
Proceedings of the American Control Conference 
Philadelphia, Pennsylvania * June 1998 

Adaptive Tracking Using ARMARKOV/Toeplitz Models 
Ravinder Venugopal and Dennis S. Bernstein * 

Department of Aerospace Engineering 
The University of Michigan 
Ann Arbor, MI 48109-2118 

{ ravinder, dsbaero}@umich.edu 

Abstract 
An adaptive algorithm is developed for the MIMO 

tracking problem. The MIMO system and controller are 
represented as ARMARKOV/Toeplitz models, and the pa- 
rameter matrix of the compensator is updated on-line by 
means of a gradient algorithm. The algorithm does not 
require any knowledge of the plant. Simulation results on 
a fourth order system are presented. 

Notation 

I, 
Olxm 
l l x m  

1 x 1 identity matrix 
1 x m zero matrix 
1 x m ones matrix 

Zlxm [Il - e *  I l ]  €RIxmr 

1. Introduction 
In feedback control applications the problems of dis- 

turbance rejection and command following, also known as 
tracking, can be viewed as dual. For disturbance rejection 
problems the objective is to  maintain an equilibrium state 
in the presence of external disturbances, while for com- 
mand following problems the objective is to  follow specified 
command signals. It is common practice to  assume that 
in disturbance rejection problems the disturbance signal 
is unmeasured, while in command following problems the 
command is generated by an external system and thus is 
assumed to be known. We note that in certain applications 
such as active noise control it is sometimes assumed that 
the disturbances are measured. Such feedforward cancel- 
lation methods are discussed in [l]. 

Various theories have been developed for both of these 
problems under a variety of assumptions. For example, 
LQG theory for disturbance rejection assumes unknown 
and generally unmeasured disturbances with white spec- 
tra. If the disturbance spectrum is known and is non- 
white, then appropriate filters can be embedded into the 
plant and thus play a role in the Riccati equations during 
synthesis. In certain disturbance rejection and command 
following problems, it may be assumed that the distur- 
bances or commands are generated by an exogenous sys- 
tem with known dynamics. In this case, a compensator can 

*This research was supported in part by the Air Force Office of 
Scientific Research under grant F49620-95-1-0019 and the University 
of Michigan Office of the Vice President for Research. 

be designed that provides asymptotic rejection or tracking 
using an internal model controller [2, 3, 4, 51. If, for exam- 
ple, the disturbance or command is sinusoidal, then this 
approach requires knowledge of the natural frequency of 
the exogenous system. This approach requires that nei- 
ther the amplitude nor the phase of the disturbance need 
be known. 

In a recent paper [6, 71, an alternative approach 
to disturbance rejection was developed using the AR- 
MARKOV/Toeplitz framework [8, 9, lo]. -This approach 
was based upon a recursive update of the controller gains 
that was shown to have the ability to  adapt to  changes in 
the disturbance spectrum. Thus, if the disturbance is sinu- 
soidal, then the approach of [6, 71 requires neither the am- 
plitude nor the phase nor the frequency of the disturbance. 
In addition, the method requires identification of only the 
transfer function from the control input to the performance 
variable. Experimental application of this algorithm was 
reported in [6, 71 for a noise control application. 

In the present paper we develop an approach to adap- 
tive tracking using the ARMARKOV/Toeplitz framework. 
Since the command is assumed to be known, this approach 
to  tracking requires no modeling of the plant dynamics. 
Consequently, the modeling requirements for the tracking 
problem are less burdensome than for the disturbance re- 
jection problem. 

The approach given in this paper for command follow- 
ing problems can be viewed as an alternative to  model ref- 
erence adaptive control methods [ll]. In the model refer- 
ence approach, the system is required to  follow the output 
of a reference model to a prescribed command, however, 
the proposed algorithm drives the system such that the 
output of the system follows the command. Future work 

to model reference adaptive control systems. 
will involve structural and performance based comparisons 

2. ARMARKOV Models of Systems 
In this section we derive the ARMARKOV repre- 

sentation of a state space model, Consider the nth-order 
discrete-time finite-dimensional linear time-invariant sys- 
tem 
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where u(k)  E Rmu and y(k) E R'v. The Markov parame- 
ters Hj E R1uxmu of this system are defined as 

j = -1, (3) 

(4) 

A 

A 

H j  = D, 
= C A ~ B ,  j 2 0 ,  

and satisfy 

M 
A G(z)  = C(ZI  - A)-'B + D = C H j ~ - ( j + ' ) .  (5) 

j = - 1  

The p-ARMARKOVmodel [6, 7 ,8 ,9]  or p step ahead 
predictor [ll], pp. 169-179, [12], pp. 136-139, of (1) and 
(2) is given by 

n 

y(k) = -ajy(k - p - j + 1) + 
j=1 

Lc n C Hj- lu(k  - j  + 1) + B ~ U ( I C  - /J - j  + 11, 
j=1 j=1 

where aj E R and Bj E R1uxmu, j = 1, .  . . ,n. 
Equation (6) is an input-output relation that explicitly 

involves p Markov parameters. For p = 1, (6) specializes 
to the usual ARMA model. 

Now, let p be a positive integer and define the extended 
measurement vector Y(k)  E R l P  and the ARMARKOV 
regressor vector @,,(IC) E R1~(p+n-l)+mu(~+p+n-l) b Y 

(7) 
A 

A 
Y(k)  = * . -  Y(k-P+l ) lT ,  

Gpyu(k) = [y(k-p) y ( k - p - p - n + 2 )  
~ ( k )  - * -  ~ ( k - p - p - - ~ ~ + + ) ] ' .  (8) 

Using (6), Y(k)  and djyu(k) are related by 

Y ( k )  = Wyu@yu(k), (9) 
where the block-Toeplitz ARMARKOV weight matrix W,, 
is defined by 

We note that a state space realization of the system from 
(6) either by constructing a canonical form or by using the 
eigenvalue realization algorithm (ERA) [8, 91. 

I 1 

Figure 1: Block diagram of closed-loop system for tracking 

3. Adaptive Tracking Algorithm 
3.1. Case 1: Known Plant Parameters 

Consider the closed-loop system shown in Figure 1. 
The objective here is to make the output of the plant y(k) 
follow the prescribed reference trajectory r(k) E R'y, that 
is, to drive the error signal e(k)  = r(k)  - y(k) to zero. 
Using ARMARKOV models to represent the plant G(z)  
and the controller Gc(z) ,  it follows from (9) that 

Next, we use a strictly proper controller in AR- 
MARKOV form of order n, with pc Markov parameters, 
so that, analogous to (6), the control u(k) is given by 
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where HCj E Rm*"~ are the Markov parameters of the 
controller. Next, define the controller parameter block vec- 
tor 

Now from (13) and (16) it follows that U ( k )  is given by 

where 

and 

A A with q1 = n,m, and 42 = (nc + pc - l)Zy. Thus, from (11) 
and (18) it follows that 

P. 
Y(k)  = AyGy(k) + By, C L i O ( k  - i + l)RiG,e(k). (23) 

i=l 

We first obtain an update law for the controller param- 
eter block parameter for the case in which By, is known. 
To do this, we consider a cost function that evaluates the 

behavior of the system during the previous p steps. Tkere- 
fore, we define the controller based extended output Y ( k )  

performance of the current value of B(k) based upon the 

by 

which has the same form as (23) but with 8 ( k  - i + 1) 
replaced by the current block parameter vector 8 ( k ) .  Note 
from (18), (23) and (24) that 

~ 

146 

We now define the tracking performance cost function 

J ( k )  4 i ( R ( k )  - F(k)>T(R(k)  - P(k)), (26) 

where 

~ ( k )  k [ r ( k )  r ( k - p + l ) l T .  (27) 

Using (23) and (26), the gradient of J ( k )  with respect to 
O(k) is given by 

This gradient is used in the update law 

where the adaptive step size q(k) is chosen as in [7] to be 

From (25), (28) and (30) we note that the matrix By, must 
be known to implement the update law (29). 

3.2. Case 2: Unknown Plant Parameters 
We now consider the case in which By, is not known. 

The controller parameter update law (29) is modified by 
replacing Byu by an estimate that is updated at each time 
step using the recursive time domain identification dgo- 
rithm of [SI. 

Define the estimated output of the system P ( k )  by 

Y ( k )  e Ay(k)qy(k) + B,,(k)U(k),  (31) 

where Ay(k) and By,(k) are estimates at the time step k 
of A, and By, respectively. Further define 

(33) 



where @,,(IC) is defined as in (8). Next, the ozltpzlt estimate 
error E(k) is defined by 

&(k) e Y(k)  - 3 ( k ) ,  (34) 

and the identification cost function JID ( k )  by 

(35) 
1 J&) = 5&T(k)&(k) .  

We now use the system identification ?lgorithm of [8] to 
update our estimate B,, by updating W ( k )  as 

The gradient of JID(~) with respect to I/ir(k) is given by 

(37) 

where “0” denotes the Hadamard product of two matrices 
andAUc is a constraint matrix that preserves the structure 
of W ( k )  in the update law. 

We now use the estimate of B,, obtained as described 
above in an update law for the controller parameter block 
vector. First, we definf the current controller based ex- 
tended output estimate P ( k )  by 

Pc 

P ( k )  &(k)@,(k) + &,(k) L&)(k)Ri@ue(k), (38) 
i=l 

and the estimated tracking cost function 

j ( k )  t ( R ( k )  - B(k))T(R(k)  - B(k)). (39) 

From (38) and (39) it follows that the gradient of j ( k )  with 
respect to B(k) is given by 

We utilize this gradient in the update law for B(k), 

with the step size fj(k) is chosen analogous to (30) to be 

4. Algorithm Implementation 
0 Update the vectors Y(k) ,  U ( k ) ,  GVu(k) and Gue(k). 

0 Calculate u(k) using (18). 

0 Extract the estimates A,,(k) and h,,(k) from 
I@,,, (k). 

- 
0 Calculate using (38). 

0 Use the estimate &,,(k) in (40) and (42) to update 
e ( k )  using (41). 

0 Update T@(k) using (36). 

5. Numerical Example 
A numerical simulation of the algorithm on an exam- 

ple chosen from [13] pp. 235-236 is presented in this sec- 
tion. The objective here is to make the stick angle of an 
excavator follow a prescribed reference angle. The stick 
is connected to the bucket of the excavator and is driven 
by a hydraulic actuator. The dynamics of the system are 
described by the s-domain transfer function 

1000 
s(s + 10)(s2 + 1.2s + 144)’ 

G(s) = (43) 

Compensation is effected using the adaptive tracking algo- 
rithm described in the previous section running at a sam- 
pling frequency of 50 Hz. The normalized reference trajec- 
tory is a unit step and the initial value of the normalized 
angle is 0.05. The initial controller parameter vector is 
chosen to be a random vector and the initial value of the 
matrix ~ ( k )  is chosen to be the zero matrix. The time 
history of the closed-loop system output and the control 
signal are shown in Figures 2 and 3 respectively. 
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Figure 2: Unit step tracking 
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Figure 3: Control input for unit step tracking 
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