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I. Introduction

Control of rigid body spacecraft is a widely studied problem [1]. Controller tuning requires knowledge

of the mass properties of the spacecraft as well as information about actuator placement and orientation. The

effects of sensor and actuator misalignments, measurement errors, time delays, and other errors are mini-

mized through control analysis and design. Robustness is achieved through large gain and phase margins,

controller performance is evaluated through extensive Monte Carlo simulations. These techniques, though

effective, require significant time and effort. Spacecraft projects with limited resources can benefit from

control algorithms that are insensitive to modeling errors.

Adaptive techniques for spacecraft attitude control are developed in [2–8]. These techniques allow the

controller to tune itself to the actual dynamics of the spacecraft. Thus, they are useful when a sufficiently

accurate model of the spacecraft is not available for fixed controller synthesis.

Retrospective cost adaptive control (RCAC) is a multi-input, multi-output direct adaptive controller that

requires limited modeling information. This method has been applied to systems with unknown nonminimum-

phase zeros [13–15] for stabilization, command following, and disturbance rejection. RCAC has also been

tested on nonlinear plants such as multiple linkages [16, 17].

In this paper we apply RCAC to spacecraft attitude control. First, the algorithm is implemented as a

regulator for the angular rate of a rigid body governed by Euler’s equation. This type of controller can be

used to detumble a spacecraft after launch-vehicle separation; this is the rate-only motion-to-rest (M2R-R)

problem. Then, we consider commanded spins about an arbitrary body axis; this constitutes the rate-only

motion-to-spin (M2S-R) problem. Initially, we use knowledge of the inertia and actuator alignment to

compute the parameters required by RCAC. The algorithm is then tested for robustness to scaling of the

inertia and actuator matrices.

The angular rate controllers are then extended to attitude control. Attitude kinematics are included in the

spacecraft model, and attitude-dependent motion-to-rest (M2R-A) and motion-to-spin (M2S-A) maneuvers

are tested. For M2R-A, the spacecraft has an initial attitude and angular rate, and the objective is to bring

the spacecraft to rest at a specified attitude. For M2S-A, the spacecraft has an arbitrary initial attitude and

angular rate, and the objective is to bring the spacecraft to spin about a specified body axis that is pointed

inertially. The body spin axis need not be a principal axis. As in the angular rate control case, both problems

are first examined using complete knowledge of the inertia and actuator alignment. Robustness is then

examined through scaling and misalignments.

II. Spacecraft Model

For the spacecraft model, we consider a single rigid body controlled by force or torque actuators, such

as thrusters or magnetic torque devices. We consider only the rotational motion of the spacecraft while

ignoring the translational motion of the spacecraft’s center of mass; therefore we consider only the torque

applied by the force actuators. We define a body-fixed frame for the spacecraft, whose origin is chosen to be

the center of mass, and specify an inertial frame to determine the attitude of the spacecraft. The spacecraft

equations of motion are given by Euler’s and Poisson’s equations,

Jω̇ = (Jω)× ω +BSCu+ zd, (1)

Ṙ = Rω×, (2)

respectively, where ω ∈ R
3 is the angular rate of the spacecraft frame with respect to the inertial frame

resolved in the spacecraft frame and J ∈ R
3×3 is the constant, positive-definite inertia matrix of the space-

craft, that is, the inertia dyadic of the spacecraft relative to the spacecraft center of mass resolved in the

spacecraft frame. Furthermore, R ∈ R
3×3 is the proper orthogonal matrix (that is, the rotation matrix) that

transforms the components of a vector resolved in the spacecraft frame into the components of the same

vector resolved in the inertial frame, and ω× is the skew-symmetric cross-product matrix of ω.

The components of the vector u ∈ R
lu represent independent control inputs, while the matrix BSC ∈

R
3×lu determines the applied torque about each axis of the spacecraft frame due to u as given by the product

BSCu. The vector zd represents disturbance torques, that is, all internal and external torques applied to the
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spacecraft aside from control torques. These disturbances may be due to onboard components, gravity

gradients, solar pressure, atmospheric drag, or the ambient magnetic field. For convenience in (1), (2) we

omit the argument t, recognizing that ω,R, u, and zd are time-varying quantities.

We assume that both rate (inertial) and attitude (noninertial) measurements are available. Gyro measure-

ments yrate ∈ R
3 provide measurements of the angular rate resolved in the spacecraft frame, that is,

yrate = ω. (3)

For simplicity, we assume that rate measurements are available without noise and bias. In practice, rate bias

can be corrected by using attitude measurements and filtering techniques.

Attitude is measured indirectly using sensors such as star trackers. The attitude measurement is deter-

mined to be

yattitude = R. (4)

The objective of the attitude control problem is to determine control inputs such that the spacecraft

attitude given by R follows a commanded attitude trajectory given by a possibly time-varying C1 rotation

matrix Rd(t). For t ≥ 0, Rd(t) is given by

Ṙd(t) = Rd(t)ωd(t)
×, (5)

Rd(0) = Rd0, (6)

where ωd is the desired, possibly time-varying angular rate. The attitude error, that is, the rotation between

R(t) and Rd(t), is given by

R̃
�
= RT

dR, (7)

which satisfies Poisson’s equation

˙̃R = R̃ω̃×, (8)

where the angular rate error ω̃ is defined by

ω̃
�
= ω − R̃Tωd. (9)

We then rewrite (1) in terms of the angular rate error (9) as

J ˙̃ω = [J(ω̃ + R̃Tωd)]× (ω̃ + R̃Tωd) + J(ω̃ × R̃Tωd − R̃Tω̇d) +Bu+ zd. (10)

III. The RCAC Algorithm

RCAC is a discrete-time output-feedback controller that minimizes the command-following error corre-

sponding to the performance variable z. The algorithm does not require detailed plant information, instead,

RCAC uses knowledge of Markov parameters.

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k), (11)

y0(k) = E1x(k), (12)

z(k) = y0(k)− E0r(k), (13)

where x(k) ∈ R
lx , y0(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu , r(k) ∈ R
lw , and k ≥ 0.
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A. Retrospective Cost

For i ≥ 1, define the Markov parameter of Gzu given by

Hi
�
= E1A

i−1B. (14)

For example, H1 = E1B and H2 = E1AB. Let n be a positive integer. Then, for all k ≥ n,

x(k) = Anx(k − n) +
n∑

i=1

Ai−1Bu(k − i) (15)

thus

z(k) = E1A
nx(k − n) + H̄Ū(k − 1)− E0r(k), (16)

where

H̄
�
=

[
H1 · · · Hn

] ∈ R
lz×nlu

and

Ū(k − 1)
�
=

⎡
⎢⎣

u(k − 1)
...

u(k − n)

⎤
⎥⎦ ∈ R

nlu .

Next, assume we know lH Markov parameters, rearrange the columns of H̄ and the entries of Ū(k − 1)
then partition the resulting matrix and vector so that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1). (17)

where U ∈ R
lHlu and U ′ ∈ R

(n−lh)lu . Furthermore, H ∈ R
lz×lHlu and H′ ∈ R

lz×lu(n−lH) are the known

and unknown Markov parameters respectively. For example, if H̄ =
[
H1 H2 H3

]
, we can divide it

into H′ =
[
H1 H3

]
with U ′(k−1) =

[
u(k − 1)
u(k − 3)

]
then H = H2 with the corresponding U = u(k−2).

We can rewrite (16) as

z(k) = S(k) +HU(k − 1), (18)

where

S(k)
�
= E1A

nx(k − n)− E0r(k) +H′U ′(k − 1) (19)

collects all the unknown parameters of the system.

Let s be a positive integer, then for j = 1, . . . , s, we add a delay kj in (18) so that 0 ≤ k1 ≤ k2 ≤ · · · ≤
ks. The delayed performance is

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1). (20)

where

Sj(k − kj)
�
= E1A

nx(k − kj − n)− E0r(k − kj) +H′
jU

′
j(k − kj − 1), (21)

and (17) becomes

H̄Ū(k − kj − 1) = H′
jU

′
j(k − kj − 1) +HjUj(k − kj − 1). (22)
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We stack z(k − k1), . . . , z(k − ks), and define the extended performance

Z(k)
�
=

⎡
⎢⎣

z(k − k1)
...

z(k − ks)

⎤
⎥⎦ ∈ R

slz . (23)

Therefore,

Z(k)
�
= S̃(k) + H̃Ũ(k − 1), (24)

where

S̃(k)
�
=

⎡
⎢⎣

S1(k − k1)
...

Ss(k − ks)

⎤
⎥⎦ ∈ R

slz , (25)

and Ũ(k − 1) has the form

Ũ(k − 1)
�
=

⎡
⎢⎣

u(k − q1)
...

u(k − qg)

⎤
⎥⎦ ∈ R

glu , (26)

where k1 ≤ q1 < q2 < · · · < qg ≤ ks + n. The vector Ũ(k − 1) is formed by stacking U1(k − k1 −
1), . . . , Us(k − ks − 1) and removing copies of repeated components, and H̃ ∈ R

slz×glu is constructed

according to the structure of Ũ(k − 1).
We also define the retrospective performance,

ẑ(k − kj)
�
= Sj(k − kj) +HjÛj(k − kj − 1), (27)

where the past controls Uj(k − kj − 1) in (20) are replaced by the retrospective controls Ûj(k − kj − 1),
which are computed in (36) below. As in (23), we define the extended retrospective performance

Ẑ(k)
�
=

⎡
⎢⎣

ẑ(k − k1)
...

ẑ(k − ks)

⎤
⎥⎦ ∈ R

slz , (28)

thus

Ẑ(k) = S̃(k) + H̃
ˆ̃U(k − 1), (29)

where the components of
ˆ̃U(k−1) ∈ R

lŨ are the components of Û1(k−k1−1), . . . , Ûs(k−ks−1) ordered

in the same way as the components of Ũ(k − 1). Subtracting the extended performance in (24) from the

extended retrospective performance in (29) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃
ˆ̃U(k − 1). (30)

Thus, we define the retrospective cost function

J( ˆ̃U(k − 1), k)
�
= ẐT(k)R(k)Ẑ(k), (31)

where R(k) ∈ R
lzs×lzs is a positive-definite performance weighting.

The goal is to determine the retrospective controls
ˆ̃U(k−1) that minimize the retrospective performance

Ẑ(k). These retrospectively optimized control values
ˆ̃U(k − 1) are then used to update the controller. To

this end we solve the optimization problem in (31).
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Expanding (31) with (30) yields

J( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1) + ˆ̃UT(k − 1)BT(k) + C(k), (32)

where

A(k)
�
= H̃TR(k)H̃, (33)

B(k)
�
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)], (34)

C(k)
�
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1). (35)

Given a full column rank H̃, A(k) is positive definite and J( ˆ̃U(k − 1), k) has a unique global minimizer

which is the optimized retrospective control

ˆ̃U(k − 1) = −1

2
A−1(k)B(k). (36)

B. Controller Construction

We design a strictly proper time-series controller of order nc given by

u(k) =

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)z(k − i), (37)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
lu×lu and Ni(k) ∈ R

lu×lz . The control (37) can be expressed as

u(k) = θ(k)φ(k − 1), (38)

where

θ(k)
�
= [M1(k) · · · Mnc(k) N1(k) · · · Nnc(k)] ∈ R

lu×nc(lu+lz) (39)

and

φ(k − 1)
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k − 1)
...

u(k − nc)
z(k − 1)

...

z(k − nc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

nc(lu+lz). (40)

C. Recursive Least Squares Update of θ(k)

Define the cumulative cost function

JR(θ(k))
�
=

k∑
i=qg+1

λk−i‖φT(i− qg − 1)θT(k)− ûT(i− qg)‖2 + λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T,

(41)

where ‖ · ‖ is the Euclidean norm and, for some ε ∈ (0, 1), λ(k) ∈ (ε, 1] is the forgetting factor, and

P (0) ∈ R
nc(lu+lz)×nc(lu+lz) is the initial covariance matrix. Minimizing (41) yields

θT(k)
�
= θT(k − 1) + β(k)P (k − 1)φ(k − qg − 1)[φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· [θ(k − 1)φ(k − qg − 1)− û(k − qg)]
T, (42)
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where β(k) is a switch on the control such that

β(k) =

{
0 k < kon
1 k ≥ kon

(43)

and kon is the time step at which we wish the controller to start operating.

The error covariance is updated by

P (k)
�
= [1− β(k)]P (k − 1) + β(k)λ−1(k)P (k − 1)− β(k)λ−1(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1φT(k − qg − 1)P (k − 1). (44)

We initialize the error covariance matrix as P (0) = γI , where γ > 0. Furthermore, the updates (42) and

(44) are based on the gth component of
ˆ̃U(k − 1). However any or all of the components of

ˆ̃U(k − 1) may

be used in the update of θ(k) and P (k).

IV. Performance Variable for Angular Rate Control

For a discrete-time plant the Markov parameters are obtained by evaluating (14). However, the angular

rate and attitude control problems are governed by nonlinear, continuous-time equations. Thus, for angular

rate control we linearize and discretize (10) to obtain the required Markov parameters to use in RCAC.

In the angular rate control problem the attitude error is ignored. Let R̃ = I3, which corresponds to zero

attitude error, then the performance variable for RCAC becomes

z = ω − ωd. (45)

Next, we linearize Euler’s equation in (10) about a desired equilibrium ω̃e, which yields the Jacobian

Ac(ω̃e, ωd) =
∂ ˙̃ω

∂ω̃
= J−1

[− (ω̃e + ωd)
× J + [J (ω̃e + ωd)]

×]− ω×
d , (46)

Similarly, the input matrix for the linearized system is given by

Bc =
∂ω̇

∂u
= J−1BSC . (47)

For the angular rate control problem the output matrices are given by C = I and D = 0.

We obtain the discrete-time dynamics matrix from

A = eAch, (48)

where Ac is given by (46) and h is the controller time step. The discrete-time input matrix is given by

B =

∫ h

0
eAτBcdτ. (49)

The discrete-time output matrices are E1 = C and Dd = D. These discrete-time matrices are used in (14)

to compute the Markov parameter for RCAC. For this paper we use the first Markov parameter

H1 = E1B. (50)

V. Numerical Examples for Angular Rate Control

Consider a rigid spacecraft with the inertia matrix

J =

⎡
⎣ 5 −0.1 −0.5
−0.1 2 1
−0.5 1 3.5

⎤
⎦ kg-m2 (51)
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Parameter Value

nc 3

P0 100I

R I

s 1

ks 1

θ0 0

λ(k) 1

h 0.1

kon 54

Table 1: RCAC Parameters.

and let the spacecraft be fully actuated such that BSC = I3. Furthermore, let all disturbances be zero. The

RCAC parameters used are shown in Table 1. The parameter kon, which controls the switch β(k) in (43)

and denotes the number of time steps before the controller turns on, is given by

kon = (lu + ly)nclu. (52)

The Markov parameter H1 is computed using the linearization in Section IV evaluated at ω̃e = 0 and ωd

which depends on the type of maneuver.

We consider angular rate control for both detumbling (M2R-R) and spin (M2S-R) maneuvers. For each

maneuver we examine robustness to unknown changes in the inertia by using modified Markov parameters.

A. M2R-R Maneuvers

Let the initial motion of the spacecraft be described by

ω(0) =
0.1√
3

[
1 −1 1

]T
rad/sec. (53)

The goal of the controller is to bring the spacecraft to rest, that is,

ωd =
[
0 0 0

]T
rad/sec. (54)

Given the output matrix E1 = I , the discrete-time dynamics matrix in (48) evaluated at ω̃e = 0 and

ωd = 0 so that Ac = 0, and the input matrix in (49), the Markov parameter in (50) is

H1 = B = hJ−1BSC . (55)

Figure 1 shows the closed-loop performance for this maneuver. The angular rate about each axis is

shown in Figure 1a and the controller coefficients θ(k) are shown in Figure 1b.

B. Effect of the Markov Parameters on Convergence

The Markov parameter in (55) shows that, for M2R-R, we utilize three pieces of information: the mass

distribution, the actuator alignments, and the controller time step. We wish to limit the information used by

constructing an arbitrary Markov parameter. We define a matrix Ĥ1 to use in place of the Markov parameter

H1. Then, since that the time step h is a scaling parameter, we can replace it with a positive scalar α and

tune the controller. Thus, we begin with

Ĥ1 = αJ−1BSC , (56)

where α is a positive number. We test this choice of Ĥ1 by varying the parameter α.
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Figure 1: RCAC closed-loop performance for M2R-R using the Markov parameter H1 in (55).
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Figure 2: Comparison of performance variable and commanded control input for RCAC for the M2R-R

maneuver using various values of α in the Markov parameter Ĥ1 in (56).

Figure 2 shows the results of this analysis. Note that, as α increases, the controller applies less torque

to the spacecraft, whereas as α decreases, more torque is applied. However, as we move away from the

nominal value of α = h the controller diverges. Figure 3 shows how values of α that are both larger and

smaller than the nominal value cause the controller coefficients θ to diverge. Thus, the control inputs also

diverge. Note that the smaller value of α in Figures 3b and 3d is close to the working value of α = 0.08 in

Figure 2 which suggests that RCAC is very sensitive to scaling of H1.

To overcome this problem we introduce a proportional saturation in the control input by scaling the

control vector as

usat =

⎧⎨
⎩

u, u ∈ B,

ηu, u /∈ B,
(57)

where B is a boundary defined by the saturation limits and η is the maximum scaling possible such that

usat ∈ B, that is,

η = max
η∈(0,1]

{η : ηu ∈ B}. (58)

Figure 4 shows that this method enables RCAC to bring the system to rest using significantly off-nominal

Markov parameters.

Note that varying α corresponds to changing the scale of the inertia, the actuator matrix, or both. Define

a scaled inertia J ′ = βJJ and a scaled actuator matrix B′
SC = βBBSC , where βJ and βB are positive
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Figure 3: Controller divergence for off-nominal values of α = 50 and α = 0.074 for M2R-R using Markov

parameter Ĥ1 in (56).

numbers. Then, we can set α = βB
βJ

and obtain

Ĥ1 = J ′−1B′
SC =

βB
βJ

J−1BSC = αJ−1BSC .

Thus, if RCAC is robust to changes in α, it is robust to scaling of the inertia and the actuator matrices.

Therefore, saturation has made RCAC robust to scaling errors in the inertia J and the actuator matrix BSC

for M2R-R maneuvers. Furthermore, for a given saturation level, α can also be used as a tuning parameter

for control authority.

With the saturation method added to the controller, we eliminate the inertia information used in Ĥ1 by

removing J from (56) and obtain

Ĥ1 = αBSC . (59)

Removing the inertia from Ĥ1 hides information about the spacecraft axes coupling from RCAC. Figure 5

shows that RCAC completes the M2R-R maneuver considered in Figure 1 for various values of α. Notice

that, as expected, decreasing α increases the control input.

C. M2S-R Maneuvers

To expand on the M2R-R example, we command the spacecraft to spin about an arbitrary body axis and

examine the M2S-R problem. The initial angular rate is described by (53), and the controller goal is to make

the spacecraft spin at the desired angular rate of

ωd =
0.1√
3

[ −1 1 1
]T

rad/sec. (60)
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Figure 5: Inertia-free RCAC performance for various values of α for M2R-R. Euclidean norm of per-

formance, ‖z‖2 and unsaturated controller input, ‖ucmd‖ using the Markov parameter Ĥ1 in (59). The

saturation level is set to 1 N-m and h = 0.1 sec.

The spacecraft has the inertia matrix in (51) with the initial angular rate in (53). The RCAC parameters are

chosen as in Table 1. Figure 6 compares the performance for the maneuver using the Markov parameters in

(55) and (59). For both Markov parameter choices, RCAC completes the maneuver. However, the lack of

information increases the settling time for the case using the inertia-free Markov parameter.

VI. RCAC Parameters for Attitude Control

We extend the results from Section V and include the attitude kinematics. Since RCAC requires a vector

performance, the rotation matrix governed by Poisson’s equation (2), cannot be used directly.

Thus, we formulate the attitude error dynamics by using the vector function of the attitude error matrix

presented in [2]. For i = 1, 2, 3, let ei denote the ith column of the 3 × 3 identity matrix and let Aatt =
diag(a1, a2, a3) be a diagonal positive-definite matrix, then

za
�
=

3∑
1

ai

(
R̃Tei

)
× ei, (61)

is a 3 × 1 vector measure of attitude error. Note that za = 0 when R̃ = I3. Thus, we use za as the attitude

performance variable. The attitude error affects the rate error given as shown in (9). We redefine the angular
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Figure 6: Angular rate, ω, and Euclidean norm of performance, ‖z‖2 for M2S-R. Plots compare convergence

for RCAC using Markov parameters derived from the linearized dynamics in (55) with RCAC using inertia-

free Markov parameters in (59) with a saturation level of 10 N-m and α = 0.1.

rate performance as

zω
�
= ω − R̃Tωd. (62)

The combined performance variable for the attitude control problem is given by

z =

[
zω
za

]
. (63)

A. Markov Parameters

The Markov parameters required by RCAC serve as a mapping between the control input and the per-

formance variable. To obtain the Markov parameters, we represent the SO(3) attitude kinematics as vector

equations. Thus, we parameterize the SO(3) attitude as a vector composed by the rows of the rotation matrix.

For the attitude error matrix R̃, this parameterization is

R̃ =

⎡
⎣ r̃1

r̃2
r̃3

⎤
⎦ , (64)

where, for i = 1, 2, 3, r̃i ∈ R
1×3 is a row of the rotation matrix. We define the new attitude parameter

r̃ =
[
r̃1 r̃2 r̃3

]T
, (65)

we express the performance variable, the dynamics in (10), and the kinematics in (8) in terms of r̃.

We rewrite the angular rate performance in (62) as

zω = ω −D(ωd)r̃. (66)

Where the operator D(x) for x ∈ R
3 is

D(x)
�
=

[
x1I3 x2I3 x3I3

]
. (67)

where xi, i = 1, 2, 3, is the ith component of x. Then, we express the attitude performance za in terms of

the new attitude parameter as

za = −Mar̃, (68)
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where I3 is the 3× 3 identity matrix and

Ma
�
=

[
e×1 e×2 e×3

]
⎡
⎣ a1I3

a2I3
a3I3

⎤
⎦ . (69)

The attitude error dynamics in (7) become

˙̃r =

⎡
⎣−ω̃×

−ω̃×

−ω̃×

⎤
⎦ r̃ (70)

and Euler’s equation in (10) is expressed as

˙̃ω = J−1 [[J (ω̃ +D(ωd)r)]× (ω̃ +D(ωd)r)] + ω̃ × [D(ωd)r]−D(ω̇d)r + J−1 (Bu+ zd) . (71)

To obtain the Jacobian we stack the angular rate error ω̃ and the attitude-error parameter r̃ to form a

state vector. Next, we differentiate (70) and (71) with respect to this new state and evaluate it at a given

equilibrium

[
ω̃e

r̃e

]
. For the rotational dynamics in (71) the derivative with respect to ω̃ is

∂ ˙̃ω

∂ω̃
= J−1

[− (ω̃e +D(ωd)r̃e)
× J + [J (ω̃e +D(ωd)r̃e)]

×]− (D(ωd)r̃e)
× . (72)

Similarly, the derivative with respect to r̃ is

∂ ˙̃ω

∂r̃
= J−1

[− (ω̃e +D(ωd)r̃e)
× JD(ωd) + [J (ω̃e +D(ωd)r̃e)]

×D(ωd)
]
+ ω̃×

e D(ωd)−D(ω̇d). (73)

Thus, we construct the Jacobian for the angular rate dynamics

Aω =
[
∂ ˙̃ω
∂ω̃

∂ ˙̃ω
∂r̃

]
. (74)

For the attitude kinematics, we partition (70) for each row r̃i of R̃ as

˙̃ri = (r̃i × ω̃)T. (75)

Then, the derivative with respect to ω̃ is

∂ ˙̃ri
∂ω̃

= −r̃×e,i, for i = 1, 2, 3. (76)

Differentiating (75) with respect to r̃j yields

∂ ˙̃ri
∂r̃j

=

[
−ω̃× ∂r̃i

∂r̃j
+ r̃×i

∂ω̃

∂r̃j

]T
, (77)

where

∂r̃i
∂r̃j

=

{
I3, i = j,
03×3, i �= j,

(78)

and

∂ω̃

∂r̃j
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D(ωd)
[
I3 0 0

]T
, j = 1,

D(ωd)
[
0 I3 0

]T
, j = 2,

D(ωd)
[
0 0 I3

]T
, j = 3.

(79)
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Finally, we obtain the Jacobian for the attitude kinematics

Aa =

⎡
⎢⎢⎢⎢⎣

∂ ˙̃r1
∂ω̃

∂ ˙̃r2
∂ω̃

∂ ˙̃r3
∂ω̃

∂ ˙̃r1
∂r̃1

∂ ˙̃r2
∂r̃1

∂ ˙̃r3
∂r̃1

∂ ˙̃r1
∂r̃2

∂ ˙̃r2
∂r̃2

∂ ˙̃r3
∂r̃2

∂ ˙̃r1
∂r̃3

∂ ˙̃r2
∂r̃3

∂ ˙̃r3
∂r̃3

⎤
⎥⎥⎥⎥⎦

T

. (80)

Thus, the dynamics matrix for the linearized continuous-time system is

Ac(ω̃e, r̃e, ωd) =

[
Aω

Aa

]
, (81)

with the input matrix

Bc =

[
J−1BSC

09×3

]
, (82)

and the output matrices

C =

[
I3 03×9

03×3 Ma

]
(83)

and

D = 06×3. (84)

This continuous-time system is discretized as in (48) and (49) with E1 = C and Dd = D. We obtain the

Markov parameters using (14).

VII. Numerical Examples for Attitude Control

Let the spacecraft inertia matrix be defined as in (51), BSC = I3, and Aatt = I . We use the RCAC

parameters in Table 1 and let the parameter kon = 81 as given by (52). The Markov parameter is given by

the linearized system in Section VI evaluated at R̃e = I3 and ω̃e = 0, ωd depends on the maneuver.

We examine slew (M2R-A) and spin (M2S-A) maneuvers. For each maneuver we examine robustness

to changes in the inertia using arbitrary Markov parameters.

A. M2R-A Maneuvers

Let the initial motion of the spacecraft be described by (53) and the initial attitude be given by

R(0) = I3. (85)

The goal of the controller is to bring the spacecraft to rest, that is ωd = 0, with the inertial attitude

Rd =

⎡
⎣ 0.5000 0.5000 0.7071

0.5000 0.5000 −0.7071
−0.7071 0.7071 0.0000

⎤
⎦ . (86)

For the M2R-A problem, the Markov parameter given by (14) becomes

H1 =

[
I3 03×9

03×3 Ma

] ∫ h

0
eAcτ

[
J−1BSC

09×3

]
dτ, (87)
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where the matrix Ac is given by (81) evaluated at ω̃ = ωd = 0 and R̃ = I3. We compute the matrix

exponential

eAcτ =

⎡
⎢⎢⎣

I3 03×9

τe×1
τe×2 I9
τe×3

⎤
⎥⎥⎦ (88)

and evaluate the integral term in (87). Thus, the M2R-A Markov parameter is

H1 =

[
hJ−1BSC

h2J−1BSC

]
. (89)

Figure 7 shows the closed-loop performance for the M2R-A maneuver using the Markov parameter H1

in (89). Note that the linear controller coefficients converge smoothly and quickly.
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Figure 7: RCAC performance for M2R-A using Markov parameter H1 in (89).

B. Effect of the Markov Parameters on Convergence

We use H1 in (89) to define the arbitrary Markov parameter

Ĥ1 =

[
αBSC

α2BSC

]
, (90)
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Figure 8: Inertia-free RCAC performance for M2R-A using Markov parameter Ĥ1 in (90) with h = 0.1 sec

and a saturation level of 1 N-m.

where we have removed the inertia matrix and replaced the time step h with a positive scaling parameter

α. As in the M2R-R case, off-nominal values of α cause the controller to diverge. Thus, we implement the

saturation method in (57) to mitigate this problem.

Figure 8 shows the controller’s performance using various values of α. Note that, unlike the M2R-R

case, saturation does not provide robustness to changes of α outside of the nominal value α = h, especially

for values greater than 1. This is due to the nonlinear term, α2 in the lower portion of the matrix Ĥ1 in (90).

When α �= h the ratios between the entries in the top and bottom halves of the matrix Ĥ1 change from their

nominal values, thus affecting the internal structure of the Markov parameter. Thus, we redefine the Markov

parameter as

Ĥ ′
1 = α

[
hBSC

h2BSC

]
. (91)

This scaling maintains the matrix element ratios at their nominal values.

The M2R-A maneuver in Figure 9 examines the effect of the Markov parameter Ĥ ′
1 given by (91).

The trajectory for α = 1 corresponds to the unscaled inertia-free Markov parameter. As shown by the

performance variable plot in Figure 9a, the algorithm is now robust to changes in the inertia and to scaling

of the input matrix BSC . As expected, decreasing α increases the commanded control input.
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Figure 9: Inertia-free RCAC performance for M2R-A using the inertia-free Markov parameter Ĥ ′
1 in (91)

with h = 0.1 sec. The controller is robust to scaling of H1.
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C. M2S-A Maneuvers

To expand the M2R-A example we command the spacecraft to spin about a specified body axis aligned

with a specific inertial attitude. Let the initial state of the spacecraft be as in the examples in the previous

section, set the controller parameters as in Table 1, and let the desired angular rate ωd be as described in

(60). Since the commanded angular rate is non-zero the desired attitude evolves over time according to (6).

Figure 10 compares the performance of RCAC using the nominal Markov parameter in (87) with RCAC

using the inertia-free Markov parameter (91) with saturation for the M2S-A maneuver.
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Figure 10: Comparison of RCAC performance for M2S-A. Plots compare RCAC using Markov parameter

H1 in (87) without saturation versus RCAC using the inertia-free Markov parameter Ĥ ′
1 in (91) with α = 1,

h = 0.1 sec, and a saturation limit of 1 N-m.

VIII. Robustness to Actuator Misalignment for M2R-A

We examine the robustness of RCAC for the M2R-A maneuver to actuator misalignment. We misalign

each actuator in different directions by varying angles. Thus, for a spacecraft with three actuators, the

actuator matrix is given by

BSC =
[
R1e1 R2e2 R3e3

]
. (92)

Each Ri ∈ R
3×3 for i = 1, 2, 3 in (92) is a rotation matrix given by Rodrigues’ equation

R(θB, n̂B) = cos(θB)I3 + (1− cos(θB))nB ∗ nT
B + sin(θB)n

×
B, (93)

where θB is the misalignment angle and n̂B ∈ R
3 is the misalignment axis.
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A. Numerical Examples

The initial conditions and RCAC parameters used are given in Section VII. First, we test a misalignment

of θB = 30◦ on each actuator with different misalignment axes so that the rotation matrices in (92) are

R1 = R(θB, e3), (94)

R2 = R(θB, e1), (95)

R3 = R(θB, e2). (96)

where ei for i = 1, 2, 3 is the ith column of I3. Figure 11 compares the closed-loop performance using

RCAC with full inertia and actuator knowledge given by the Markov parameter H1 in (87) with RCAC

using the inertia and misalignment-free Markov parameter

Ĥ1 = α

[
hB̂SC

h2B̂SC

]
, (97)

where B̂SC = I3 is the ideal actuator matrix.
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Figure 11: Comparison of RCAC performance for M2R-A with θB = 30◦. Plots compare RCAC using

Markov parameter H1 in (87) without saturation versus RCAC using the inertia and alignment-free Markov

parameter Ĥ1 in (97) with α = 1, h = 0.1 sec, and a saturation limit of 1 N-m.

RCAC can complete the M2R-A maneuver without using knowledge of the misalignments in the actua-

tor matrix BSC . As shown in Figure 11b the lack of alignment information results in a longer settling time.

To evaluate robustness, we test RCAC with larger misalignment angles.

Figure 12 shows the closed-loop performance when using the Markov parameter Ĥ1 in (97) for different

misalignment angles. We increase the misalignment angle until the controller fails to complete the M2R-A

maneuver. As shown in Figure 13, for angles greater than 60◦ or less than −40◦, the controller coefficients

converge but the system settles into a limit cycle.

IX. Conclusions and Future Research

The RCAC algorithm was used to control spacecraft angular rate and attitude using Markov parameters

derived from the linearized Euler and Poisson equations. Numerical simulations indicate that the inertia

information can be removed from the Markov parameter to obtain inertia-free attitude control. We also

showed robustness to inertia and actuator scaling and achieve the shortest settling time when the controller

time step h is known. Thus, RCAC can be used as an inertia-free angular rate and attitude controller for

detumbling (M2R-R), slews (M2R-A), and spinning maneuvers (M2S-R and M2S-A).

Robustness to actuator misalignments was also examined. Numerical simulations of the M2R-A ma-

neuver indicate that RCAC can handle misalignments of various angles about different axes. The simulation
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Figure 12: Comparison of RCAC performance for M2R-A for various misalignment angles θB . Plots com-

pare the closed-loop performance using the inertia and alignment-free Markov parameter Ĥ1 in (97) with

α = 1, h = 0.1 sec, and a saturation limit of 1 N-m.
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Figure 13: RCAC performance for M2R-A for misalignment angles θB = 70◦ and θB = −60◦ using

the inertia and alignment-free Markov parameter Ĥ1 in (97) with α = 1 and a saturation limit of 1 N-m.

Although the controller coefficients converge, the system enters a limit cycle as shown by the angular rate

plot.
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results indicate that RCAC is robust to misalignments up to 50◦ in all directions. Larger misalignment errors

result in RCAC entering a limit cycle due to the incorrect input-output information provided by the Markov

parameter.

To fully understand the RCAC spacecraft system, the effect of the individual entries of the Markov pa-

rameter on controller behavior must be determined. Thus, further work will examine the relation between

maneuver type, Markov parameter, and controller performance. Also, different spacecraft inertias and actu-

ator placements, specifically underactuated spacecraft, will be considered.

Future applications will extend RCAC to spacecraft systems with changing inertia properties such as

actuated solar arrays. Also of interest are spacecraft with flexible bodies such as gravity gradient booms

and deployable antennas. Alternative actuators, such as reaction wheels, magnetic torquers, control moment

gyros, and combinations of these, will be explored. RCAC can also address disturbance rejection and sensor

noise problems.
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