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Abstract— We present a discrete-time, adaptive, static-
output-feedback control law that is effective for systems that are
unstable, MIMO, and/or nonminimum phase. In particular, we
present numerical examples to provide guidelines concerning
the modeling information required for controller implementa-
tion. This information includes a sufficient number of Markov
parameters to capture the relative degree, the sign of the high-
frequency gain, and the nonminimum-phase zeros (if any). No
further information about the poles or zeros need be known. In
addition, we present a stability proof for a full-state-feedback
specialization.

I. INTRODUCTION

Unlike robust control, which fixes the control gains based

on a prior, fixed level of modeling uncertainty, adaptive

control algorithms tune the feedback gains in response to

the behavior of the true plant. Generally speaking, adaptive

controllers require less prior modeling information than ro-

bust controllers, and thus can be viewed as highly parameter-

robust control laws. The price paid for the ability of adap-

tive control laws to operate with limited prior modeling

information is the complexity of analyzing and quantifying

the stability and performance of the closed-loop system,

especially in light of the fact that adaptive control laws, even

for linear plants, are nonlinear.

Stability and performance analysis of adaptive control laws

often entails restrictive assumptions on the dynamics of the

plant. For example, a widely invoked assumption in adaptive

control is passivity [1], which is restrictive and difficult to

verify in practice. A weaker but still restrictive assumption

is that the plant is minimum phase [2, 3], which may entail

the same difficulties, especially since sampled-data control

can give rise to nonminimum-phase sampling zeros whether

or not the continuous-time system is minimum phase [4].

Beyond these assumptions, adaptive control laws are known

to be sensitive to unmodeled dynamics and sensor noise [5,

6], which motivates robust adaptive control laws [7].

In addition to these basic issues, adaptive control laws may

entail unacceptable transients during adaptation, which may

be exacerbated by actuator limitations [8–10]. In fact, adap-

tive control under extremely limited modeling information

such as uncertainty in the high-frequency gain [11, 12] may
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yield a transient response that exceeds the practical limits

of the plant. Therefore, the type and quality of the available

modeling information as well as the speed of adaptation must

be considered in the analysis and implementation of adaptive

control laws. These issues are discussed in [13].

The goal of this paper is to present a discrete-time,

adaptive, MIMO, static-output-feedback controller that is

effective for systems that are unstable, nonsquare, and/or

nonminimum-phase. Furthermore, the control law specializes

to full-state-feedback systems when the plant outputs are

direct measurements of the state variables. The algorithm

is developed in discrete time based on a discrete-time plant

model obtained by either plant discretization or discrete-

time system identification so that the controller can be

implemented directly as embedded code without an inter-

mediate controller discretization step. Although the discrete-

time adaptive control literature is more limited than the

continuous-time literature, there are discrete-time versions

of many continuous-time algorithms [14–17], as well as

adaptive control algorithms unique to discrete time [2, 18].

Fixed-gain static-output-feedback is a challenging prob-

lem, especially in the MIMO case and in the presence of

transmission zeros [19]. These difficulties are evident in the

adaptive control case as well, where the presence of zeros

impacts the required prior modeling information.

The adaptive controller presented in this paper is based

on retrospective cost optimization. This method is used to

adapt dynamic compensators for disturbance rejection, adap-

tive stabilization, adaptive command following, and model

reference adaptive control in [20, 21]. Retrospective cost

optimization is a measure of performance at the current time

based on a past window of data and without assumptions

about the command or disturbance signals. In particular,

retrospective cost optimization acts as an inner loop to the

adaptive control algorithm by modifying the performance

variables based on the difference between the actual past

control inputs and the recomputed past control inputs based

on the current control law.

We provide a stability proof for a full-state-feedback

specialization. In addition, we present numerical examples

to illustrate the algorithm’s effectiveness in handling systems

that are unstable and/or nonminimum phase and to provide

insight into the modeling information required for controller

implementation. This information includes a sufficient num-

ber of Markov parameters to capture the relative degree, the

sign of the high-frequency gain, as well as to approximate the

nonminimum-phase zeros (if any). In the case of a minimum-

phase plant, these numerical results suggest that only the first
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nonzero Markov parameter is required, which is consistent

with the discrete-time adaptive control algorithm given in [3].

In particular, for full-state feedback, the retrospective-cost

adaptive controller has downward and upward gain margins

of 6 dB and ∞ dB, respectively, which is reminiscent of

fixed-gain LQR control. These properties are intended to

provide motivation for more general proofs of stability and

convergence.

II. PROBLEM FORMULATION

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k), (1)

y(k) = Cx(k), (2)

z(k) = E1x(k), (3)

where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu ,

and k ≥ 0. Our goal is to develop an adaptive output-

feedback controller for stabilization, that is, convergence

of the performance variable z to zero. We assume that

measurements of y and z are available for feedback.

For a positive integer r, we define the extended perfor-

mance vector Z(k) ∈ Rlzr and the extended input vector

U(k) ∈ R
lur by

Z(k)
△
=











z(k − r + 1)
z(k − r + 2)

...

z(k)











, U(k)
△
=











u(k − r)
u(k − r + 1)

...

u(k − 1)











.

Note that Z(k), U(k), and x(k) are related by

Z(k) = Γx(k − r) + HU(k), (4)

where Γ ∈ Rlzr and H ∈ Rlzr×lur are given by

Γ
△
=











E1A
E1A

2

...

E1A
r











, H
△
=













H1 0 · · · 0

H2 H1
. . .

...
...

. . . 0
Hr Hr−1 · · · H1













,

and, for i = 1, 2, . . ., the Markov parameters Hi of the

system (1)–(3) are

Hi
△
= E1A

i−1B. (5)

Let d denote the relative degree of (A, B, E1), that is, the

smallest positive integer i such that the ith Markov parameter

Hi is nonzero. Note that, if r < d, then H = 0. Therefore,

we assume that r ≥ d.

III. PROPERTIES OF THE MARKOV PARAMETER

POLYNOMIAL

From (4), the expression for z(k) is

z(k) = E1A
rx(k − r) (6)

+ H1u(k − 1) + H2u(k − 2) + · · · + Hru(k − r).

In terms of the backward-shift operator q−1, (6) can be

rewritten as

z(k) = E1A
rq−rx(k) (7)

+
[

H1q−1 + H2q−2 + · · · + Hrq−r
]

u(k).

Shifting (7) forward by r steps gives

z(k + r) = E1A
rx(k) + pr(q)u(k), (8)

where

pr(q)
△
= H1qr−1 + H2qr−2 + · · · + Hr (9)

is the Markov parameter polynomial and q is the forward-

shift operator. For r < d, note that pr(q) = 0, whereas, if

r ≥ d, then

pr(q) = Hdqr−d + Hd+1qr−d−1 + · · · + Hr. (10)

Definition III.1. Let ξ ∈ C be a transmission zero of Gzu.

Then, ξ is an outer zero of Gzu if |ξ| ≥ ρ(A). Otherwise, ξ
is an inner zero of Gzu.

The Markov parameter polynomial pr(q) contains infor-

mation about the relative degree d, the sign of the high-

frequency gain Hd (in the case lu = lz = 1), and an approxi-

mation of each outer nonminimum-phase zero. The following

result shows that, for SISO transfer functions, the roots of the

Markov parameter polynomial asymptotically approximate

each outer nonminimum-phase zero of the transfer function

from u to z. As r increases, this approximation improves.

For each value of r, the remaining roots play no role in the

stability and convergence of the adaptive control algorithm,

but what is important is the need to choose r sufficiently large

to adequately approximate the nonminimum-phase zeros.

Fact III.1. Consider lu = lz = 1 and let ξ ∈ C be an

outer zero of the transfer function from u to z. For each

r, let Rr
△
= {ξr,1, . . . , ξr,r−d} be the set of roots of pr(q).

Then, there exists a sequence {ξr,ir
}∞r=1 that converges to ξ

as r → ∞.

IV. RETROSPECTIVE COST OPTIMIZATION

Let

u(k) = K(k)y(k), (11)

where K(k) ∈ Rlu×ly is the gain matrix. From (11), it

follows that U(k) can be rewritten as

U(k)
△
=

r
∑

i=1

LiK(k − i)y(k − i), (12)

where

Li
△
=





0(r−i)lu×lu

Ilu

0(i−1)lu×lu



 ∈ R
lur×lu . (13)

Next, for K ∈ Rlu×ly , define the retrospective perfor-

mance vector Ẑ(K, k) ∈ Rlzr by

Ẑ(K, k)
△
= Γx(k − r) + HÛ(K, k), (14)

1678



where Û(K, k) ∈ R
lur is the recomputed input vector, given

by

Û(K, k)
△
=

r
∑

i=1

LiKy(k − i). (15)

Subtracting (4) from (14) yields

Ẑ(K, k) = Z(k) − H

[

U(k) − Û(K, k)
]

, (16)

and hence,

Ẑ(K, k) = f(k) + D(k)vec K, (17)

where

f(k)
△
= Z(k) − HU(k) ∈ R

lzr, (18)

D(k)
△
=

r
∑

i=1

yT(k − i) ⊗ (HLi) ∈ R
lzr×luly , (19)

vec is the column-stacking operator, and ⊗ represents the

Kronecker product.

Now consider the retrospective cost function

J(K, k)
△
= ẐT(K, k)Ẑ(K, k) (20)

+ α(k)tr
[

(K − K(k))
T

(K − K(k))
]

,

where α(k) > 0 is the learning rate. Substituting (17) into

(20) yields

J(K, k) = c(k) + bT(k)vec K + (vec K)T M(k)vecK,

where

M(k)
△
= DT(k)D(k) + α(k)Iluly , (21)

b(k)
△
= 2DT(k)f(k) − 2α(k)vec K(k), (22)

c(k)
△
= fT(k)f(k) + α(k)tr

[

KT(k)K(k)
]

. (23)

Since M(k) is positive definite, J(K, k) has the strict global

minimizer K(k + 1) given by

K(k + 1) = −1

2
vec−1

[

M−1(k)b(k)
]

, (24)

which requires the inverse of a positive-definite matrix of

size lzr × lzr. Equation (24) is the adaptive control update

law. Note that H (which appears in f(k) and D(k)) must

be specified in order to implement (24).

The learning rate α(k) affects convergence speed of the

adaptive control algorithm. As α(k) is increased, a higher

weight is placed on the difference between the previous

controller coefficients and the updated controller coefficients,

and, as a result, convergence speed is lowered. Likewise, as

α(k) is decreased, convergence speed is raised.

V. FULL-STATE-FEEDBACK STABILITY ANALYSIS

Let z(k) = y(k) = x(k), and thus C = E1 = In. There-

fore, we have a full-state-feedback system. Furthermore, let

lu = r = 1. Then, for all k ≥ 0, the closed-loop system with

gain matrix K(k) is given by

x(k + 1) = [A + BK(k)] x(k), (25)

K(k + 1) = K(k) − xT(k + 1)B̂

α(k) + B̂TB̂xT(k)x(k)
xT(k), (26)

where B̂
△
= δB is an estimate of the input matrix B, and

δ ∈ R is a scale factor.

Let K∗ ∈ Rlu×n be a gain matrix that renders the ideal

closed-loop system nilpotent, that is,

x∗(k + 1) = Nx∗(k), (27)

where x∗(k) ∈ Rn, and the matrix N
△
= A + BK∗ ∈ Rn×n

is nilpotent. Consequently, for all k ≥ n, x∗(k) = 0. Define

the error states x̃(k) ∈ Rn and K̃(k) ∈ Rlu×n by

x̃(k)
△
= x(k) − x∗(k), (28)

K̃(k)
△
= K(k) − K∗. (29)

Thus, for all k ≥ n, x̃(k) = x(k). Therefore, for all k ≥ n,

substituting K(k) = K̃(k) + K∗ into (25) and (26) yields

the closed-loop error system

x(k + 1) =
[

N + BK̃(k)
]

x(k), (30)

K̃(k + 1) = K̃(k) − xT(k + 1)B̂

α(k) + B̂TB̂xT(k)x(k)
xT(k). (31)

Now, let n = lu = ly = lz = r = 1 and define K∗ △
=

−A/B, which yields x∗(k) ≡ 0 for all k ≥ 1. Consequently,

for all k ≥ 1, x̃(k) = x(k). Therefore, for all k ≥ 1, it

follows from (30), (31) that the closed-loop error system is

x(k + 1) = BK̃(k)x(k), (32)

K̃(k + 1) = Γ(γ(k)x2(k))K̃(k), (33)

where, for λ ≥ 0,

Γ(λ)
△
=

1 + ηλ

1 + λ
, (34)

η
△
= 1 − 1/δ, δ = B̂/B, and γ(k)

△
= B̂2/α(k). Note that

Γ(0) = 1, Γ(λ) → η as λ → ∞, and Γ(λ) is a decreasing

function of λ on [0,∞). Also, note that η ∈ (−1, 1) if and

only if δ > 1
2 .

Lemma V.1. Assume that δ > 1
2 and consider (32), (33).

Then, for all k ≥ 1, η < Γ(γ(k)x2(k)) ≤ 1. Furthermore,

for all k ≥ 1 such that x(k) 6= 0, η < Γ(γ(k)x2(k)) < 1,

and thus |Γ(γ(k)x2(k))| < 1.

Proof. Let k ≥ 1. Since η ∈ (−1, 1), it follows that

η < 1 ≤ 1 + (1 − η) γ(k)x2(k).
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Therefore,

η
[

1 + γ(k)x2(k)
]

< 1 + ηγ(k)x2(k) ≤ 1 + γ(k)x2(k),

and thus,

η < Γ(γ(k)x2(k)) ≤ 1.

Furthermore, for all k ≥ 1 such that x(k) 6= 0, it follows

that −1 < η < Γ(γ(k)x2(k)) < 1.

Theorem V.1. Assume that n = lu = ly = lz = r = 1,

assume that δ > 1
2 , and consider the open-loop system (1)–

(3) and the adaptive feedback controller (11), (24). Then, for

all initial conditions x(0) and K(0), the following statements

hold:

(i) K(k) is bounded.

(ii) limk→∞ x(k) = 0.

(iii) {|K̃(k)|}∞k=1 is nonincreasing.

(iv) limk→∞ |K̃(k)| < 1/|B|.
(v) There exists k0 ≥ 1 such that {|x(k)|}∞k=k0

is decreas-

ing.

(vi) The zero solution of the closed-loop error system (32),

(33) is Lyapunov stable.

Proof. Let k ≥ 1 so that x̃(k) = x(k). Consider the

positive-definite, radially unbounded Lyapunov candidate

V (x, K̃)
△
= ln

(

1 + γ0x
2
)

+ aK̃2, (35)

where γ0
△
= B̂2/αu > 0 and a > 0 is specified below. The

Lyapunov difference is thus given by

∆V (k)
△
= V (x(k + 1), K̃(k + 1)) − V (x(k), K̃(k)). (36)

Evaluating ∆V (k) along the trajectories of the closed-loop

error system (32), (33) yields

∆V (k) = ln
(

1 + γ0x
2(k + 1)

)

− ln
(

1 + γ0x
2(k)

)

+ a
(

K̃2(k + 1) − K̃2(k)
)

= ln



1 +

(

B2K̃2(k) − 1
)

γ0x
2(k)

b1(k)





+ a

[

2(η − 1)γ(k)x2(k) + (η2 − 1)γ2(k)x4(k)

b2
2(k)

]

K̃2(k),

where b1(k)
△
= 1 + γ0x

2(k) and b2(k)
△
= 1 + γ(k)x2(k).

Since, for all z > 0, ln z ≤ z − 1, we have

∆V (k) ≤

(

B2K̃2(k) − 1
)

γ0x
2(k)

b1(k)

+ a

[

2(η − 1)γ(k)x2(k) + (η2 − 1)γ2(k)x4(k)

b2
2(k)

]

K̃2(k).

Letting a
△
= B̂2

2δ−1 > 0 and noting that, for all k ≥ 0, γ0 ≤
γ(k), it follows that

∆V (k) ≤ (37)

−b3γ0

[

1 + γ(k)x2(k)
]

x2(k)K̃2(k) − γ0b
2
2(k)x2(k)

b1(k)b2
2(k)

,

where b3
△
= B2

2δ−1 . Thus,

∆V (k) ≤ −W (x(k), K̃(k)), (38)

where

W (x(k), K̃(k))
△
= (39)

b3γ0

[

1 + γ(k)x2(k)
]

K̃2(k) + γ0b
2
2(k)

b1(k)b2
2(k)

x2(k).

To show (i), summing (38) from 1 to k − 1 and noting

that, for all k ≥ 0, W (x(k), K̃(k)) ≥ 0, yields

V (x(k), K̃(k)) = V (x(1), K̃(1)) +
k−1
∑

j=1

∆V (j)

≤ V (x(1), K̃(1)) −
k−1
∑

j=1

W (x(j), K̃(j))

≤ V (x(1), K̃(1)). (40)

Thus, V (x(k), K̃(k)) is bounded. Since V (x(k), K̃(k)) is

positive definite and radially unbounded, it follows that x(k)
and K̃(k) are bounded. Thus, K(k) = K̃(k) + K∗ is

bounded.

Now, we show (ii). Since V is positive definite, it follows

from (38) that

0 ≤ lim
k→∞

k
∑

j=1

W (x(j), K̃(j))

≤ − lim
k→∞

k
∑

j=1

∆V (j)

= V (x(1), K̃(1)) − lim
k→∞

V (x(k), K̃(k))

≤ V (x(1), K̃(1)), (41)

where all three limits exist. Thus limk→∞ W (x(k), K̃(k)) =
0. It now follows from (39) that limk→∞ x(k) = 0.

We now show (iii). Since, by Lemma V.1, −1 <
Γ(γ(k)x2(k)) ≤ 1 for all k ≥ 1, it follows from (33) that

{|K̃(k)|}∞k=1 is nonincreasing. Let κ
△
= limk→∞ |K̃(k)|, and

note that κ ≥ 0 and, for all k ≥ 1, |K̃(k)| ≥ κ.

To show (iv), suppose that κ ≥ 1/|B|. Then, for all

k ≥ 1, it follows that |x(k + 1)| ≥ κ|B||x(k)| ≥ |x(k)|.
Consequently, {|x(k)|}∞k=1 is nondecreasing. Therefore, if

x(1) 6= 0, then {|x(k)|}∞k=1 does not converge to zero. Hence

κ < 1/|B|.
We now show (v). Since {|K̃(k)|}∞k=1 is nonincreasing

and κ < 1/|B|, it follows that there exists k0 ≥ 1 such

that, for all k ≥ k0, |K̃(k)| < 1/|B|, and thus |BK̃(k)| <
1. Consequently, it follows from (32) that {|x(k)|}∞k=k0

is

decreasing.

Finally, to show (vi), let X(k)
△
=

[

x(k)

K̃(k)

]

be the state of

the closed-loop error system (32), (33). Since V is positive

definite and, by (38), ∆V is negative semidefinite, it follows

from [22, Lemma A.3.12] that the zero solution of the closed-

loop error system is Lyapunov stable.
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r roots(pr(q))

3 {2.1,-2.74}
4 {0.73,1.6,-2.97}
5 {0.274±0.72,1.91,-3.03}
6 {-0.49,0.43±0.94,2.0,-3.01}

TABLE I

ROOTS OF pr(Q) AS A FUNCTION OF r FOR THE UNSTABLE,

NONMINIMUM-PHASE PLANT IN EXAMPLE VI.1. AS r INCREASES, THE

u TO z NONMINIMUM-PHASE ZEROS ARE MORE CLOSELY

APPROXIMATED.

VI. STATIC-OUTPUT-FEEDBACK EXAMPLE

We now present a numerical example to investigate the

performance of the adaptive control algorithm in the presence

of nonminimum-phase zeros. The adaptive controller gains

are initialized to zero, that is K(0) = 0.

Example VI.1 (SISO, nonminimum-phase, unstable plant).

Consider the unstable, nonminimum-phase plant

x(k + 1) =





−0.36 0.48 1.05
1 0 0
0 1 0



 x(k) +





1
0
0



u(k),

y(k) =
[

0 1 −4
]

x(k),

z(k) =
[

1 1 −6
]

x(k),

with poles −
√

2/2±
√

2/2, 1.05, u to y outer nonminimum-

phase zero 4, and u to z outer nonminimum-phase zeros

2,−3. Table I lists the roots of the Markov-parameter poly-

nomial pr(q) as a function of r. Note that, as r increases,

the nonminimum-phase zeros are more closely approximated,

but pr(q) also contains additional spurious roots. For r ≤ 3,

the closed-loop simulation fails. Therefore, taking r = 4 with

α(k) ≡ 100, the open- and closed-loop responses are shown

in Figure 1. The adaptive controller stabilizes the plant. �
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Fig. 1. Open- and closed-loop responses of the unstable, nonminimum-
phase, SISO plant in Example VI.1 with α(k) ≡ 100 and r = 5. The
adaptive controller stabilizes the plant.

These results suggest that, for nonminimum-phase plants,

the adaptive controller requires a sufficient number of

Markov parameters to capture the approximate locations

of any nonminimum-phase zeros. In particular, we require

r > n. Furthermore, as the order of the Markov-parameter

polynomial increases, and hence r increases, the estimation

accuracy of all nonminimum-phase zeros improves.

VII. FULL-STATE-FEEDBACK EXAMPLES

In the special case z(k) = y(k) = x(k), and thus

C = E1 = In, we have a full-state-feedback system. The

following numerical examples investigate the response of

the adaptive control algorithm in this case. In each example,

the adaptive controller gains are initialized to zero, that is

K(0) = 0.

Example VII.1 (Scalar input, unstable plant). Consider the

unstable plant

x(k + 1) =





−0.38 0.46 1.03
1 0 0
0 1 0



 x(k) +





0
0
1



u(k),

with poles located at {−
√

2/2±
√

2/2, 1.03}. To demonstrate

the effect of the learning rate, we take r = 1 with either

α(k) ≡ 1 or α(k) ≡ 1000. The open- and closed-loop

responses are shown in Figure 2. With α(k) ≡ 1, x ap-

proaches zero within 10 time steps, while, with α(k) ≡ 1000,

x approaches zero within 20 time steps.
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Fig. 2. Open- and closed-loop responses of the unstable, scalar-input plant
in Example VII.1 with r = 1 and either α(k) ≡ 1 or α(k) ≡ 1000. With
α(k) ≡ 1, x approaches zero within 10 time steps, while, with α(k) ≡
1000, x approaches zero within 20 time steps.

To demonstrate the effect of a scale-factor error, we take

r = 1, α(k) ≡ 1, and Ĥ = δH, where δ ∈ R is a scale-factor

error. A closed-loop performance comparison for δ ∈ (0.5, 5]
is shown in Figure 3 where the performance metric is given

by

k0
△
= min{k :

1

5

4
∑

i=0

||x(k − i)|| < 0.1}, (42)
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that is, k0 is the minimum time step k such that the average

of {||x(k− i)||}4
i=0 is less than 0.1. The best performance is

obtained for δ ≈ 1.25. Furthermore, the controller fails for

δ < 0.5. �
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Fig. 3. Closed-loop performance comparison of the unstable, scalar-input

plant in Example VII.1. We take r = 1, α(k) ≡ 1, and Ĥ = δH where
δ ∈ (0.5, 5]. The best performance is obtained for δ ≈ 1.25. Furthermore,
the controller fails for δ < 0.5.

These results suggest that, for (1)–(3) with z(k) = y(k) =
x(k) and feedback control law (11), the closed-loop system

has downward and upward gain margins of 6 dB and ∞ dB,

respectively, which is consistent with the results of Theorem

V.1.

Example VII.2 (Scalar input, nilpotent plant). Consider the

nilpotent plant

x(k + 1) =













0 a1,2 · · · a1,n

0 0
. . .

...
...

...
. . . an−1,n

0 0 · · · 0













x(k) +













1
...
...

1













u(k),

where, for i = 1, . . . , n− 1 and j = 2, . . . , n, ai,j is chosen

randomly. To determine a rule-of-thumb for choosing r, we

set α(k) ≡ 1 and vary n and r for various choices of {ai,j}.

In all cases, r > n results in controller convergence and

thus, an asymptotically stable closed-loop system. However,

the controller may fail for r ≤ n.

Note that the dynamics matrix given above is singular.

In practice, every dynamics matrix obtained through dis-

cretization is nonsingular. Numerical tests suggest that, if the

dynamics matrix A is nonsingular, then r = 1 is sufficient

for closed-loop asymptotic stabilization. �

These results suggest that, for (1)–(3) with z(k) = y(k) =
x(k) and feedback control law (11), r > n is a sufficient

condition such that the closed-loop system is asymptotically

stable. Furthermore, if A is nonsingular, then r = 1 is

a sufficient condition such that the closed-loop system is

asymptotically stable.

VIII. CONCLUSIONS

We presented a discrete-time, adaptive, static-output-

feedback control algorithm based on retrospective cost op-

timization. We presented a stability proof for a full-state-

feedback specialization. In addition, through numerical ex-

amples, we demonstrated the algorithm’s effectiveness in

handling nonminimum-phase zeros as well as developed

rules of thumb for choosing the parameters necessary for

controller implementation. These numerical studies serve

as motivation for more general Lyapunov-based stability,

robustness, and convergence proofs of the adaptive control

algorithm.
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