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Abs t rac t  The Hamilton-Jacobi-Bellman theorem is used to 
derive a control law that globally asymptotically stabilizes the 
Euler's equation to  a prescribed state. It is shown that if all 
three components of the prescribed state are nonzero, then it 
is impossible to  asymptotically stabilize the Euler's equation 
to  that state using only two torque inputs along two principal 
axes. If two components of the prescribed state are nonzero and 
one of the two components is in the uncontrollcd principal axes, 
then we obtain a family of optimal nonlinear stahilizing feedback 
control laws. 

1 Introduction 

Angular velocity stabilization of a rigid body has been stud- 
ied by many researchers [l, 2, 7, 8, 12, 14, 17, 21, 22, 231. If 
there are two torque inputs along two principal axes and the 
uncontrolled principal a x i s  is not an axis of symmetry, then the 
system can be asymptotically stabilized by using a variety of 
design schemes. In [7], a locally asymptotically stabilizing con- 
trol law was given. Later, Aeyels [l] applied center manifold 
theory to  reduce the problem t o  one of lower dimension and 
thereby obtained another locally stabilizing rontrol law. In [12], 
the authors applied the concept of finite gain developed hy [7] 
and obtained the first globally stabilizing feedback control law. 
More recently, Byrnes and Isidori [8] used the general method- 
ology of nonlinear zero dynamics to  derive another globally sta- 
bilizing feedback control law for the system. Then, Krishnan, 
Reyhanoglu and McClamroch [14] glohally asymptotically sta- 
bilized the system in finite time by using a piecewise analytic 
control law. In [22], Hamilton-Jacobi-Bellman theory [3] was 
used to  generate a family of feedback control laws that globally 
asymptotically stabilize the system. 

If there is only one torque input, asymptotic stahilization is 
still possible under conditions that depend on the orientation of 
the input torque and the symmetry of the rigid body. If the 
rigid body has no axis  of symmetry and if the input torque does 
not lie in a principal plane, Aeyels and Szafranski [2] derived a 

linear control law to globally asymptotically stahilize the Euler's 
equation. If the rigid body has one axis of symmetry and if the 
input torque has nonzero components along the axis of symme- 
try and in any direction perpendicular to the axis of symmetry, 
Sontag and Sussmann [21] proved the existence of a stabilizing 
control law, while Outbib and Sallet [l7] foiind such a control 
law explicitly. 

Rotational stabilization of angular velocity of a rigid body 
has been considered in [5, 6, 24, 251. In [GI, the authors (Lya- 
punov) stabilized the unstable equilihrium of the Euler's equa- 
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tion, i.e., the intermediate axis rotation, by applying a single 
torque along the major or minor axis. The design strategy of 
their approach is based on the Energy-Casimir method [ll, 181. 
In the presence of one symmetry axis, linear control law that 
(Lyapunov) stabilized one of t,he nnsymmetric-principal-axis ro- 
tation is developed in [24. In [25], the authors wed the Energy- 
Momentum method to  stabilize Euler's equation to  an arbitrary 
point by applying three torque inputs. 

In the present paper, we synthesize smooth control laws that 
globally asymptotically stabilize the Euler's equation t o  an arbi- 
trarily prescribed &ate using only two torqire inputs along two 
principal axes. It is shown that if all the three components of 
the prescribed state are nonzero, then it is impossible t o  asymp- 
totically stabilize the Euler's equation to  that state by merely 
using two torque inputs, a situation reminiscent of the nonzero 
set point regulation problem in linear systems [4, lo]. If two 
components of the prescribed state are nonzero and one of the 
two components is in the uncontrolled principal axes, then gloh- 
ally asymptotically stabilizing control laws are synthesized using 
the Hamilton-Jacohi-Bcllman theorem. 

2 Optimal Nonlinear Feedback Control 

In this section we review the Hamilton-Jacohi-Bellman (HJB) 
theorem and state several related corollaries which were devel- 
oped in [23]. Consider the controlled system 

Z(t) = F(z(t), U ( t ) ) ,  z(0) = 2 0 ,  t 2 0, (1) 

where z ( t )  E 'D C R" is the state varia.ble, V is an open set with 
0 E 'D, u(t)  E U C Rm is the control input, U is an arbitrary 
set with 0 E U, and F: 'D x U 4 'R" satisfies F(0,O) = 0. The 
control U(.) in (1) is rert.ricted t o  the class of ndmiasible contmls 
consisting of measurable functions U(.) such that u(t) E 0, t 2 0, 

where the control constraint set 0 C U is given. We assume 
0 E 0 and R is compact. 
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A measurable mapping 4: V + R satisfying d(0) = 0 is 
called a control law. If u(t) = #(z(t)), where 4 is a control law 
and z ( t )  satisfies ( l ) ,  t,hen U ( . )  is called a fcedbnck control late. 
A feedback control law is admissible since the control law H.) 
takes values in R, and z(.) is absolutely continiious. 

Letting L ( z ,  U )  be the performance inkgrand, where L: V x 
U + R, the corresponding Hamiltonian is dcfincd as 

A 
H ( z , r r , p )  = L ( z , u )  + p T F ( + , u ) ,  

where p E 72". Furthermore, we define the ret of asymptot- 
ically stabilizing admissible control laws S(+o) for each initial 
condition 10 E V, that is, 

A 
S(s0) = {U(.): U ( . )  is admissible and +(.) given by 

(1) satisfies s ( t )  + 0 as t + CO}. 

Although this set plays a role in the following t.heorem, an ex- 
plicit characterization of this set is not required. 

Theorem 2.1. Consider the controlled system (1) with perfor- 
mance functional 

J(ZO,lI(.))  42 L ( r ( t ) ,  u( t ) )d t .  (2) 

Assume that there exists a C' fnnction 1': 'D -+ 12 and a control 
law qk V + R such that 

V(0)  = 0 ,  (3) 

V ( r )  > 0, 2 E v, 2 # 0, (4) 

d(0) = 0, ( 5 )  

V'(z )JY+,$(z ) )  < 0, 5 E 'D, r # 0, (6) 

H ( z , H z ) , v % ) )  = 0, 7 E v, (7) 

H(z,u,V'T(*)) 2 0 ,  r E v, U E 0. (8) 

Then, with the feedback control law U(.) = $(I(.)), the solution 
z ( t )  = 0, t 1 0, of the closed-loop system 

i ( t )  = F ( z ( t ) ,  4(z(q)), z(0) = 2 0 ,  t 1 0, (9) 

J(zo,+(z(.))) = V I : ~ O ) ,  for all r o  E 'D. (10) 

Furthermore, the feedback control law U ( . )  = $(r(-))  minimizes 
J(zo ,u ( . ) )  in the sense that 

is locally asymptotically stabk, and 

J(zo,4(4*))) = u ~ ~ ~ ~ z o l  4 2 0 ,  U ( - ) ) ,  for all r o  E V. (11) 

Finally, if V = R" and 

V ( z )  + m as l lzll+ 00, (12) 

then the asymptotic stability is global. 

Proof. See (31. 0 

We now consider a nonlinear system that is affine in control 
given by 

* ( t )  = f(4t)) + d z ( t ) ) u ( t ) ,  (13) 
where V = R", R = U = Rm. Let the performance integrand 
L ( z ,  U )  be given by 

L ( z ,  U )  = L l ( Z )  + L z ( z ) u  + VTRu, (14) 

where L1: R" + R, Lz: R" + Rlxm satisfies Lz(0)  = 0, and 
R E Rmxm is positive definite. With the specialization (13), 
(14), we have the following corollary of Theorem 2.1. 

Corollary 2.2. Consider the controlled system (13), and as- 
sume that there exists a C' function V :  R" + R and a function 
L2: 72" + RIxm, such that 

V ( 0 )  = 0 ,  (15) 

V ( z )  > 0 ,  z ER", 3: # 0, (16) 

(17) 

(18) 

1 1 
2 2 

V ' ( z ) [ f ( z )  - -g(z)R-'L:(z) - - ~ ( z ) R - ' ~ ~ ( T ) V ' ~ ( + ) ]  < 0 ,  

for all z E R", 2 # 0, and 

V ( z )  + m a6 llzll + W. 

Furthermore, define the feedback control law U = d(z), where 
8 

(LT(z)  + sT(+)V'T(z)]. (19) 
A 1  4(z) = --R-' 

2 

Then the solution z ( t )  = 0, t 2 0, of the rloscd-loop system 

is minimized in the sense of (10) and (11). 

Proof. See Wan and Bernstein [22]. 0 

In the following we apply Corollary 2.2 to  minimum phase 
systems satisfying some additional conditions [13, 161. We con- 
sider the affine control system 

i ( t )  = f ( z ( t ) )  + g(z(t))u(t)* (22) 

Y(t)  = h(z( t ) ) ,  (23) 

where ~ ( t )  E 12" is an artificial output function, and h(z )  = 
( h ( z ) ,  h2(z) ,  , hm(z))T. 

Lemma 2.3. Assume that the nonlinear system (22), (23) is 
minimum phase with relative degree {1,1, .  . ., 1) .  If the vector 
field g(L,h)-' is complete, then there exists a global diffeomor- 
phism C :  'R" -+ R", a CO" function fo : 'R"-m -, R"-m, and 

uch that, in the a CcQ function r : Rnpm x Rm + R ( ~ - ~ ) ~ ~  s 

new coordinates - -  

the differential equation (22) is equivalent to  the normal form 

Proof. See Byrnes and Isidori [8]. 0 
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Since the system is minimum phase, the zero dynamics i = 
f o ( z )  are asymptotically stable. Hence the converse Lyapunov 
theorem [15, 201 implies that there exists a C' Lyapunov func- 
tion Vo(z) such that 

FfO(2) < 0, 2 E 72, 2 # a .  
In the following result, we use the HJB framework t o  derive 

an optimal nonlinear feedback control law for such systems. This 
control law is a generalization of the results obtained by Byrnes 
and Isidori [8]. 

Proposi t ion 2.4. Consider the nonlinear system defined by 
equations (22), (23). Assume that the system is minimum phase 
with relative degree {1,1, .  .., 1) and the vector field g(Lgh)-' 
is complete. Furthermore, let 

and 
V ( 2 )  = Vo(2) t YTPY, (28) 

where P is an arbitrary m x m positive-definite matrix. Then 
the optimal nonlinear feedback control law 

+(z) = - Z [ L , f i ( z ) ] - ' [ ~ - ' r ~ ( , , y ) ( ~ ) ~  1 t 2 ~ j h ( z ) l  

-R-' [LSh(z)ITPTh(z) (29) 

globally stabilizes (22). Finally, this control law minimizes J ( z 0 ,  w(.)) 

in the sense of (10) and (11). 

Proof. See Wan and Bernstein [23]. 0 

3 Rotational Stabilization with Two Torque 
Inputs 

Consider the rotational stabilization problem of Euler's equa- 
tion at an arbitrary angular velocity state W. by using three 
independent torque inputs. It can be shown that any stabiliz- 
ing control law that asymptotically stabilizes Euler's equation to  
the null equilibrium can be modified t o  asymptotically stabilize 
the equation to  an arbitrary prescribed state w.. An almost ro- 
bust control law was developed by using the Energy-Momentum 
method [25]. Other possible choices of control laws include linear 
control law and sublinear finite time control law [9, 191. 

In this section we consider rigid body rotational stabiliza- 
tion with two torque inputs along two principal axes. We can, 
without loss of generality, express the dynamical cqiiation as 

= J23WZW3 t U l r  

G2 = 531W3WI t u2, (30) 

G3 = JlZWlWZ, 

where 523 = ( J Z - 5 3 ) / 5 1 , 5 3 1  = (J3-Jl)/JZ,Jl? = ( 5 1 - 5 2 ) / J 3  

and 51, 52, 53 are the principal moment of inertia. For the null 
solution of the above equation, if the uncontrolled principal axis 
is an a x i s  of symmetry, i.e., J12 = 0, or 51 = Jz, then the 
system cannot be asymptotically stabilized. If the uncontrolled 
principal a x i s  is not an axis of symmetry, i .e.,  Jlz # 0, or 5 1  # 
J1, then the system can be globally asymptotically stabilized, 
see [22] and the references therein for detail. 

For the rotational stabilization problem, it is required that 
the rigid body be stabilized to  an arbitrary prescrihed angular 
velocity state wJ = (W*1,w.2,Ws3)T. Letting 

(31) - A  w = W - us, 

equation (30) becomes 

= 5 2 3 ( a Z G 3  t U 8 2 0 3  t W d 3 4  t WsZWs3) t U 1  3 

3 2  = J31(@@1 t W.331 t W s 1 h  t W.W.1) t U21 (32) 

33 = JlZ(r31ijZ t W,l& t W*ZGl t W.IWsZ). 

In equation (32), if the uncontrolled principal axis is an axis of 
symmetry, i.e., 5 1 2  = 0, or 51 = 52, then it cannot be asymptoti- 
cally stabilized t o  G = 0. Henceforth, we assume that the uncon- 
trolled principal axis is not an a x i s  of symmetry, i.e., J12 # 0, or 
51 + 52. Moreover, in (32), if w.1w.2 # 0, then it is impossible 
for the closed-loop of (32) to  have an equilibrium at the origin. 
Hence, we consider the case in which w.1w.2 = 0. Without loss 
of generality we let u.1 = 0, so that (32) becomes 

3 1  = 5 2 3 ( 3 @ 3  t W d 3  t W.332 t W,ZW,3) t U 1  9 

3 2  = 5 3 1 ( 3 3 G 1  t w s 3 G I )  + u2, (33) 
3 3  = JlZ(GlG2 t W.2Gl) .  

Note that in equation (33), if 523 = 0, or 52 = 53, then we can 
redefine the body coordinate and control vectors such that the 
new orientation of u2 has the same direction as the prescribed 
state. Thus in this special case, (33) can be simplified and U. 

will correspond t o  an equilibrium state of a single axis spin in the 
new coordinate. However, it is not necessarily easier to  design 
an asymptotically stabilizing control law in the new coordinates. 
Hence, whether 52 = 53 or not, equation (33) will be used to 

design the control law. 

Remark. If there is only one torque input, i.e. u2 = 0, (if ut = 
0, the closed-loop equation of (33) won't have an equilibrium at 
the origin), equation (33) cannot be asymptotically stabilized. 
This can be shown by the function 

v(G)  = J 1 2 ( 5 2  t W82)' - J 3 1 ( h  t U ~ 3 ) ~ 1  

which has time derivative 

V ( G )  = 0. 

This implies V ( G )  = constant is an invariant manifold for all u 1 ,  

and thus precludes the possibility of asymptotic st,abilization. 0 

Define 21 5 G 1 , q  2 &,23  5 3 3 / J 1 2 ,  so that zS1 = 0, zs2 = 
w,2, and 2.3 = W,3/J12.  In the following development, we as- 
sume 2.2 > 0. If x , ~  < 0 then minor modifications discussed at 
the end of this section are required. Rewriting equation (33) as 

A 
51 

iz 

= J Z ~ J I Z ( Z Z X ~  + X a 2 2 3  t 2 8 3 2 2  + ~ ~ 2 ~ ~ 3 )  t UI = V I ,  

(34) = J31 J i z ( x 3 5 1  t z . 3 2 1 )  + uz = A vz, 

53 = 2 1 x 2  t ZJ2z1,  

3113 

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 07,2010 at 01:19:27 UTC from IEEE Xplore.  Restrictions apply. 



we have, in the notation of (13), 

f(z) = [ : 1 ,  g ( z ) = [ ;  0 0  ' 1 .  
z122 + z.2z1 

For equation (34) we apply Proposition 2.4 to derive an op- 
timal nonlinear feedback control and the corresponding perfor- 
mance functional. By letting 

Yl = %I t (35) 

yz = 2 2  +pz{+ ' ,  (36) 

where t i s  a positive integer, and a,@ are arbit,rary real numbers, 
it is eaay to  check that the system has relative degree {Ll}. 
To complete the diffeomorphism, the third coordinate z can he 
obtained by solving the partial differential eqnation Lgz = 0, 
and its simplest solution is 

z =: 5 3 .  (37) 

In the notation of the normal form (25), we have 

fO(Z) = -aza22k + ap*Zk+l, 

r(z, 1) = [z,2 - ,oz'+' + y2, - a z k ]  

r(z,y) = [za2 - /3zk+', -aik + ~ 1 1 .  

(38) 

and there are two possible choices for r(z, y), namely, 

(39) 

(40) 

Vo(z) = mz2, (41) 

and 

By taking 

where p3 > 0, we have 

avo 
8.2 

v o ( Z )  = - f o ( Z )  = -2ap;Z .2Zkt1  + 2flfip3Z2(k+'). (42) 

To make %(z)  < 0, we take p 5 0, a > 0 and k = 1,3,5,. . .. 
Hence, by properly choosing a, p, le, the original syitem is min- 
imum phase. F'urthermore, we have 

1 kaz;-"(Zlz2 i- z.2z1) 

( t  + 1 ) P z t ( z 1 + 2  + r a z z ] )  
Lfh(2) = 

-kaz1(zz  + z a 2 ) & 1  - ( m / P l ) ( T Z  + Ta2)23 
-(Pl/rl)(rl i- 4) 

- (P2/ .2)( .2  - 
-(k + 1)Pz1(zz + 2,z)z,k + 4P3/Pz)"{+l i 4(z) = 

and let R have the form 

' 

t o  obtain 

Clearly, if P 5 0, then by taking a > 0 and k = 1,3,5,. . ., the 
Lyapunov derivative is negative. Hence, by properly choosing 
the parameters, the time derivative of the Lyapiinov function is 
negative for all nonzero z E 'R3. Thus, the control law +(z) in 
(46) globally asymptotically stabilizes (34), and V ( z )  is a Lya- 
punov function for the closed-loop system. It should he noted 
that because of the normalization in taking the linear comhina- 
tions, the coefficient p does not appear in V ( z ) .  Finally, L l ( z )  
can be calculated directly from (21), so that thc performance 
integrand from (14) is 
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where R and L T ( x )  are as defined previoiisly. Hence L ( z , u )  is 
nonnegative definite for all z and U. 

The optimal nonlinear feedback control laws (46) are a direct 
generalization of the results of [22] to  thc case in which z,y = 

0 ,x . z  # O,z,3 # 0. If 5.2 = O,z.3 = 0, then (46) specialize to  
the results obtained in [22]. Note that, in (46) p = 0 is allowed 
and for global stabilization k is restricted to  he a positive odd 
integer. 

The control laws developed here correspond to  the case in 
which zSz > 0. If x , ~  = 0, then ap  < 0 is reqllired to  guar- 
antee stabilization and a is not necessarily positive. If, on the 
other hand, zSz < 0 then we can redefine the coordinate to  have 
positive xsz  in the new coordinate, or we can restrict a to  be 
negative. In the latter case, p should be chosen to he nonnega- 
tive. 

Finally, we can write the control law (46) in the angular 
velocity coordinate (30) as .(U) = (u I (w) ,  ~ r z ( w ) ) ~ ,  where 

u1(w) = -523WZw3 - kawlwz(w3 - W~3)~-’/5:;’ 

-(pl/rl)(wl + a(w3 - Ws3)’/J:Z) 

-(P3/Pl)[~Z(W3 - W,3)/512 

+(I - p ) ( ~ . z  - p ( ~ 3  - W,J)~+~/J:$~)], (50) 

4 Simulation Results 

For illustration, we consider rotational st~aliilization for an ide- 
alized spacecraft with 51 = 4.52 = 3, and J3 = 2. Suppose 
we want to  stabilize this spacecraft to  w, = (0,1, l)T from an 
arbitrary initial angular velocity, say (-1, -2, -3)=. Choosing 
p = 1,k = 1,pl = pz = rl = T Z  = 4,p3 = 1 , a  = 1, and 
p = 0, the globally asymptotically stabilizing cont,rol law (50) 
(51) becomes 

211 (U) = -WzW3/4 - Wy W2 - 4Wz (U3 -Ws3) -W1 - 2( W3 --Wag), (52) 

UZ(W) = %Wi/3 + 8 ( ~ 3  - ~ s 3 ) ’  - ( ~ z  - %z). (53) 

The simulation results are shown in Figure 1 and Figure 2. For 
p = -1 and the remaining parameters as above, the resulting 
control law is 

5 Conclusions 

It was shown that the Euler’s equation can hr asymptotically 
stabilized to  a nonzero state using only two torqne inputs along 
two principal axes if and only if the nonzero state has only two 
nonzero components and the zero component is in one of the two 
controlled-principal-axis. The Hamilton-Jacobi-Rcllman theo- 
rem was used to synthesize smooth control laws that globally 
asymptotically stabilized the Euler’s equation to  t,he prescribed 
state. 

References 

D. Aeyels, “Stabilization of a Class of Nonlinear Systems 
by a Smooth Feedback Control,” Sys. Contr. Lett., Vol. 5, 
pp. 289-294, 1985. 

D. Aeyels and M. Szafranski, “Comments on the Stahiliz- 
ability of the Angular Velocity of a Rigid Body,” Sys. Contr. 
Lett., Vol. 10, pp. 35-39, 1988. 
D. S. Bernstein, “Nonquadratic Cost and Nonlinear Feed- 
back Control,” Proc. Amer. Contr. Con!., pp. 533-538, 
Boston, MA 1991, also Int. J. Robust and Nonlinear Con- 
trol, to appear. 

D. S. Bernstein and W. M. Haddad, “Optimal Output Feed- 
back for Nonzero Set Point Regulation,” IEEE Trans. Au- 
tom. Contr., Vol. 32. No. 7., pp. 641-645, 1987. 

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and G. 
Sanchez De Alvarez, “Stabilizability of Rigid Body Dynam- 
ics by Internal and External Torques,” Automntica, Vol. 28, 
NO. 4, pp. 745-756, 1992. 

A. M. Bloch and J. E. Marsden, “Sta1)ilizability of Rigid 
Body Dynamics by Energy-Casimir Method,” Sys. Contr. 
Lett., Vol. 14, pp. 341-346, 1990. 

R. W. Brockett, “Asymptotic Stability and Feedback Sta- 
bilization,” in R. W. Brockett, R. S. Millman and H. J. 
Sussmann, Eds., Differential Geometric Control Theory, 
Progress in Mathematics, Vol. 27, pp. 181-191, 1983. 

C. I. Byrnes and A. Isidori, “New Results and Examples in 
Nonlinear Feedback Stabilization,” Sys. Contr. Lett., Vol. 
12, pp. 437-442, 1989. 

A. S. Debs and M. Athans, “On the Optimal Angular Ve- 
locity Control of Asymmetric Space Vehicles,” IEEE Trans. 
Autom. Contr., pp. 80-83, 1969. 

W. M. Haddad and D. S .  Bernstein, “Optimal Nonzero 
Set Point Regulation Via Fixed-order Dynamic Compen- 
sation,” IEEE Trans. Autom. Contr., Vol. 33. No. 9.,  pp. 
848-852, 1988. 

[ l l ]  D. D. Holm, J. E. Marsden, T. Ratiii and A. Wein- 
stein, “Nonlinear Stability of Fluid and Plasma Equilibria,” 
Physics Reports, Vol. 123, pp. 1-116, 1985. 

[12] M. Irving and P. E. Crouch, “On Sufficient Conditions for 
Local Asymptotic Stability of Nonlinear Systems Whose 
Linearization is Uncontrollable,” Control Theory Centre 
Report, No. 114, University of Warwick, 1983. 

[13] A. Isidori, Nonlinear Control Systems, second edition, 
Springer-Verlag, 1989. 

3115 

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 07,2010 at 01:19:27 UTC from IEEE Xplore.  Restrictions apply. 



[14] H. Krishnan, M. Reyhanoglu and H. McClamroch, “At- 
titude Stabilization of a Rigid Spacecraft Using Gas Jet 
Actuators Operating in a Failure Mode,” P m .  Conf. Dec. 
Contr., pp. 1612-1617, Tucson, AZ, 1092. 

[15] J. L. Massera, “Contribu.tions t o  Stability Theory,” Ann. 
Math., Vol. 64, NO. 1, pp. 182-206, 1056. 

I ‘, 

1 ‘\ xz 
8 -; 

- - - - - - - -  - _ _ _ _  ~ 

- -__ --- - _  - -  - -  -* . *. 

......................................................... 

H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical 
Control Systems, Springer-Verlag, Berlin, 1990. 

R. Outbib and G. Sallet, “Stabilizability of the Angular 
Velocity of a Rigid Body Revisited,” Sys. Contr. Lett., Vol. 

g 6 ;  
k 

18, pp. 92-98, 1992. 

N. Rouche, P. Habets and M. Laloy, StnbiNty Theory by 
Lyapunou’s Direct Method, Springer Verlag, New York, 
1977. 

E. P. Ryan, “On Optimal Control of Norm-Invariant Sys- 
4- ‘ 

E. D. Sontag and H. J. Sussmann, “Rirther Comments on 
the Stabilizability of the Angular Velocity of a Rigid Body, 
” Sys. Contr. Lett., Vol. 12, pp. 213-217, 1988. 

C. J. Wan and D. S .  Bernstein, “A Family of Optimal Non- 
linear Feedback Controllers That Globally Stabilize Ango- 
lar Velocity,” Pm.  Conf. Dec. Contr., pp. 1143-1148, Tuc- 
son, AZ, 1992. 

C. J. Wan and D. S .  Bernstein, “Optimal Nonlinear Feed- 
back Control With Global Stabilization,” submitted, 1992. 

C. J. Wan, V. T. Coppola and D. S. Bernstein, “A Lya- 
punov Function for the Energy-Casimir Method,” Proc. 
Conf. Dec. Contr., San Antonio, TX, Dec. 1993. 

R. Zhan and T. A. Posbergh, “Stabilization of a Rotat- 
ing Rigid Body by the Energy-Momentum Method,” Proc. 
Conf. Dec. Contr., pp. 1583-1588, Tucson, AZ, 1992. 

FIGURE 1. 
..... .................. . . . . .  

X I  

FIGURE 3 

3116 

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 07,2010 at 01:19:27 UTC from IEEE Xplore.  Restrictions apply. 


