2

∂Rbij

∣∣∣∣
e

= γκb[PEji + Z(WJ−1bγ ρ̄
×
b +QP

+QTP )]ρ̄a

+ κbZ[ρ̄×a Eij + (Q+QT)Zρ̄×a ]ρ̄b

+ γκt[REji + Z(WJ−1bγ µ̄
×
b +QR

+QTR)]µ̄a

+ κtZ[µ̄×a Eij + (Q+QT)Zµ̄×a ]µ̄b. (38)

Replacing Eij in (38) with Eji yields ∂F1

∂Raij

∣∣∣
e
. Also,

∂F3(x, u)

∂x

∣∣∣∣
e

=
[
−
[
e×1 e×2 e×3

]T
09×3 09×18

]
,

∂F4(x, u)

∂x

∣∣∣∣
e

=
[
09×3 −

[
e×1 e×2 e×3

]T
09×18

]
,

∂F (x, u)

∂u

∣∣∣∣
e

=

 J−1bγ B

γZNTJ−1bγ B

018×3

 . (39)

The direction cosine matrix Ra can also be expressed in
terms of 3-2-1 Euler angles ψ, θ, φ as

Ra = (O1(φ)O2(θ)O3(ψ))T

=

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 , (40)

ψ = atan
Ra,21

Ra,11
, θ = asin(−Ra,31), φ = atan

Ra,32

Ra,33
.

Linearizing at Ra = I3 yields the local approximations

[δφ δθ δψ]T ≈ [δRa,32 − δRa,31 δRa,21]T. (41)

V. INVARIANT ZEROS OF THE LINEARIZED SYSTEM

Consider the inertia matrices

Jb = diag(100, 250/3, 50)kg-m2, Ja = diag(0.3, 1, 1)kg-m2.

ma = 1 kg, mb = 100 kg, κt = 10 N/rad, κb = 100 N/m,
ρb = ρa = [1 0 0]T m, and µb = µa = [0 1 0]T m. Note
that Jb and Ja are diagonal, which implies that FA and FB

are principal axes of the bus and appendage, respectively.
This assumption simplifies the subsequent analysis. Using
[δφ δθ δψ]T in (41) as the output and constructing a
minimal realization of the 3-input, 3-output linearized system
(34), (41) of order 24 yields a 17th-order realization of the
3× 3 transfer function

Gtf =


δ̂φ
û1

0 0

0 δ̂θ
û2

0

0 0 δ̂ψ
û3

 . (42)

The first row of Gtf accounts for the torsional motion
of the appendage about its longitudinal axis. Note that,
if κt = 0, which models the case where the torsional
spring is replaced by a frictionless bearing, then δ̂φ

û2
≡ 0.

On the other hand, if κt >> 1, which models the case
where the appendage is connected rigidly to the bus in the
longitudinal direction, then it can be shown numerically that
δ̂φ
û2
≈ 1

(Ja,22+Jb,22)s2
.

The (2, 2) entry of Gtf , which is the transfer function
from u2 to δθ, has zeros ±10.02, whereas, the (3, 3) entry
of Gtf , which is the transfer function from u3 to δψ, has
zeros ±10.49. Consequently, Gtf has four invariant zeros,
two of which are NMP.

Figure 2 shows how the NMP zeros of the (2, 2) and (3, 3)
entries of Gtf depend on κb, κt, γ, ||ρa||2, ||ρb||2, Ja,11,
Ja,22, Ja,33, Jb,11, Jb,22 and Jb,33 respectively.

To assess the accuracy of the linearized model, we com-
pare the impulse response of the linearized system with
the nonlinear system. The maximum deviation of the two
systems after 250 steps is within 8%. The closeness of both
systems show that the NMP behavior of the linearized system
also gives rise in the nonlinear system.

VI. RCAC ALGORITHM [5]

RCAC uses a strictly proper input-output controller

u(k)
4
=

nc∑
i=1

Pi(k)u(k − i) +

nc∑
i=1

Qi(k)z(k − i) = Φ(k)θ(k),

where nc is the controller order, Mi(k) ∈ Rlu×lu , Ni(k) ∈
Rlu×ly , Defining lθ

4
= lunc(lu + ly), then

θ(k)
4
= vec [P1(k) · · ·Pnc

(k) Q1(k) · · ·Qnc
(k)]

T ∈ Rlθ ,
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Fig. 2. NMP invariant zeros of the linearized system as a function of (a)
κb, κt, and γ, (b) ||ρa||2 and ||ρb||2, (c) Ja,11, Ja,22, and Ja,33, (d)
Jb,11, Jb,22, and Jb,33.

Φ(k)
4
=



u(k − 1)
...

u(k − nc)
z(k − 1)

...
z(k − nc)



T

⊗ Ilu ∈ Rlu×lθ ,

To update the controller coefficient vector θ(k), we define
the retrospective performance

ẑ(k, θ̂)
4
= z(k) +Gf(q)[Φ(k)θ̂ − u(k)], (43)

where Gf ∈ Rlz×lu is an FIR filter that captures the plant
modeling information. The controller update θ(k+ 1) = θ̂ is
obtained by minimizing the retrospective cost function

J(k, θ̂)
4
=

k∑
i=1

ηz ẑ(i, θ̂)
Tẑ(i, θ̂)

+

k∑
i=1

ηu[Φ(i)θ̂]T[Φ(i)θ̂] + ηθ[θ̂ − θ0]T[θ̂ − θ0], (44)

where ηz, ηu, ηθ are positive scalars.

VII. NUMERICAL EXAMPLES

In this paper, we set Gf(q) = (1/q)I3, where q is
the forward shift operator. This choice means that RCAC
uses no modeling information about the NMP zeros of the
linearized plant. The identity matrix reflects the assumptions
about the alignment of the actuators and sensors, but uses
no knowledge of the dynamics of the spacecraft. The goal is
to assess the closed-loop performance despite the absence of
this modeling information. For all simulations, the plant is
the exact nonlinear dynamics of the dual-rigid-body space-
craft given by (27) and (32).

To express the command-following error of the appendage
attitude, R̃ in (30) is represented by the Rodrigues formula

R̃(θ̃, ξ)
4
= (cos θ̃)I3 + (1− cos θ̃)ξξT + (sin θ̃)ξ×, (45)

where ξ ∈ R3 is the eigenaxis resolved in FA and θ̃ ∈
(−π, π] is the eigenangle. In terms of the appendage attitude
Ra(t) and the desired attitude Rd(t), attitude-error metric is
given by the eigenangle of R̃

θ̃(t) = cos−1( 1
2 [tr R̃(t)− 1]). (46)

Using the Rodrigues formula, Rd can be represented by
eigenangle θd and eigenaxis ξd resolved in FA.

As in [4], the settling-time metric is defined as

Ts = min{t > ih : for all i ∈ 1, . . . , 400, θ̃(t− ih) < 3 deg},

where h = 0.1 s is the integration step length. The final error
metric is the average of θ̃(t) over the last 1 s of simulation.

We consider R2R maneuvers for command following
with disturbance rejection, where the desired attitude of
the appendage is a fixed attitude in the inertial frame. The
spacecraft is initially at rest. The numerical values in Section
V are used in this section.

A. R2R Maneuvers with Disturbances

1) Command Following: In Figure 3, the disturbance is
set to τdb = τda = [0 0.4 sin(100t) 0]T. Various commanded
motions of the appendage, with desired eigenangle θd vary-
ing from −180◦ to 180◦ around the desired eigenaxes ξd
[1 1 1]T, [1 0 0]T, [0 1 0]T, [0 0 1]T are tested.
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Fig. 3. For the performance weights ηz = 1, ηu = 0.2, and ηθ = 0.01,
nc = 2, τdb = τda = [0 0.4 sin(100t) 0]T, (a) shows the settling time Ts
as a function of the desired eigenangle θd and eigenaxis ξd, and (b) shows
the corresponding final error.

2) Stochastic Disturbance: The components of the ex-
ternal torque disturbances τdb and τda are both Gaussian
white noise with covariance matrix 0.001I3 and mean
[0.1 0.1 0.1]T. The command for the appendage is a 150-
deg rotation about ξd = [1 1 1]T. Figure 4 shows that RCAC
achieves the desired appendage attitude.

B. Robustness Test

1) Robustness to Off-Diagonal Inertia Matrix: As is
shown in Figure 5, to account for the case when FB is not the
principal-axis frame of the bus relative to cb, we rotate the
bus inertia matrix by eigenangle θ about body-fixed eigenaxis
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Fig. 4. For the performance weights ηz = 1, ηu = 0.2, and ηθ = 0.01,
nc = 2, (a) shows θ̃ as a function of time without stochastic disturbance.
The settling time is 506 s, and the final error is 1.5 × 10−5 deg. The
maximum control input is 20.6 N-m. (b) shows θ̃ as a function of time with
stochastic disturbance. The settling time is 1506 s, and the asymptotic error
is 1.72 deg. The maximum control input is 23.3 N-m.

n = [1 1 1]T. The rotated inertia matrix JR is defined as

JR
4
= R(θ, n)TJbR(θ, n), (47)

where R(θ, n) is obtained using Rodrigues formula.
2) Robustness to Diagonal Inertia Matrix Variations:

Now, we assume that FB is the principal-axis frame
of the bus, and that FA is the principal-axis frame of
the appendage. We define the nominal inertia cases as
J̄1 = diag(100, 100, 100), J̄2 = diag(100, 100, 50), J̄3 =
diag(100, 250/3, 50), where, according to [4], J̄1, J̄2, and
J̄3 correspond to the inertia matrix of a sphere, cylinder, and
cuboid, respectively. The varied inertia matrix is

Jij(α) = β[(1− α)J̄i + αJ̄j ], (48)

where i, j ∈ {(3, 1), (3, 2), (1, 3)} for α ∈ [0, 1], and β >
0. J31(α) indicates the varying of inertia from the cuboid
to sphere. J32(α) is the inertia varying from the cuboid to
cylinder. J13(α) is varied from the sphere to cuboid.

In Figure 6 (a)-(b), we vary the bus inertia, that is Jb =
Jij(α), with β = 1. Similarly, in Figure 6 (c)-(d), we vary
the appendage’s inertia, that is Ja = Jij(α), with β = 0.01.
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Fig. 5. For the performance weights ηz = 1, ηu = 0.2, ηθ = 0.01, nc =
2, ξd = [1 1 1]T, θd = 150 deg, and τdb = τda = [0 0.4 sin(100t) 0]T,
(a) shows the settling time Ts as a function of θ, and (b) shows the
corresponding final error.

3) Robustness to Variations of Other Configuration Pa-
rameters of the Spacecraft: In Figure 7, we vary the spring
stiffness κb and κt.
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