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Abstract— The spatial spillover operator quantifies the rel-
ative effectiveness of a controller at two different spatial
locations. This operator is relevant to noise and vibration
control, where the response of the system at a location without
a sensor may be unsatisfactory. Identification of the spatial
spillover operator based on a representation involving four
transfer functions requires measurements of the disturbances,
which may not be available in practice. Likewise, identification
based on a representation involving two transmissibilities is not
feasible in systems where the disturbance cannot be suppressed.
To overcome this difficulty in systems with disturbances that
are both unmeasured and insuppressible, this paper considers
identification based on a hybrid representation involving one
transmissibility and two transfer functions. Acoustic data are
used to identify the spillover operator and validate the proposed
method.

I. INTRODUCTION

Active noise and vibration control has been widely studied
for several decades, and applications of this technology are
becoming increasingly common [1], [2], [3]. Both feedfor-
ward and feedback architectures are used in practice depend-
ing on the availability of direct or indirect measurements of
the disturbance [4], [1].

Despite this progress, a key unsolved problem concerns
the fact that a controller designed to suppress noise at
one location (the location of the performance sensor) may
amplify the noise at another location (which can be viewed as
the location of an evaluation sensor). This is called the spatial
spillover (“waterbed”) effect [5] and is distinct from spectral
spillover, which, within the context of feedback control, is
unavoidable due to the Bode sensitivity integral [6], [7]. The
disturbance amplification at the location of the evaluation
sensor may be unacceptable in practice. An example is the
active noise control in the interior of a vehicle, where the
key locations at which noise should be suppressed are the
ears of the occupants but where it is impractical to place
microphones. It is therefore of interest to formalize the notion
of spatial spillover and determine the extent to which it
depends on the dynamics and geometry of the system. In
many cases, it is possible to quantify the spatial spillover in
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the development process by means of test evaluation sensors
that cannot be implemented in the operational system.

We note, in passing, that disturbance suppression can be
achieved uniformly in space in the special case where the
actuation is colocated with the disturbance [6]. However, this
geometry is rarely feasible in practice.

The notion of spatial spillover is formalized in [5] in
terms of the spatial spillover operator Gss. In particular,
Gss relates the performance of the controlled system relative
to the uncontrolled system at the location of the evaluation
sensor to the performance of the controlled system relative to
the uncontrolled system at the location of the performance
sensor. This definition is applicable to both feedback and
feedforward control architectures for disturbance rejection.
It turns out that, in the case where the control, disturbance,
performance, and evaluation are scalar signals, Gss is inde-
pendent of the controller; otherwise, Gss may depend on the
control law.

As shown in [5], in the case where all the signals are
scalar, Gss can be written as a ratio involving four transfer
functions. This ratio can also be expressed as the ratio of
two transmissibilities [8], [9], [10]. This connection provides
a natural interpretation for Gss.

The objective of the present paper is to experimentally
estimate Gss. In fact, Gss was estimated in [5] using
measurements of all four signals using both feedback and
feedforward controllers. These estimates used knowledge of
all four signals, including the disturbance. In addition, the
estimation in [5] was based on the assumption that the control
and disturbance can be applied separately.

The motivation for the present paper is the fact that, in
practice, it is often required to perform identification in the
presence of disturbances that cannot be measured or sup-
pressed. For the objective of identifying Gss, this presents an
obvious difficulty due to the fact that two of the four transfer
functions appearing in the definition of Gss cannot be esti-
mated if the disturbance cannot be measured. Furthermore,
in the expression for Gss involving two transmissibilities,
only one of the tranmsmissibilities can be estimated if the
disturbance cannot be suppressed. As explained later in the
paper, the effect of the insuppressible disturbance can be
treated as an errors-in-variables (EIV) regression problem
[11], [12], [13], but the EIV noise is colored and correlated
and thus the effect of the EIV noise cannot be distinguished
from the system dynamics. Consequently, the resulting EIV
problem is unsolvable.

To overcome these difficulties, the present paper considers
an alternative approach where Gss is expressed in terms
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of one transmissibility (the transmissibility arising from the
disturbance) and two transfer functions. Estimation using this
expression does not need the measurement or suppression
of disturbance. Since the transmissibility arises from the
disturbance only, it can be estimated by turning off the
control. Also, the effect of the insuppressible disturbance
now appears as only output noise in the estimation of the
two required transfer functions. Consequently, since no input
noise is present, the identification problems are not EIV
problems. In order to demonstrate this approach, experiments
are conducted on an acoustic setup consisting of speakers and
microphones. Using the experimental data, identification of
spatial spillover operator is done and it is also shown that
the estimation is consistent.

This paper is organized as follows. Section II explains the
concept of spatial spillover operator and derives expressions
for it. The different approaches for identifying the spatial
spillover operator are presented in Section III. Section IV and
Section V describe the experimental setup and experimental
results, respectively. Section VI contains the conclusions and
future work.

II. SPATIAL SPILLOVER OPERATOR

Consider the feedback control problem shown in Figure
1, where z ∈ R is the performance variable, e ∈ R is the
evaluation variable, w ∈ R is the disturbance, and u ∈ Rlu
is the control input. The dynamics and signals may be either
continuous time or discrete time. It follows from Figure 1
that

z = Gzuu+Gzww, (1)
e = Geuu+Geww, (2)

where the feedback control u is given by

u = Gcz. (3)

Using (1) and (3) we obtain

z = G̃zww, (4)

where

G̃zw ,
Gzw

1−GzuGc
. (5)

In addition, it follows from (2), (3), and (4) that

e = G̃eww, (6)

where

G̃ew ,
GeuGcGzw
1−GzuGc

+Gew. (7)

The spatial spillover operator Gss is defined as

Gss ,

G̃ew

Gew
− 1

G̃zw

Gzw
− 1

. (8)

It can be seen that Gss relates the performance of the
controlled system relative to the uncontrolled system at e
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Fig. 1. Feedback control.

to the performance of the controlled system relative to the
uncontrolled system at z. Assuming that GzuGc 6= 0, it
follows from (5) and (7) that

G̃zw
Gzw

− 1 =
GzuGc

1−GzuGc
, (9)

G̃ew
Gew

− 1 =
GeuGcGzw

Gew(1−GzuGc)
. (10)

Therefore, (8), (9), and (10) imply that

Gss =
GeuGcGzw
GzuGcGew

. (11)

In this paper, only the case where u is scalar is considered.
When u is scalar, (11) becomes

Gss =
GeuGzw
GzuGew

, (12)

which is independent of Gc.
Gss can also be expressed as the ratio of two transmissi-

bility functions. To do this, we define the notation

Gzw =
Nzw

Dzw
, Gew =

New

Dew
, Gzu =

Nzu

Dzu
, Geu =

Neu

Deu
.

(13)

It is realistic to assume that Dzw = Dew and Dzu = Deu.
The transmissibility [8] from z to e driven by w is given by

Tez,w ,
Gew
Gzw

=

New

Dew

Nzw

Dzw

=
New

Nzw
. (14)

Similarly, the transmissibility from z to e driven by u is
given by

Tez,u ,
Geu
Gzu

=
Neu

Nzu
. (15)

Therefore, it follows from (12) that

Gss =
GeuGzw
GzuGew

=
NeuNzw

NzuNew
=

Neu

Nzu

New

Nzw

=
Tez,u
Tez,w

. (16)

III. IDENTIFICATION OF THE SPATIAL
SPILLOVER OPERATOR

Equations (12) and (16) provide two approaches for iden-
tifying the spatial spillover operator. Since these approaches
have practical limitations, a third approach, which is a
hybrid of the first two, is proposed. All three approaches
are explained below.
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A. Transfer Function Approach (4G)

In the transfer function approach, Gss is identified using
(12). For this, the four transfer functions Geu, Gzu, Gzw,
and Gew have to be estimated, which requires knowledge
of input signal u, disturbance w, and output signals z and e.
In practice, it is difficult to measure w. Thus, this method is
not useful if measurements of w are not available.

B. Transmissibility Approach (2T )

In the transmissibility approach, Gss is identified using
(16). This involves estimation of transmissibilities Tez,u and
Tez,w. Here, knowledge of signals u and w is not required.
Let

zu = Gzuu, (17)
zw = Gzww, (18)
eu = Geuu, and (19)
ew = Geww. (20)

Estimating the rational function from zu (pseudo input of
the transmissibility) to eu (pseudo output of the transmis-
sibility) gives Tez,u, while estimating the rational function
from zw (pseudo input of the transmissibility) to ew (pseudo
output of the transmissibility) gives Tez,w. We set u = 0 in
order to measure zw and ew. It is desirable to set w = 0 for
measuring zu and eu, but in most practical cases, this is not
possible. Let vz = Gzww and ve = Geww. Then, (1) and
(2) can be written as

z = zu + vz, (21)
e = eu + ve. (22)

In the case where w cannot be set to zero, Tez,u must
be estimated using z and e. Here, z is the pseudo input
of the transmissibility and e is the pseudo output of the
transmissibility. The signals vz and ve can be considered
as input noise and output noise, respectively. Hence, this
estimation is an errors-in-variables (EIV) problem [11]. Since
the input noise and output noise are colored and correlated, it
is not possible to distinguish the noise from the actual signal,
and thus this identification problem cannot be solved.

C. Hybrid Approach (2G+ 1T )

The hybrid approach is useful for identifying Gss in the
case where w cannot be measured and w cannot be shut off.
The hybrid expression for the spatial spillover operator is
given by

Gss =
Geu

GzuTez,w
. (23)

As in the transmissibility approach, Tez,w can be estimated
from measurements of zw and ew. Since u is the control
input, we assume that u is known. Note that (1) and (2) can
be written as

z = Gzuu+ vz, (24)
e = Geuu+ ve, (25)

Fig. 2. Experimental setup showing the microphone and speaker placement.

where the signals z and e are viewed as outputs due to
the input u and corrupted by the noise signals vz and ve
respectively. Thus, (24) and (25) define an identification
problem where the output signals are corrupted by noise
but the input signal u is known. This identification problem
is amenable to identification techniques for systems with
output noise [14], [15]. Denote the estimates of Gzu and Geu
obtained from (24) and (25) as Ĝzu and Ĝeu, respectively.
Therefore, it is possible to calculate Gss from (23) using
Ĝzu, Ĝeu, and Tez,w.

IV. EXPERIMENTAL SETUP

An acoustic experiment is used to provide data for
identifying the spatial spillover operator. Omni-directional
microphones are used as sensors, and mid-bass woofers
are used for actuation. Real Time Workshop (RTW) and
MATLAB/Simulink are used with a dSPACE DS1104 board
to collect data from the sensors and actuators. Additional
hardware used in the implementation includes speaker am-
plifiers, microphone amplifiers, and anti-aliasing filters.

Figure 2 shows the microphone and speaker placement.
The approximate dimensions of the acoustic space are 6 ft
× 3 ft × 3 ft with microphone locations m1 and m2 and
speaker locations s1 and s2. One microphone is chosen as
the performance microphone z, and the other microphone
is chosen as the evaluation microphone e. In addition, one
speaker is chosen to produce the disturbance w, and the other
speaker is chosen to produce the control u. The frequency
range used is from 50 Hz to 500 Hz, with data sampled at
1 kHz. The data set consists of 20,000 samples. A photo of
the experimental setup is shown in Figure 3.

V. EXPERIMENTAL RESULTS

Since the disturbance w is produced by a speaker in the
experimental setup, the speaker input w can be measured and
also the speaker can be shut off. This makes it possible to
perform the identification of the spatial spillover operator
using all three approaches described in Section III and
compare the resulting models. In a real application case, such
as the interior of a car where the disturbance due to wind,
road, or engine noise cannot be measured or suppressed, only
the hybrid (2G + 1T ) approach can be used to identify the
spatial spillover operator.
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Fig. 3. Experimental setup.

Identification is performed in both the frequency domain
and the time domain. For frequency-domain identification,
spectral analysis [16] is used, whereas, for time-domain iden-
tification, least squares [17] is used. For frequency-domain
identification, Figure 4 compares the estimated frequency
response of Gss obtained for the 4G, 2T , and 2G+ 1T ap-
proaches. For time-domain identification, Figure 5 compares
the estimated frequency response of Gss obtained for the
4G, 2T , and 2G+1T approaches. These plots show that the
frequency response of the spatial spillover operator estimated
using the three approaches are in reasonable agreement. Fig-
ure 6 compares frequency-domain identification with time-
domain identification for the 2G+ 1T approach.

In order to check whether the estimation using 2G + 1T
method is consistent, we define the error metric

E =

√ ∑
θ∈[0,π]

|Gss(eθ)−Gss,true(eθ)|2, (26)

where Gss is estimated using the 2G + 1T approach as
described in Section III.C. In contrast, Gss,true is estimated
using the 2G+1T approach, but Geu and Gzu are estimated
with w suppressed (that is, using zu, eu, and u). The error E
is calculated for an increasing number of data samples from
1000 to 20000 samples. The log of E is plotted versus the
log of the number of data samples in Figure 7, which shows
that the error decreases with a log-log slope of about −1/2.
This trend indicates that the estimates are consistent.

VI. CONCLUSIONS
The notion of spatial spillover was explained, and expres-

sions for the spatial spillover operator in terms of trans-
fer functions and transmissibilities were presented. Three
approaches for identifying the spillover operator were de-
scribed, namely, 4G, 2T , and 2G + 1T . It was shown
that only the 2G + 1T approach can be used in the case
of unmeasured and insuppressible noise in the system. An
experiment was conducted on an acoustic setup, and the three
approaches were compared. By varying the size of the data
set, it was shown that the 2G + 1T approach captures the
dynamics of the spatial spillover operator with a statistical
trend demonstrating consistency.
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Fig. 4. Frequency response of Gss. This plot compares the 4G, 2T ,
and 2G+1T approaches. The identification is performed in the frequency
domain using spectral analysis.

0 /4 /2 3 /4
-10

0

10

20

30

M
a

g
n

it
u

d
e

 (
d

B
)

0 /4 /2 3 /4

Frequency (rad/sample)

-100

-50

0

50

100

P
h

a
s
e

 (
d

e
g

)

4G

2T

2G+1T

Fig. 5. Frequency response of Gss. This plot compares the 4G, 2T , and
2G + 1T approaches. The identification is performed in the time domain
using least squares.

Future work involves extension of identification of Gss

to MIMO systems. Since Gss depends on the controller
for MIMO systems, it may be possible to synthesize con-
trollers so as to attain a desired spatial spillover frequency
response. Finally, analysis of how spatial spillover changes
with speaker/microphone placement and disturbance location
may prove to be helpful in determining acoustic geometries
that facilitate spatially uniform disturbance suppression.
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