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Abstract— We present a two-step method for identifying
SISO Wiener systems. First, using a single harmonic input,
we estimate a nonparametric model of the static nonlinearity,
which is assumed to be only piecewise continuous. Second,
using the identified nonparametric map, we use retrospective
cost optimization to identify a parametric model of the linear
dynamic system. This method is demonstrated on several
examples of increasing complexity.

I. INTRODUCTION

Block-structured models are widely used for system

identification [6]. These models provide useful information

concerning the dynamic and static components of a system,

and thus constitute grey-box models in which the block

structure is ascribed physical meaning. The goal of system

identification is to model the internal structure of each block

from available data.

Among the most widely studied block-structured models

are the Wiener [1–4, 8] and Hammerstein [1, 4] models. Each

model structure involves a single linear dynamic block and a

single nonlinear static block. For these two-block structures,

the difficulty of the identification problem typically depends

on a priori assumptions made about the components, for

example, FIR-versus-IIR dynamics, and invertible-versus-

noninvertible nonlinearities [8]. Furthermore, identification

of Wiener systems is generally considered to be more chal-

lenging than identification of Hammerstein systems due to

the fact that the input to the nonlinear block is available

for Hammerstein systems but not for Wiener systems. In the

present paper, we focus on Wiener systems.

The methods for identifying Wiener systems developed in

[1, 3] assume that the nonlinear block is invertible. To over-

come this requirement, nonparametric probabilistic methods

are used in [6]. Alternatively, frequency-domain methods

that apply multiple harmonic inputs are employed in [2, 4].

In [4], the multiple harmonic inputs are assigned random

phase shifts, and a nonparametric model of the nonlinearity

is obtained using the identified linear dynamic model, which

is previously estimated in the frequency domain. In [2], the

phase shift between the output of the linear dynamic block

and the output is exploited in the frequency domain, for each

harmonic input.

This work was supported in part by NASA through grants NNX08AB92A
and NNX08BA57A, USA, and by FAPEMIG, Brazil.

A. M. D’Amato and D. S. Bernstein are with the Department of
Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA.
{amdamato,dsbaero}@umich.edu

B. O. S. Teixeira is with the Department of Electronic Engineer-
ing, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
brunoot@ufmg.br

In the present paper we develop a novel technique for

identifying single-input, single-output (SISO) Wiener sys-

tems. The proposed approach is semiparametric, which, as

described in [6], refers to the fact that the nonlinear block

is estimated nonparametrically, whereas the linear dynamics

are identified parametrically. To do this, we consider a two-

step procedure. In the first step, we apply a single harmonic

input signal, and measure the output once the trajectory of

the system reaches harmonic steady state. We then examine

the output of the system (which is not harmonic due to the

nonlinearity) relative to the input, and use the symmetry

properties of these signals to estimate the nonharmonic phase

shift. This estimate allows us to infer the phase shift of

the unmeasured intermediate signal (that is, the output of

the linear block) and thus reconstruct this signal up to an

arbitrary amplitude. By plotting the output versus the recon-

structed intermediate signal, we thus obtain a nonparametric

approximation of the nonlinear block of the system.

The second step of the algorithm uses a sufficiently rich

signal to estimate the linear dynamics of the system. Since

we do not assume that the nonlinear block is invertible,

we do not have an estimate of the output of the linear

block. To overcome this difficulty, we apply retrospective

cost optimization, which uses the available output signal (in

this case, the output of the nonlinear block) to recursively

update the linear dynamics. This technique is inspired by

retrospective-cost-based adaptive control [7], which is used

for model updating in [5, 9].

As alluded to above, the two-step identification algorithm

described herein does not require invertibility of the nonlin-

ear block as assumed in [1, 3]. In fact, we do not require that

the nonlinear block be either one-to-one, onto, or continuous,

nor do we assume as in [3] that any specific value of the

nonlinearity be known.

II. PROBLEM FORMULATION

Consider the block-structured Wiener model shown in

Figure 1a, where ℒ is the SISO discrete-time linear time-

invariant dynamic system

x(k + 1) = Ax(k) +Bu(k), (1)

v(k) = Cx(k), (2)

with input u(k) ∈ ℝ and intermediate signal v(k) ∈ ℝ,

where k is the sample index, and y(k) ∈ ℝ is the output

y(k) = W(v(k)), (3)

where W : ℝ 7−→ ℝ is the static nonlinearity. We assume that

ℒ is asymptotically stable and W is piecewise continuous.
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Note that we do not assume that W is invertible, one-to-one,

continuous, or (as in [3]) W(0) = 0. Also, we assume that

v(k) is not accessible, and that x(0) is unknown and possibly

nonzero.

Moreover, Figure 1b shows the scaled-domain modifica-

tion W�(�)
△
= W

(�

�

)

of W , where � is a nonzero real

number. Therefore, W�(�v) = W(v). Each value of � scales

both the gain of ℒ and the domain of W . However, � is not

identifiable.

(a) (b)

Fig. 1. (a) Block-structured Wiener model, where u is the input, v is the
intermediate signal, y is the output, ℒ is a discrete-time linear time-invariant
dynamic system, and W is a static nonlinearity. (b) An equivalent scaled
model, where � is a scaling factor and W� is a scaled-domain modification
of W satisfying W�(�v) = W(v). The scaling factor � is not identifiable.

III. NONPARAMETRIC IDENTIFICATION OF THE STATIC

NONLINEARITY

Consider the harmonic input signal

u(k) = A0sin(!0kTs) = A0sin(Ω0k), (4)

where A0 is the amplitude, !0 is the angular frequency

in rad/sec, Ts is the sample period in sec/sample, and

Ω0
△
= !0Ts is the angular sample frequency in rad/sample.

Since ℒ is asymptotically stable, it follows that, for large

values of k, the intermediate signal v is given approximately

by the harmonic steady-state signal

v(k) = ∣G(e|Ω0)∣A0sin(Ω0k + ∠G(e|Ω0)), (5)

where ∣G(e|Ω0)∣ and ∠G(e|Ω0) arethe magnitude and phase

shift of the frequency response of G(z) = C(zI − A)−1B
at the angular sample frequency Ω0. Therefore,

y(k) = W(∣G(e|Ω0)∣A0sin(Ω0k + ∠G(e|Ω0)). (6)

Next, note that the continuous-time harmonic signal

sin(!0t) is symmetric in the intervals
[

0, 1
2T0

]

and
[

1
2T0, T0

]

about the points 1
4T0 and 3

4T0, respectively, where T0
△
=

2�

!0
is the period of the harmonic input. To preserve symmetry

for the sampled signal (4) about the points 1
4T0 and 3

4T0,

we assume that Ω0 =
�

2m
, where m is a positive integer.

Thus N0
△
= 4m =

T0

Ts
is the period of the discrete-time input

(4). With this choice of Ω0, the sampled signal u(k) is

symmetric in the intervals
[

0, 12N0

]

and
[

1
2N0, N0

]

about the

points 1
4N0 and 3

4N0, respectively. Furthermore, assuming

that q
△
=

∠G(e|Ω0)

Ω0
is an integer, that is,

∠G(e|Ω0)

�
is an

integer, the intermediate signal v(k), which is shifted relative

to u(k) due to ∠G(e|Ω0), is symmetric about 1
4N0 + q in

the interval
[

q, 1
2N0 + q

]

and about 3
4N0 + q in the interval

[

1
2N0 + q,N0 + q

]

. If q is not an integer, then v(k) is only

approximately symmetric.

Next, we note that the output signal y, which is not

generally harmonic, possesses the same symmetry as v on the

same intervals. By exploiting knowledge of this symmetry,

we can identify the nonharmonic phase shift of y relative

to u, and thus the phase shift of v relative to u. Since y
is not sinusoidal, the nonharmonic phase shift of y relative

to u refers to the shifting of the symmetric portions of y
relative to the symmetric portions of u. Knowledge of this

nonharmonic phase shift allows us to determine v up to a

constant multiple, specifically, v is a sinusoid that is shifted

relative to u by a known number of samples.

To clarify the above discussion, we present two examples

using A0 = 1, m = 18 (so that Ω0 = �/36), and

G(z) =
0.0685

z− 0.9164
. First, consider the polynomial nonlin-

earity y = W(v) = 0.6(v+1)3−1, which is neither even nor

odd. Figure 2a illustrates the resulting signals u(k), v(k), and

y(k) in harmonic steady state. Note that u is symmetric about

the discrete-time index � in the interval
[

� − 1
4N0, � +

1
4N0

]

and about � + 1
2N0 in the interval

[

� + 1
4N0, �2 +

3
4N0

]

.

Likewise, v is symmetric about the discrete-time index "
in the interval

[

"− 1
4N0, "+

1
4N0

]

and about " + 1
2N0 in

the interval
[

"+ 1
4N0, "+

3
4N0

]

. It thus follows that y is

symmetric about " in the interval
[

"− 1
4N0, "+

1
4N0

]

and

about "+ 1
2N0 in the interval

[

"+ 1
4N0, "+

3
4N0

]

.

Second, we consider the even polynomial nonlinearity

y = W(v) = v2. Figure 2b illustrates the resulting sig-

nals u(k), v(k), and y(k) in harmonic steady state. The

signals u and v are equal to the signals shown in Figure

2a. However, in addition to the two points of symmetry

shown in Figure 2a, note that y has two additional points

of symmetry, specifically, y is symmetric about "+ 1
4N0 in

the interval
[

", "+ 1
2N0

]

and about "+ 3
4N0 in the interval

[

"+ 1
2N0, "+N0

]

.
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Fig. 2. Illustration of the symmetry properties of the signals u, v, and y
given by (4)-(6), respectively, for (a) the non-even polynomial nonlinearity
y = W(v) = 0.6(v + 1)3 − 1 and (b) the even polynomial nonlinearity
y = W(v) = v2. The signals u and v are harmonic, whereas y is the
output of the nonlinear block W and thus is not harmonic. Note that, for
both cases, u is symmetric about � in the interval

[

� −
1
4
N0, � +

1
4
N0

]

and about � + 1
2
N0 in the interval

[

� + 1
4
N0, � + 3

4
N0

]

, while v and

y are symmetric about " in the interval
[

"− 1
4
N0, "+

1
4
N0

]

and about

"+ 1
2
N0 in the interval

[

"+ 1
4
N0, "+

3
4
N0

]

. In addition, for the case of
an even polynomial nonlinearity shown in (b), y is also symmetric about
"+ 1

4
N0 in the interval

[

", "+ 1
2
N0

]

and about "+ 3
4
N0 in the interval

[

"+ 1
2
N0, "+N0

]

.
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A. Symmetry Search Algorithm

We now present an algorithm to determine " from y.

We then use " to estimate the nonharmonic phase shift of y
relative to u. For convenience, we assume that the harmonic

steady state begins at k = 0. Consider the signal y shown

in Figure 3, and let n ≥ 6m denote the width of the data

window so that it includes at least one and a half periods. To

encompass a complete signal period, we construct a sliding

window with N0+1 data points. The window is divided into

quarters as shown in Figure 3.
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3. Illustration of the sym-
metry search algorithm. The
solid line box comprises the
sliding window of length
N0 + 1 starting at time k,
while the dashed lines indi-
cate the windowed points of
symmetry.

Next, for k = 0, . . . , n−N0, define

�1(k)
△
=

2m−1
∑

i=1

∣y (k + i− 1)− y (k + 2m− i+ 1) ∣, (7)

which is the sum of the absolute difference in magnitude

for each pair of candidate symmetric points in the first and

second quarters about the point k + 1
4N0 for the sliding

window starting at time step k. Likewise, for k = 0, . . . , n−
N0, define

�2(k)
△
=

2m−1
∑

i=1

∣y (k + 2m+ i− 1)− y (k + 4m− i+ 1)∣, (8)

for each pair of candidate symmetric points in the third and

fourth quarters about the point k+ 3
4N0. The values of �1 and

�2 quantify the symmetry error about the points k + 1
4N0

and k + 3
4N0, respectively, for each allowable value of k.

Thus, using (7) and (8), we define the symmetry error index

�(k)
△
= �1(k)+�2(k), corresponding to the sliding window

starting at point k, for k = 0, . . . , n−N0.

For k = 0, . . . , n − N0, let k0 < N0 be the minimizer

of �(k). We use knowledge of k0 to determine the location

of the points of symmetry " and " + 1
2N0 for the sliding

window starting at point k0. In particular, since k0 is the

starting point of the window that minimizes � and since "
and " + 1

2N0 are, respectively, the quarter point and three

quarter point of the same window, it follows that

" = k0 +
1

4
N0, "+

1

2
N0 = k0 +

3

4
N0. (9)

Note that, in general, �(k0) ∕= 0. However if
∠G(e|Ω0)

�
is

an integer, then �(k0) = 0, which indicates exact symmetry

about k0 + 1
4N0 in the interval

[

k0, k0 +
1
2N0

]

and about

k0 +
3
4N0 in the interval

[

k0 +
1
2N0, k0 +N0

]

.

To illustrate the symmetry search algorithm, we reconsider

the example considered in Figures 2a and 3, where y =

W(v) = 0.6(v + 1)3 − 1. Note that W is not even. Figure

4a shows the values of � calculated for y(k) on the interval

[k0, k0 + 2N0]. Since, in Figure 4a, the data window of y is

selected to start at k0 = " − 1
4N0, the minimum values of

�(k) occur at k0 and k0 + N0, where k0 + N0 is the start

of the next period and, thus, need not be considered. Thus,

using the unique minimizer k0 of �(k), it follows that the

locations of the points of symmetry are given by (9).

Next, for the even nonlinearity y = W(v) = v2 considered

in Figure 2b, Figure 4b shows the values of �(k) calculated

for y(k) on the interval [k0, k0 + 2N0]. In this case, the

minimum values of �(k) occur at k0, k0+
1
2N0, and k0+N0,

where k0 + N0 is the start of the next period and, thus,

need not be considered. Thus, using k0, it follows that the

locations of the points of symmetry are given by (9). Also,

using k0+
1
2N0, we obtain two additional points of symmetry

given by

"+
1

4
N0 = k0 +

1

2
N0, "+

3

4
N0 = k0 +N0. (10)

This ambiguity is due to the fact that " and "+ 1
2N0 are the

midpoints of two identical symmetric portions of y. Thus,

the start of the data window within which the function has

the symmetry properties illustrated in Figure 3 can be taken

as either k0 or k0 +
1
2N0. Note that the second minimizer

k0 +
1
2N0 appears only for even nonlinearities.
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Fig. 4. Illustration of the symmetry error index �(k) given by (7). The
values of �(k) are shown for two static nonlinearities, namely, (a) a non-
even polynomial and (b) an even polynomial.

B. Nonparametric Approximation of the Static Nonlinearity

Using �, which is assumed to be known from the

harmonic input u, and the estimate of " obtained from y
in Section III-A, we now determine an estimate �̂ of the

nonharmonic phase shift of y relative to u by �̂
△
= Ω0("−�),

which is an estimate of ∠G(e|Ω0). Moreover, define the

virtual signal

ṽ(k)
△
= A0sin(Ω0k + �̂), (11)

which is an approximation of the intermediate signal v
given by (5) divided by the constant ∣G(e|Ω0)∣. Note that,

if �̂ = ∠G(e|Ω0), then ∣G(e|Ω0)∣ṽ = v. Also, note that

the amplitude of ṽ(k) is irrelevant due to the scaling factor

� shown in Figure 1b. Using ṽ and y, the nonparametric

estimate of W is given by
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Ŵ
△
= {(ṽ(k0), y(k0)), (ṽ(k0 + 1), y(k0 + 1)), . . . , (ṽ(n), y(n))}, (12)

where each pair (ṽ(k), y(k)), for k = 0, . . . , n, determines

a value of the nonparametric estimate Ŵ of W .

Figure 4 shows that, depending on the type of nonlinearity,

�(k) has either one or two minima within each period. For

a non-even polynomial nonlinearity, �(k) has one minimum

within each period. Therefore, the estimate of the nonhar-

monic phase shift has two candidate values, namely, �̂ and

�̂+�. For an even nonlinearity, �(k) has two minima within

each period. Therefore, the estimate of the nonharmonic

phase shift has four candidate values, namely, �̂, �̂ + �
2 ,

�̂+�, and �̂+ 3�
2 . However, for the even case, �̂ and �̂+�

yield the same nonparametric model Ŵ , while �̂ + �
2 and

�̂+ 3�
2 yield the same Ŵ .

Therefore, for both non-even and even cases, there are two

candidate nonparametric estimates of W , both of which are

constructed using (11) and (12). The correct nonparametric

model will become apparent when identifying the dynamic

block of the Wiener system.

IV. PARAMETRIC IDENTIFICATION OF THE LINEAR

TIME-INVARIANT DYNAMICS

Using the nonparametric model Ŵ of W , we now

identify a model of ℒ given by ℒ̂ using retrospective cost

optimization (RCO) [9]. The RCO algorithm is presented

in [5, 9] together with guidelines for choosing its tuning

parameters, namely, nc, p, and �.

Consider the adaptive feedback architecture for ℒ̂ shown in

Figure 5, where ℒ̂m denotes the initial model with input w ∈
ℝ and output v̂ ∈ ℝ, and where ℒ̂Δ denotes the feedback

delta model with inputs u, v̂ ∈ ℝ and output w. The goal is

to adaptively tune ℒ̂Δ so that the performance variable

z(k)
△
= y(k)− ŷ(k) (13)

is minimized in the presence of the identification signal u.

For simplicity, we choose ℒ̂m to be the one-step delay 1/z.

Together, ℒ̂ and Ŵ comprise a semiparametric model of the

Wiener system.

Fig. 5. Identification architecture for Wiener models using RCO.

From Section III-B, recall that there are two candidates

for the nonparametric estimate of W . Thus, we run RCO

for each nonparametric estimate of W and obtain a corre-

sponding parametric model of ℒ. Note that the performance

variable z is calculated for both semiparametric models.

We choose the semiparametric model whose performance

variable has smaller norm.

An overview of RCO is presented in [5, 9].

V. NUMERICAL EXAMPLES: NOMINAL CASE

To demonstrate semiparametric model identification,

we consider various static nonlinearities. For each exam-

ple, we choose G to have poles 0.34 ± 0.87|,−0.3141 ±
0.9|, 0.05±0.3122|,−0.6875 and zeros 0.14±0.97|,−0.12±
0.62|,−0.89 with monic numerator and denominator. Also,

u(k) is chosen to be a realization of zero-mean Gaussian

white noise with standard deviation �u = 3.5.

Example 5.1: (Non-even Polynomial) Consider W de-

fined by

y = W(v) = v3 + 4v + 7. (14)

The parameters for nonparametric identification of W are

m = 500 and A0 = 5. Figure 6a compares the true

and identified nonlinearities. The RCO parameters used to

identify the linear dynamic system are set as nc = 9, p = 1,

and � = 1. Figure 6b shows the frequency response of the

true dynamic model G and the identified model using RCO

with the identified nonlinearity shown in Figure 6a.
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Fig. 6. (a) Identified nonlinearity versus true nonlinearity, where m =
500 and A0 = 5. The argument of the identified nonlinearity is scaled by

1
∣G(e|Ω0 )∣

to facilitate comparison with the true nonlinearity. (b) Frequency

response comparison of the true G and the identified LTI system, where k
is the number of data points used to determine the identified model. The
RCO controller order is nc = 9 with p = 1 and � = 1.

Example 5.2: (Even Polynomial) Consider W defined by

y(k) = W(v) = 7v4 + v2. (15)

The parameters for nonparametric identification of W are

m = 500 and A0 = 5. Figure 7a compares the true

and identified nonlinearities. The RCO parameters used to

identify the linear dynamic system are set as nc = 9, p = 1,

and � = 50. Figure 7b shows the frequency response of

G and the identified model using RCO with the identified

nonlinearity shown in Figure 7a.

Next, to illustrate the ambiguity discussed in Section III-B,

we select the incorrect nonharmonic phase shift, specifically,

�̂ + �
2 . Figure 8a shows a comparison of the true and

identified nonlinearities. Note that the incorrect nonharmonic

phase shift produces an erroneous nonparametric model of

the nonlinearity. Figure 8b shows a frequency response

comparison of G and the model identified using RCO with

the identified nonlinearity shown in Figure 8a.

To determine the appropriate phase shift �̂ or �̂ + �
2 ,

we examine the performance variable z given by (13),
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Fig. 7. (a) Identified nonlinearity versus true nonlinearity, where m =
500 and A0 = 5. (b) Frequency response comparison of the true G and
the identified LTI system, where k is the number of data points used to
determine the identified model. The RCO controller order is nc = 9 with
p = 1, and � = 50.
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Fig. 8. (a) Identified nonlinearity versus true nonlinearity, where m = 500
and A0 = 5. Both candidate values for the nonharmonic phase shift, namely,

�̂ and �̂+ �

2
, are used to build the two candidate identified nonlinearities. (b)

Frequency response comparison of the true G and the identified LTI system,
where k is the number of data points used to determine the identified model.
The RCO controller order is nc = 9 with p = 1, and � = 50.
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9. Retrospective optimization
performance comparison. The up-
per plot shows the performance
variable z for the case in which
the nonparametric model is gener-
ated using the incorrect candidate
for the nonharmonic phase shift

�̂ + �

2
. The lower plot shows z

for the case in which the correct
candidate �̂ is used.

which provides insight into which candidate value yields

the correct semiparametric model. The upper plot of Figure

9 shows the RCO performance variable z for the incorrect

nonparametric model of W , while the lower plot shows the

performance variable for the correct nonparametric model of

W . The correct semiparametric model clearly outperforms

the incorrect model.

VI. NUMERICAL EXAMPLES: OFF-NOMINAL CASES

We now reconsider the Wiener system (1)-(3) with

noise, as shown in Figure 10. The input u(k) is a realization

of zero-mean Gaussian white noise with standard deviation

�u = 3.5, while d1(k) ∈ ℝ and d2(k) ∈ ℝ are unknown

zero-mean Gaussian white disturbances with standard devi-

ations �d1
and �d2

, respectively. The output

y(k) = W(v(k)) + d2(k), (16)

has standard deviation �y about its mean, and d3(k) ∈ ℝ

is an unknown zero-mean Gaussian white disturbance with

standard deviation �d3
. The disturbance signals d1(k), d2(k),

and d3(k) are process, input, and output noise, respectively.

10. Block-structured
Wiener model with process,
input, and output noise,
where d1, d2, and d3 are
unknown zero-mean Gaus-
sian disturbances.

We now consider additional static nonlinearities, where,

for each example, we choose G as in Section V.

Example 6.1: (Deadzone) Consider W defined by

y = W(v) =

{

0, if ∣v∣ ≤ 0.17;

v, if ∣v∣ > 0.17.
(17)

Furthermore, we consider process and output noise �d1
=

1
15�u, �d3

= 1
15�y and d2 = 0. For this problem, the

parameters for nonparametric identification are m = 250
and A0 = 5. Figure 11a compares the true and identified

nonlinearities. The RCO parameters used to identify the

linear dynamic system are set as nc = 9, p = 1, and � = 10.

Figure 11b shows the frequency response of G and the

identified model using RCO with the identified nonlinearity

shown in Figure 11a.
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Fig. 11. (a) Identified nonlinearity versus true nonlinearity, where m =
250 and A0 = 5. (b) Frequency response comparison of the true G and
the identified LTI system, where k is the number of data points used to
determine the identified model. The RCO controller order is nc = 9 with
p = 1 and � = 10.

Example 6.2: (Saturation) Consider W defined by

y = W(v) =

⎧

⎨

⎩

8.64(v + 0.23) − 3.98, if 0.1 < v < 0.4;

1.5, if v ≥ 0.4;

−1.2, if v ≤ 0.1.

(18)

Furthermore, we consider input noise �d1
= 1

8�u and d2 =
d3 = 0. The parameters for nonparametric identification

are m = 150 and A0 = 5. Figure 12a compares the true

and identified nonlinearities. The RCO parameters used to

identify the linear dynamic system are set as nc = 9, p = 1,

and � = 1. Figure 12b shows the frequency response of

G and the identified model using RCO with the identified

nonlinearity shown in Figure 12a.

VII. NUMERICAL EXAMPLES: ERROR METRICS

We now investigate the effect of systematically decreas-

ing the amount of available output data that is used to

identify the linear block of the Wiener system. Moreover, we

investigate the effect of decreasing m, which determines the
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Fig. 12. (a) Identified nonlinearity versus true nonlinearity, where m =
150 and A0 = 5. (b) Frequency response comparison of the true G and
the identified LTI system, where k is the number of data points used to
determine the identified model. The RCO controller order is nc = 9 with
p = 1 and � = 1.

number of points in the nonparametric model, and therefore

affects the fidelity of Ŵ .

To quantify the accuracy of the identified semiparametric

model, we compute the root-mean-square error (RMSE) for

the first 15 Markov parameters of the true linear system and

the identified linear system. The linear model is the same as

in Sections V and VI, while W is given by (14).

A. Effect of Disturbances

To evaluate the effect of �d1
, �d2

, and �d3
, we decrease

the number of available data points from 4000 to 10. For

each case, we perform a 100-run Monte Carlo simulation

with a signal-to-noise ratio of 10. We consider the effect

of d1, d2, and d3 individually, as well as the effect of all

three noise signals, which may be uncorrelated or correlated.

Furthermore we consider when d1 and d3 are correlated, and

d2 and d3 are correlated.

Figure 13 demonstrates the increase in error for decreasing

amounts of available data. Furthermore, we see that the cases

with correlated disturbances yield similar results compared

to the case with uncorrelated disturbances.
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Fig. 13. RMSE Markov parameter error versus number of data points. For
each number of data points we perform a 100-run Monte Carlo simulation.

B. Nonparametric Model Accuracy

We now perform a Monte Carlo simulation to evaluate

how m affects the accuracy of the identified linear system.

Specifically, we vary m from 1 to 100. For each value of m
we average the result over 100 simulations. We consider the

nominal case, that is, without noise.

Figure 14 shows that RMSE generally decreases as m
increases. Note that, for this example, only a slight decrease

in RMSE is observed for m ≥ 20.
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Fig. 14. RMSE Markov parameter error for an increasing number of points
in the nonparametric model. For each value of m, a 100-run Monte Carlo
simulation is performed.

VIII. CONCLUSIONS

In this paper we develop a two-step method to identify

semiparametric models for SISO discrete-time Wiener sys-

tems. We make two assumptions, namely, the linear dynamic

block is asymptotically stable, and the static nonlinearity is

piecewise continuous.

First, we choose a single harmonic input and measure the

system output when the state trajectory is in harmonic steady

state. By exploiting symmetry properties of these signals,

we approximate the nonharmonic phase shift and, therefore,

estimate the intermediate signal. Using the estimate of the

intermediate signal, a nonparametric model of the static

nonlinearity is obtained.

Second, using the identified nonparametric model, we use

retrospective cost optimization to identify a parametric model

of the dynamic system. In fact, the nonparametric model used

with RCO can be obtained using any method.

This method is effectively demonstrated on several exam-

ples of increasing complexity, including nonlinearities in the

form of both even and non-even polynomials, deadzone, and

saturation, and disturbances on the form of process, input,

and output noise.
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