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Abstract In this paper we use Hamilton-Jacobi-Bellrnan 
theory to  derive optimal nonlinear feedback control laws for 
a special class of nonlinear systems. The results are applied 
to  a spacecraft angular velocity stabilization problem with 
two torque inputs. A family of optimal nonlinear feedback 
controllers that  globally asymptotically stabilize angular ve- 
locity is established. Special cases of this family of controllers 
include generalizations of the locally stabilizing controllers of 
Brockett and Aeyels to global stabilization as well as the 
globally stabilizing controller of Byrnes and Isidori. 

1 Introduction 

In a recent paper [l], optimal nonlinear feedback controllers 

were derived for the controlled system 

i ( t )  = f ( L ( t ) , U ( t ) ) ,  r (0)  = 20, t 2 0. (1) 

Given acontrollaw +(.) and afeedback control u ( t )  = 6 ( z ( t ) ) ,  
the closed-loop system has the form 

i ( t )  = f(l(t),+(J(t))), 4 0 )  = 20, t 2 0. (2) 

For a given nonquadratic performance functional, sufficient 

conditions for optimality have been given in a form that cor- 

responds to  a steady-state version of the Hamilton-Jacobi- 
Bellman equation. These conditions are restated later in 

Theorem 2.1, while numerous references to  prior work in this 
area can be found in [l]. For the linear time-invariant system 

k ( t )  = A c ( t )  + Bu( t ) ,  (3) 

where A E E"'" and B E RnX" are constant matrices, opti- 
mal nonlinear feedback controllers have been derived by as- 
suming nonquadratic state weighting and quadratic control 

weighting in the performance functional [l]. These results 
were motivated by the early work of Bass and Webber [2]. 

In this paper (see section 2), we deal with a class of non- 

linear systems of the form 

where f1: D + E" satisfies fl(0) = 0. The integrand of the 

performance functional associated with (4) is chosen t o  be a 

polynomial function of z plus linear and quadratic terms in U. 

The optimal nonlinear feedback control law u ( t )  = +(z ( t ) )  is 

chosen such that the optimality conditions are satisfied (see 

Corollary 2.2). 

To illustrate this result we begin in section 3 by consider- 

ing an illustrative example from [5]. We then apply this result 

in section 4 to  a controlled version of the Lorenz equations 

which have been widely studied for their chaotic behavior. 

Our treatment of this problem was motivated by [6]. 

This formulation is then specialized in section 5 t o  the 

angular velocity stabilization of a rigid spacecraft. If the 
spacecraft has only two actuators along two principal axes 
and the uncontrolled principal axis is not an axis of symmetry, 

then equation (4) has the form 

.i = [ x;x*] + 1 i a j 11, 

where x = [x1,22,zglT and U = [ul,uZlT. Stabilization of 
this problem by smooth feedback control has been studied 

in [3-5]. In [3] a locally asymptotically stabilizing controller 

was given. Later, Aeyels [4] applied center manifold the- 

ory to  reduce the problem to  one of lower dimension and 
thereby obtained another locally stabilizing controller. More 

recently, Byrnes and Isidori [5] used a general methodology of 

nonlinear zero dynamics to  derive a globally stabilizing feed- 
back control law for the system. In the present work, we ap- 

ply Hamilton-Jacob-Bellman theory [l] to  generate a family 

of optimal feedback controllers that globally asymptotically 

stal~ilize (5). It is shown that this family of controllers in- 
cludes generalizations of the locally stabilizing controllers of 
Brockett and Aeyels to global stabilization as well as gener- 

alizations of the globally stabilizing controller of Byrnes and 
Isidori. 
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2 Optimal Nonlinear Feedback Control 

In this section we restate a theorem given in [l] and then spe- 
cialize this result to a specific class of problems. We begin 

by considering the problem of characterizing feedback con- 
trollers that minimize a given performance functional. For 

this problem we consider the controlled system 

a( t )  = f ( z ( t ) , ~ ( t ) ) ,  ~ ( 0 )  = $0, t L 0, (6) 

where z ( t )  E V c 72" is the state variable, V is an open set 
with 0 E V, u( t )  E U c R" is the control variable, U is 
an arbitrary set with 0 E U, and f :  2, x U + R" satisfies 
f(0,O) = 0. The control U(.) in (6) is restricted to  the class 

of admissible controls consisting of measurable functions U(.) 

such that u ( t )  E R, t  2 0, where the control constraint set 

R c U is given. We assume 0 E f2 and R is compact. 
A measurable mapping 4: 2) 4 R satisfying d(0) = 0 is 

called a control law. If u( t )  = 4(z( t ) ) ,  where #J is a control 

law and z ( t )  satisfies (6), then U(.) will be called a feedback 

control. A feedback control is admissible since the control 
law d(.) takes values in R, and z(-) is absolutely continuous. 

Letting L ( z ,  U )  be the performance integrand, where L :  
2, x U -+ R, the corresponding Hamiltonian is defined as 

where p E R". Furthermore, we define the set of asymptot- 
ically stabilizing admissible controllers S(z0) for each initial 

condition 10 E V, that is, 

S(z0) 2 {U(.): U(.) is admissible and z(.) given by (6) 

satisfies z ( t )  -+ 0 as t -+ w}. 

Although this set plays a role in the following theorem, note 

that no explicit characterization of this set is required. 

Theorem 2.1.(1] Consider the controlled system (6) with 

performance functional 

Assume that  there exists a C' function V :  2, + R and a 

control law & V -+ R such that 

Then, with the feedback control U(.) = @(z(.)), the solution 

z ( t )  = 0, t 2 0, of the closed-loop system (2) is locally 

asymptotically stable, and 

J(~o,#(.(.))) = V ( Z O ) ,  for all 20 E V. (14) 

Furthermore, the feedback control U(.) = d(z( .)) minimizes 

J(z0, U(.)) in the sense that 

J(zo,4(z(.))) = u, ,p$zo ,J (+~ ,u( . ) ) ,  for all IO E 2). (15) 

Finally, if 2, = R" and V(z) -+ w as 1 1 ~ 1 1  - 03, then the 

asymptotic stability is global. 

The proof of this theorem is given in [I]. 

Remark 2.1. The classical Hamilton-Jacobi-Bellman (HJB) 
equation is of the form 

%V(t,z(t)) a + = 0. (16) 

If V is independent o f t ,  then the HJB equation reduces to  
the algebraic (time-invariant) relations (12), (13). 

Remark 2.2. Theorem 2.1 gives sufficient conditions for op- 

timality and asymptotic stability of the feedback control law 
+(z(.)) and the controlled system (6). Necessary conditions 

for the existence of a continuously differentiable control law 

that asymptotically stabilizes (6) are given in [3]. 

Next, we consider a special case of Theorem 2.1. Let 
V = R", R = U = R", and consider the nonlinear system 

4 t )  = fl(S(t)) + BU(1) (17) 

as in (4), with performance integrand L ( z , u )  of the form 

(18) L ( z , u ) =  L ~ ( z ) + L ~ ( ~ ) u + u ~ R u ,  

where L1: R" -+ R, R E Rmx" is a positive definite matrix, 

and Lz: R" --* R"" with L z ( 0 )  = 0. With the specialization 

(17), (18), we have the following corollary of Theorem 2.1. 

Corollary 2.2. Consider the controlled system (17), assume 
that there exists a C' function V :  72" -+ R and a function 
Lz: R" -+ RIXm,  such that 

and V ( z )  -+ w as )Iz)) + 00. Furthermore, define the feed- 
back control .(.) = $(z(.)), where 
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Then the solution z ( t )  = 0, t >_ 0, of the closed-loop system 

i ( t )  = fi(z(t)) + B4(~( t ) ) ,  ~ ( 0 )  = 20. t >_ 0, (23) 

is globally asymptotically stable, and the performance func- 
tional 

J ( z o , u ( . ) )  = L"(Ll ( r )  + Lz(z)u+ UTRu)dt, (24) 

where 

is minimized in the sense that 

J ( z o , ~ ( z ( . ) ) )  = V ( Z O ) ,  for all zo E R". (27) 

Proof. For (17), (18), the Hamiltonian is 

H ( 2 ,  U ,  VIT(x) )  = L , ( r ) + L 2 ( Z ) U + U T R U + v ' ~ ~ ) ( f i o f B 2 1 ) .  

(28) 

- :, = 0. With (22), it can be seen that (19)-(21) imply 

The optimal feedback control law (22) is obtained by setting 

(8 ) ,  (9), (11). Next, since V is C' and 3: = 0 is a local 
minimum of V ,  it follows that V ' ( 0 )  = 0. In addition, since 

by assumption Lz(0) = 0, it follows that +(O) = 0. This 

proves (10). Next, (12) holds because of the choice of L ~ ( z )  
given by (25). Finally, since 

H ( z , u ,  V ' ( 2 ) )  = (U - ~ ( z ) ) ~ R ( u  - 4(z)), 

and R is positive definite, equation (13) holds. The results 

of the corollary now follow directly from Theorem 2.1. 0 

Remark 2.3. With L ~ ( z )  in equation (25) and 4(z) in equa- 

tion (22), L ( z , u )  can be expressed as 

L ( z , u )  = uTRu - 4T(z)R4(z) + L z ( z ) [ u  - +(.)I 
-V ' (Z) [h (Z)  + Bl(z)l, 

which can be rearranged as 

1 1 
L ( z ,  U )  = [U + ,R- 'LT(Z)]~R[U + ,R-'L;(z)] 

- [ ~ ' ( ~ ) j ~ ( ~ )  - ~ ' ( z ) B R - ~ L : ( z )  1 

- AV'( z ) B R - ' B ~ V ' ~ (  z)] 
2 

(29) 
1 
4 

- -V'(z)BR-'BTV'T(z). 

In the above expression, the first term is nonnegative, while 
the second term is - V ( z ) ,  which, according to (21), is also 

nonnegative, so we have 

Hence, the performance integrand L ( z ,  U) may be negative, 

which allows the possibility that the performance functional 
J ( z o ,  U( .)) be negative for some control law. However, if we 

confine U(.) E S(r0) so that U(.) is a stabilizing controller, 

then, according to (26), (27), we have 

J ( z O , u ( . ) )  2 V ( Q )  2 0, for all zo E R" and U(.) E S(z0). 

In addition, as will be seen in section 5 ,  in certain special 

cases L ( z ,  U )  is actually nonnegative. 

Note that the function Lz( z ) ,  which appears in the linear 

term L2( Z ) U  in the performance functional, provides greater 

flexibility in adjusting the control law (22). This term is 
crucial in satisfying (21), which implies that the Lyapunov 

derivative V ( z )  is negative. Once L z ( z )  is determined, L l ( z )  
can be obtained by direct calculation. If, however, there does 
not exist an &(r) satisfying (21), then another V ( z )  should 
be considered. It should be noted that although the present 

design scheme does not provide a systematic technique for 

generating suitable Lyapunov functions, it does provide a 

quick and easy method for checking whether the chosen func- 

tion V (  z) qualifies as a Lyapunov function. Furthermore, by 

varying the parameters characterizing V(z) and R, one can 
generate a family of optimal controllers which provide differ- 

ent response rates for the closed-loop system. 

3 An Illustrative Example 

To illustrate Corollary 2.2, we consider the controlled system 

il = z;-z:, 

2 2  = z i t  U 

considered by Byrnes and Isidori [ 5 ] .  For this system, let 
V ( z )  be defined by 

V ( Z )  = P l Z i  + p z z ;  > 0, 

where pl  > 0 and p z  > 0, and consider the performance 

functional 

where R > 0. To satisfy (21), it can be shown that, although 

L z ( z )  is not unique, the simplest form for &(z) is 

&(z) = 2R%lzz + 2Rz:. 
PZ 

The optimal nonlinear feedback control law given by (22) is 
thus 

4(z) = --z122 PI - 2: - Pz - 2 2 .  
Pz R 
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Then, from (25), &(I)  is of the form 

Ll(z)  = ~ [ R ~ z l r z + R z ~ + p z z a ] 2 - [ 2 ~ i z 1 ( z ~ - ~ ~ ) + 2 p ~ z ~ z z ] .  

Hence, V(z) is a Lyapunov function since 

R p z  

~ ( z )  = -2plz: - 2 g z i  R < 0, forall z E Rz, z + 0, 

which confirms (21). Note that for larger R, the decay rate 
V ( z )  of Lyapunov function is smaller and thus the closed- 

loop response is slower. Finally, taking pl = pz = R = f 
yields the controller developed by Byrnes and Isidori [5]. 

4 Stabilization of the Controlled Lorenz 
Equations 

Consider the controlled Lorenz equations 

X l  = -ux1 + u q ,  

Xi = TX1 - Xz - I l z 3 + U ,  

X3 = z l x z -  8x3 

studied by Vincent and Yu [6],  where U, T ,  b are positive con- 

stants. In the notation of (17), we have 

where z = [z1,xZ,z3lT. If T < 1, the uncontrolled Lorenz 

equation has only one equilibrium state, namely, [O,O, 0IT, 
which is locally asymptotically stable. If r > 1, the uncon- 

trolled Lorenz equation has three equilibrium states, namely, 

[ d m ,  d m ,  T - 1IT, [ - d m ,  - d m ,  T - 
1IT, and [0,0,0IT. The stability of the fisrt two equilibrium 
states depends on the values of U, b,  and r ,  while the last equi- 

librium state is unstable. For the parameter values U = 10, 
b = 8/3, T = 28, chosen by Vincent and Yu [6], all these three 
equilibrium states are unstable. In [6], Vincent and Yu es- 

tablished a linear feedback control law and a bounded bang- 
bang control law both of which locally stabilized the con- 
trolled Lorenz equation around the unstable equilibrium state 
[Sd, S a ,  27IT, which represents steady convection motion. 
Here we apply Corollary 2.2 t o  obtain a globally stabilizing 
control law for the no-convection equilibrium state [ O , O ,  OIT. 
Our controller is valid for both T < 1 and T > 1. We choose 
V(z) to  be 

V(z) = Plz: + p z z ;  + P 3 4  > 0, 

where p1 > 0,pz  > 0, and p3 > 0. Following the same proce- 
dures as in the previous example, we take pz  = p3, and &(LE) 
t o  be of the form 

R 
pz 

Lz(z) = --(2plo + 2 p ~ r ) q  + az2. 

The optimal feedback control law is thus 

d(5) = -( + T ) Z 1  - (a + E)zz  P2 2R R 

with Lyapunov derivative 

V ( z )  = - 2 p 1 4  - 2m(1 t t ")z; - 2p22;. R 2R 
It can be seen that in order t o  make V ( z )  < 0, a must be 

chosen such that a > -2R - 2pz. Some simplification of 
d(z) and possible reduction in control effort is obtained by 

choosing a = -2pz. In this case, the optimal feedback control 

law and Lyapunov derivative are given by 

4(z) = - p c 7  + T ) q ,  

V ( z )  = -2p1ux; - 2pzx; - 2p22;. 
PZ 

Note that with the control law d(z) given above, the function 

f(z,4(z)) = h ( z )  t B$(z)  has only one equilibrium state 

[O,0,OlT. Also note that the globally stabilizing feedback 
control law d(z) only requires knowledge of z l .  

5 Angular Velocity Stabilization 

Consider the angular velocity stabilization of a rigid space- 

craft with two actuators along principal axes and whose un- 
controlled principal axis is not an axis of symmetry. The 
dynamical equation for this problem is given by (5 ) .  The as- 

sociated linearized system has one uncontrollable eigenvalue 
on the imaginary axis, which corresponds to  the critical case 

(31. For this system, let V(z) and L(z,u)  be of the form 

L(I, U )  = L ~ ( z )  + L Z ( Z ) U  t u ~ R u ,  

where pl,pz,m are positive real numbers, k is a positive inte- 

ger, and a ,P  are real numbers. Furthermore, let R have the 

form 
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corresponding to L z ( z )  given by (30) and (31), respectively. 

The decay rates of the function V(z) are the same for both 

cases, which is 

It is obvious that if 00 < 0 then V ( z )  < 0, for all nonzero I E 
R3. Thus, if Q ,  p are chosen to  be nonzero and have opposite 
sign, then the control law 4(z) globally asymptotically stabi- 

lizes ( 5 ) ,  and V(z)  is a Lyapunov function for the closed-loop 
system. Finally, Ll(s) can be calculated directly from (25) 

for both cases as 

Returning to Remark 2.3, the performance integrand for this 

problem is from (29) 

where R and L z ( z )  are as defined previously. Since ap < 0, 
the above expression shows that L ( 2 ,  U) is nonnegative for all 

‘U in this problem. 

In the special case of the control law (32) that k = l , p l  = 

pz = T I  = T Z  = $,p3 = 1 , a  = 1, and p = -1, we obtain the 
globally asymptotically stabilizing control law 

which is the controller obtained by Byrnes and Isidori [5]. 
Deleting all but the last terms in q5 yields the locally stabi- 
lizing controller obtained by Brockett [3]. If, however, k = 

2,pl = pz = T I  = r2 = $, and p3 = 1, are chosen in (32), then 
we obtain the globally asymptotically stabilizing control law 

stabilizing generalizations of the controllers obtained in [3,4], 
while the family of controllers (32) yields the control law of 

[5] as a special case. 

In studying the rigid body angular velocity stabilization 

problem, one needs to consider the rates of response, the max- 

imum control effort (torque) available, and the total energy 

expenditure in control. The family of control laws obtained 

in this paper allows us to  make tradeoffs among these factors. 

Some simulations were performed by varying the parameters 

involving in equations (32), (33). It was found that the re- 

sponse of angular velocity depends upon the parameters cho- 
sen and the initial conditions in a fairly complicated way. 

The only obvions observation on these parameters is that  k 
should be kept small, that is, k = 1 will be the best choice. 

If k is taken t o  be larger, the response tends to  approach the 

equilibrium point slowly. Four sets of parameters are selected 
to yield the following controllers. 

e Controller 1. This control law, which is due to  [5], 

is given by (32) with k = l , ~  = 1,p = -1,pl = pz = 

‘1 = T Z  = 112, and p~ = 1. 

e Controller 2. This control law is given by (32) with 

k = 1,a = 1,p = -1 ,Pi = 2,Pz = 1/2,P3 = 4,Ti = 
112, and T Z  = 112. 

Controller 3. This control law is given by (32) with 

k = l , ~  = -1,P = l .p l  = pz = T I  = T Z  = 112, and 

p3 = 1. 

e Controller 4. This control law is given by (33) with 

k = 1,a = l , , O  = -1,pl = pz = TI = TZ = 112, and 
p3 = 1. 

These controllers were simulated with the initial condition 

(- 1, -1, - The simulation results for angular velocities 

and control efforts are shown in Figure 1 - 3, where solid, 
dashed, dotted, and dashed-dotted lines represent controllers 

1,2,  3, and 4, respectively. Figure 1 shows the phase plane of 

21 and xz from t = 0 to  t = 5 sec, while Figure 2 shows the 
decay of state 5 3  with respect to  time. Figure 3 shows the 

control action from t = 0 to  t = 5 sec. It can be seen that,  for 

this initial condition, Controller 2 has the fastest decay rate, 
but it requires the largest control effort, while Controller 3 

uses the least control effort and results in a satisfatory de- 

cay rate. Hence, these simulation results enable us to  make 
tradeoffs in designing the control law for rigid body angular 

velocity stabilization problems. 
Deleting all but the last terms in q5 yields the locally sta- 
bilizing controller proposed by Aeyels [4]. Thus the control 

laws (34) and (35) can be viewed as globally asymptotically 
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