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The most fundamental and important principle in robusL coatrol

theory, and perhaps all of feedback control theory, is without doubL the
small in dorem [1]. Essentialy, boundedrealH. theory, structured
singular value theory, and norm-based robustns theories [2-10] are
based on small gain principles. This leads to the following question:
Are there fuidamenta principles n robust feedback control theory that
are distn from the small gain dteowm?

The purpose of this paper is to suggest that there is, in fact, more
to robust control theory than small gain. Our in point, which was
discussed previously in [Il, is that it is possible to transcend small
gin principles by exploiting knowledge of phase properties. Since
le201 = I regardless of the phase angle , it can be expected that any
norm-based technique will ignore phase informati

To illustrae the importance of phase information, it is useful to
conta the chlssical concepts of i and phase stabilizationL In terms
of gin stabilization, stability of a single-input single-output closed-
loop system is ensured by designing the controller so that the
magnitude of the loop transfer function is less than unity in frequency
regimes in which the phase is either known to be near 180° or is highly
uncertain. In terms of phase stabilization, stability is achieved by
ensuring that the phase of the loop transfer function is well behaved
where the loop tranfer funtion has gin greater than unity. Roughly
speaking, phase stabilization can be used to allow high loop gain and
thus achieve high perfornance in frequency regimes in which sufficient
phase information is available, wherema gain stabilization (e.g., rolloff)
is needed to insure stability in frequency regimes in which the phase of
a system is very poorly known. For further discussion of the
ditinction between phase and gain stabilization, see [12].

There are many facets to te phase information question. Here we
discuss a collection of ideas that are united by their common goal of
circumventing the limitations of sll gain theory. First we chrify
telimiutaons and then discuss possible solutions.
2. Limitations to Small Gain Theory

The analysts and synthesis of robust feedback controllers entails a
fundamental distinction between parametric and nonparametric
uncertainty. Parameter uncertainty refers to plant uncertainty that is
model as constant real parames, whea oqametic unctainty
refers to uncertain transfer function gains that may be modeled as
complex frequency-dependent quantities. In the time domain,
nonwametric uncertainty is manifested as uncertain rea parameters dt
may be time varying.

The distincton between parametic and nonparanetric uncerwainty
is critical to the achievable performance of feedback control systems.
For example, in the problem of vibration supression for flexible space
stucures, if stiffness matrix uncertainty is modeled as a nonparametic
uncertiy, then perurbations to the damping matrix will inadvertently
be allowed. Predictions of stability and performance for given feedback
gains will consequently be extremely conservative, thus limiting
achievable perfornance [13]. Altematively, this problem can be viewed
by considering the classical analysis of Hill's equation (e.g., the
Mathieu equation) which shows that time-varying parameter variations
can destabilize a system even when the parameter variations are confined
to a region in which constant variations are nondestabilizing.
Consequently, a feedback controller designed for time.varying parameter
variations will unnecessarily sacrifice performance when the unceain
real paramets are acually constant
3. Positivity Theory

Positivity theory [14-251 provides a clasic example of a theory
that overcomes small gain limitations. Essentially, positivity tery
asserts that a feedback loop consisting of two transfer functions having
phase less than 90" is stable regardless of gain magnitude. Positivity
theory plays an invaluable role in certain applications such as the
contol of flexible structures [26,271.
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One can argue, however, that positivity theory, in spite of its
ability to capte knowledge of phase, is not based upon feedback
principles that are fundamentally different from small gwn theory. This
argument is based upon the well-known small gain/positivity duality
whose details follow frxn the bilinear tasformaton [16,241. Hence
small gain techniques can effectively yield positivity-type results by
means of suitable
4. Constant Real Parameters and Phase Characterization

The constnt real para uncerinty problem represents an
extreme case of phase inormation due to the IMfact that every real
parameter has phase 00 or 1800. By a simple shift of the nominal,
however, one can usually consider 0" phase only for the case of positive
real cnstants. It is clear that positivky approwaches, which account for
up to 90" phase, will be conservative with respect to O" phase
information.

The quintessential real prameter result is, of course, Kharitonov's
Theorem [28], which appears to be quite independent of small gain
principles. Beyond this resul we can cite a broad range of results that
seek to exploit phase information in some form [29-40]. Although it
is difficult to discern a specific unifying principle among these
techniques, it is clear that they all seek to go beyond the limitations of
the small gain theorem.

The difficulties associated with phase information can be
emphasized by the quesion: What is th phase of a matrix? While the
gain of a matrix is wel understood in terms of norms, phase properties
are difficult to chaerize. There are severl possible strting points
for annxn realmatrix A:

1) Write A = A + A2 where AI SA AT) and A2=(A -
AT) and consider the imaginary eigenvalues of the skew-
symmetric matrix A2.

2) Write A =MU where M is nonnegative definite and U is
orthogonal and consder the phase of the complex eigenvalues of
U [29].

3) Consider the geometry of the numerical range ofA [30].
4) Consider the e of each eigenvalue of A.

5. Parameter-Dependent Lyapunov Functions and the
Popov Criterion
An alternative approach to the phase infonnation/eal parameter

uncerainty problem is to comsa refined Lyapuov functons that are
functos of the uncertin parameters. This idea has been prosed i
[4142]. The idea behind pameter-dependent Lyapunv fuctios is to
allow the matrix P of the Lyapunov function V(x) = xTPx to be a
function of the uncertainty &A. In the usual case P is a single, fixed
matix, whereas the prameter-depndent Lyapunov function V(xAA) =
xTP(A)x repesents afamily of Lyapunov functos.

In [411, Barmish and DeMarco propose a parameter-dependent
Lyapuov function V(x),...%) =xTP(X1.).4)x, where P(Xl,...,Xr)
=- j iP, which they call an "adaptive" Lyapunov function. In this

case the matrices Pi correspond to the vertices of a polytope of
uncertain matices Ai. In [42], Leal and Gilbso consider a Lyapunov
function with maix P(cj ,,or)=Po +4 =aiPi, where Po
corresponds to the nominal system ad Piare "fir-order pertubations"
of Po. Nwnerical techniques are ued to detrmie Pi and the range of
robust stabffity. In both [41] and [42] there is considerable evidence
that parameter-dependent Lyapunov functions offer significant
advantages over "fixed" Lyapunov f wncios

A related f, which was cl1ified and genealized in [43,44], is that
the classical Popov criterion is actually based upon a parameter-
dependent Lyapunov function. To see this, recall that the Popov
criterion is based upon the Lure-Posinikov Lypunov function

V(x,*) = xTPx + a fo *(a)dx
where V ) is a scalar memoryless time-invariant nonlinearity in the
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sector [0,4], that is, 0 $y)y < ky2. S ializing o the lier cmase
3y) = Fy, where th rcal, oast u tain F saOisies 0. FS k,

andki ng y = Cx, we see ta
V(x,F) = xTPx + aJ Fdea

= xTPx + xFe
= xTPx + 4 cx F(Cx)2
= xTPx + acx F(xTCTCx)

=xT[P +4 x FCTCW

= xTP(F)x,
an obsrvaion pointed out in [431.

For practcal purposes the form of the parameter-dependent
Lyapunov function V(x,F) is critcal sinc the presence of F severely
restricts the allowable time-varying uncertain paameters. That is, ff
F() were permitted, then terms involving F(t) might subvert the
negative definiteness of V(x;F). Hence powueter-dependent Lyapunov
functions possess the potential for exploiting ph-e infoxmatio .

The Popov criterion is a special case of the class of absolute
stability criteria involving frequny-dependent multipliers Once the
frequency-dependent multiplier is chosen, the resuting criterion is
ully cast as a positive ra conditon, which, in tun, is equivalent to

a small gain condition. The presence of the frequency-dependent
multiplier, however, entails a parameter-dependent Lyapunov function
which disfinguishes the robustness test frm the usual smWll gain
conditions. Besides the Popov critrion the off-axis circle criterion and
parabola test posse these features [20,45-481.

An alternative approach developed in [49] utilizes irrational
frequency-domain transformations to capture constant real paramete
uncertainty. The relationship between this approach and classical
frequey domain criteia remains to be expkreLd
6. Maximum Entropy Theory

Another approach to overcoming the liitations of small gain
theory is the Maximum Entropy theory originaly developed by Hyland
[11, 50-53]. Using insights from the analysis of strucral vibrations,
this approach is based upon a model that captures the statisical effects
of uncertain modal parameters A concise dicussion of the rtionale
behind this approach is given in (45]. One interpretation for this
technique has been given in [541 in terms of covariance averaging,
while a parameter-dependent Lyapunov funton basis is given in [55].
7. Conclusion

Small gain theory guarantes robutness with respect to complex
or time-varying uncertainty and thus is consrvative with resPect to
constant real pmeer uncw ainty. In ths paer we reviwed a variety
of approaches that seek to oveome the limitations of small gain
theory. These a oacs inchle Kht v theory, positivitY torY,
phase charactizaon, parameter-dpnn t Lyapunov function t
Popov, parabola, and off-axis circk criteria, and Maximum Entropy
thecay.
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