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Abstract— Reversibility of dynamical processes arises in
many physical dynamical systems. For example, lossless Newto-
nian and Hamiltonian mechanical systems exhibit trajectories
that can be obtained by time going forward and backward,
providing an example of time symmetry that arises in nat-
ural sciences. Another example of such time symmetry is
the phenomenon known as Poincaré recurrence wherein the
dynamical system exhibits trajectories that return infinitely
often to neighborhoods of their initial conditions. In this paper,
we study output reversibility in linear dynamical systems, that
is, the backward recoverability of the system output while
time is going forward. Specifically, we provide necessary and
sufficient conditions for output reversibility in terms of the
spectrum of the system dynamics. In addition, we provide
sufficient conditions for the absence of output reversibility.
Furthermore, we establish that no system trajectory can retrace
its time history backwards with time going forward which
is also natural in light of the uniqueness of solutions to
linear dynamical systems. Finally, we draw connections between
output reversibility and Poincaré recurrence.

I. INTRODUCTION

The notion of reversibility is one of the fundamental
symmetries that arise in natural sciences. Specifically, time-
reversal symmetry arises in many physical dynamical sys-
tems and, in particular, in classical and quantum mechanics.
The governing dynamical system equations for such systems
possess reversing symmetries, that is, the concept of time
flow does not enter in these physical theories. In particular,
Newtonian and Hamiltonian mechanics (including Einstein’s
relativistic and Schrödinger’s quantum extensions) are invari-
ant under time reversal, that is, they make no distinction of
one direction of time and the other. Such theories possess a
time-reversal symmetry, wherein, from any given moment of
time, the governing dynamical laws treat past and future in
exactly the same way [1], [2], [3].

In contrast, thermodynamics describes processes that give
rise to time-reversal non-invariance [2], [3]. The term time-
reversal is not meant literally here; that is, thermodynamic
systems give rise to dynamical systems whose system tra-
jectory reversal is or is not allowed and not a reversal of
time itself. Nevertheless, many scientists have attributed this
emergence of the direction of time flow to the second law of
thermodynamics—the law that entropy always increases—
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due to its intimate connection to the irreversibility of dy-
namical processes.

Another key distinction between thermodynamics and
mechanics is that thermodynamics is a theory of open
systems [2], whereas mechanics is a theory of closed systems.
In particular, thermodynamic systems exchange matter and
energy with the environment, and hence, interact with the
environment. Alternatively, in mechanics it is always possible
to include interactions with the environment (via feedback
interconnecting components) within the system description,
to obtain an augmented closed system. In this case, the
system can be described by an evolution law with, possibly,
an output equation wherein past trajectories define the future
trajectory uniquely and the system output depends on the
instantaneous (present) value of the system state.

In this paper, we use system-theoretic notions to investi-
gate system reversibility for closed linear dynamical systems.
In particular, we consider the free response of a system
on a given, finite interval. The system is output reversible
if, for every initial condition and corresponding trajectory,
there exists an alternative initial condition such that the
corresponding trajectory is the time-reversed image of the
original trajectory. Our goal is to characterize linear systems
that are output reversible.

In [4], output reversibility was addressed for linear dynam-
ical systems with single outputs. As special cases, it was
shown that the class of output-reversible systems includes
rigid body and Hamiltonian systems. This result suggests that
stability and instability play a key role in the arrow of time,
independently of dimensionality, nonlinearity, and initial-
state sensitivity. In this paper, we extend the results of [4] to
multi-output systems to obtain a spectral symmetry condition
that characterizes output reversible systems. In particular, we
show that a closed linear system is output reversible if and
only if its non-imaginary spectrum is symmetric with respect
to the imaginary axis.

Reversible dynamical systems tend to exhibit Poincaré
recurrence [5], [2], that is, if the flow of a dynamical system
preserves volume—namely, the volume of an arbitrary region
of the state space is conserved by the time evolution of the
system—and has only bounded orbits, then for each open set
there exist orbits that intersect the set infinitely often. In this
paper, we additionally provide connections between Poincaré
recurrence and output reversibility.

Finally, time-reversibility in closed linear dynamical sys-
tems is also studied in [6], [7] using a class of behaviors
which can be described through a set of linear constant
coefficient differential equations. Specifically, the authors in
[6], [7] consider linear differential equations defined by poly-
nomial matrices. For these systems, the authors define the
notion of J-time-reversibility. However, the notion of output
reversibility of the present paper is distinct from the notion
of J-time-reversibility defined in [6], [7]. Specifically, for
linear systems defined by polynomial matrices that include
state space systems as a special case, a system is J-time-
reversible if the application of a linear transformation J to
the trajectory yields a trajectory of the time-reversed system,
that is, the modified system in which t is replaced by −t.
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For example, consider the unforced single-degree-of-
freedom rigid body modeled by ẋ = Ax, where A =
[

0 1
0 0

]

. Then, applying J =

[

1 0
0 −1

]

to the trajectory

provides a trajectory of the time-reversed system ˙̂x = Âx̂,

where x̂ , Jx and Â , JAJ−1 =

[

0 −1
0 0

]

. In

contrast, the present paper considers only forward trajectories
of ẋ = Ax with the goal of determining initial conditions
for which the output y = Cx is the time-reversed image of
a given output trajectory. Consequently, output reversibility
and J-time-reversibility are distinct notions. In addition, the
authors in [6], [7] do not give any connections between
the spectral symmetry of the system dynamics and output
reversibility, nor do they provide any connections between
output reversibility and Poincaré recurrence.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce notation and definitions
needed for developing the main results of this paper. Let
R denote the set of real numbers, Z+ denote the set
of nonnegative integers, and Rn denote the set of n ×
1 column vectors. For A ∈ Rn×n the multi-spectrum
mspec (A) = {λ1, . . . , λn}m is the set of all eigenvalues
of A including their multiplicity. We say that the multi-
spectrum of A is symmetric with respect to the imaginary
axis if {λ1, . . . , λn}m = {−λ1, . . . ,−λn}m. We denote
by A† ∈ R

m×n the Moore-Penrose generalized inverse of
A ∈ R

n×m [8], by I or In the n × n identity matrix,
and by N (A) , {x ∈ Rm : Ax = 0} the null space of
A ∈ R

n×m. We say that, for A ∈ R
n×n, λ ∈ mspec(A) is

semisimple if the algebraic multiplicity of λ is equal to its
geometric multiplicity, that is, the complex Jordan form of
A is a diagonal matrix.

We begin by considering the nonlinear dynamical system
given by

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (1)

with output

y(t) = g(x(t)), (2)

where x(t) ∈ Rn, y(t) ∈ Rl, and f : Rn → Rn and g :
Rn → Rl are continuous. We assume that solutions of (1)
exist and are unique on all finite intervals [0, T ). For clarity
we write the solution of (1) as x(t, x0) with the output given
by y(t) = y(t, x0) = g(x(t, x0)).

Definition 2.1 ([4]): The system (1) and (2) is output
reversible if, for all x0 ∈ Rn and t1 > 0, there exists
x̂0 ∈ Rn such that

y(t, x̂0) = y(t1 − t, x0), t ∈ [0, t1]. (3)

We wish to determine whether a given system (1) and
(2) is output reversible. In the next section, we consider the
special case of linear systems.

III. LINEAR OUTPUT REVERSIBLE SYSTEMS

In this section, we consider the linear dynamical system

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (4)

with output

y(t) = Cx(t), (5)

where A ∈ Rn×n and C ∈ Rl×n. For the remainder of the
paper we assume that (A,C) is observable. It follows from

Definition 2.1 that (4) and (5) is output reversible if and only
if, for all x0 ∈ Rn and t1 > 0, there exists x̂0 ∈ Rn such
that

CeAtx̂0 = CeA(t1−t)x0, t ∈ [0, t1]. (6)

Note that output reversibility is a basis-independent property.

The following result shows that if (4) and (5) is output
reversible, then x̂0 satisfying (6) is unique.

Proposition 3.1: Let x0 ∈ Rn and t1 > 0, assume that
(4) and (5) is output reversible, and let x̂0 ∈ Rn satisfy (6).
Then x̂0 satisfies

Ox̂0 = SOeAt1x0 (7)

and is given uniquely by

x̂0 = O†SOeAt1x0, (8)

where O ∈ R
nl×n and S ∈ R

nl×nl are defined by

O ,











C

CA
...

CAn−1











, (9)

S ,

















Il 0l×l · · · 0l×l

0l×l −Il

Il
...

...
. . . 0l×l

0l×l · · · 0l×l (−1)n−1Il

















. (10)

Proof. Since (4) and (5) is output reversible, there exists
x̂0 satisfying (6). Differentiating (6) n− 1 times and setting
t = 0 yields (7). Since (A,C) is observable, O† is a left
inverse of O. Hence, (7) implies (8).

Note that since (A,C) is observable, rankO = n. In
addition, if, for some x0 6∈ N (A) and t1 > 0, there does
not exist x̂0 ∈ Rn satisfying (7), then (6) does not have a
solution. In this case, (4) and (5) is not output reversible.

Corollary 3.1: Let x0 ∈ Rn, t1 > 0, and assume that
rank [O SOeAt1x0] > n. Then (4) and (5) is not output
reversible.

Proposition 3.2: Assume that l = n and C ∈ Rn×n is
invertible. Then (4) and (5) is not output reversible.

Proof. Since C ∈ Rn×n is invertible, then (A,C) is
observable. Let x0 ∈ Rn and t1 > 0, and note that (7)
is equivalent to











C

CA
...

CAn−1











x̂0 =











C

−CA
...

(−1)n−1CAn−1











eAt1x0. (11)

Since C ∈ R
n×n is invertible, it follows from (11) that

x̂0 = eAt1x0,

Ax̂0 = −AeAt1x0,

...

An−1x̂0 = (−1)n−1An−1eAt1x0,

which implies that Ax̂0 = AeAt1x0 = −AeAt1x0 = 0. Thus,
x̂0 ∈ N (A) is an equilibrium of (4). Furthermore, x0 =
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e−At1 x̂0 and, hence, Ax0 = Ae−At1 x̂0 = 0, which implies
that x0 ∈ N (A) is an equilibrium point of (4) and, hence,
x̂0 = x0. Thus, (7) has only solutions x̂0 = x0 that are
equilibrium points of (4). Therefore, (4) and (5) is not output
reversible.

Proposition 3.2 implies that full state reversibility, i.e.,
C = In, in linear dynamical systems is impossible. That
is, if C = In, then there does not exist an initial condition
to generate the solution that will retrace backwards the
original solution with time going forward. This conclusion is
natural in light of uniqueness of solutions of linear dynamical
systems.

Next, we use the fact [8, p. 422] that the matrix exponential
eAt of A ∈ Rn×n can be written as a polynomial in A of
the form

eAt =

n−1
∑

i=0

φi(t)A
i. (12)

The coefficients φ0(t), . . . , φn−1(t) are real linear combina-
tions of terms of the form trRe eλt and trIm eλt, where λ is
an eigenvalue of A and r is a nonnegative integer. Explicitly,
φi(t) is given by the contour integration [8, p. 423]

φi(t) =
1

2π

∮

C

p[i+1](z)

p(z)
etz dz, i = 0, . . . , n− 1, (13)

where C is a clockwise contour enclosing the spectrum of
A,

p(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0 (14)

is the characteristic polynomial of A, that is, p(s) =
det (sI −A), and, for all i = 0, . . . , n− 1,

p[i+1](s) = sn−i−1 + βn−1s
n−i−2 + βn−2s

n−i−3

+ · · ·+ βi+1. (15)

Note that p[n](s) = 1. The polynomials p[i+1](s) satisfy the
recursion [8]

sp[i+1](s) = p[i](s)− βi, i = 0, . . . , n− 1, (16)

where p[0](s) , p(s).

Since (A,C) is observable it follows from [8, p. 552]
that, if l = 1, then A is cyclic (nonderogatory), and
thus, its minimal polynomial coincides with its characteristic
polynomial [8, p. 179]. Recall that A is cyclic if and only if
A has exactly one Jordan block associated with each distinct
eigenvalue. The next proposition shows that if A is cyclic,
then the coefficients satisfying (12) are unique.

Proposition 3.3: If A ∈ Rn×n is cyclic, then the functions
φ0(t), . . . , φn−1(t), t ≥ 0, satisfying (12) are unique.

Proof. Let φ̂0(t), . . . , φ̂n−1(t), t ≥ 0, satisfy

eAt =

n−1
∑

i=0

φ̂i(t)A
i, t ≥ 0. (17)

Subtracting (17) from (12) yields

n−1
∑

i=0

[φi(t)− φ̂i(t)]A
i = 0, t ≥ 0. (18)

For each t ≥ 0, the left-hand side of (18) represents a
polynomial of degree n− 1 with root A. However, since A
is cyclic, its minimal polynomial is equal to its characteristic

polynomial; see Proposition 5.5.20 of [8]. Thus, φi(t) −
φ̂i(t) = 0, t ≥ 0, i = 0, . . . , n− 1.

Define r , rankA and note that the dimension of N (A)
is n − r [8, Corollary 2.5.1], that is, N (A) contains n − r
linearly independent vectors.

Lemma 3.1: Let t∗ > 0 and assume there exist r linearly
independent vectors x1, . . . , xr ∈ Rn such that xi 6∈ N (A),
i = 1, . . . , r, and

rank [O SOeAt∗xi] = n, i = 1, . . . , r. (19)

Then, for all x0 ∈ Rn and t1 > 0,

rank [O SOeAt1x0] = n. (20)

Proof. Let xr+1, . . . , xn ∈ N (A) be linearly independent.
Next, let x̂0 ∈ R

n satisfy

Ox̂0 = SOeAt∗xi, i = r + 1, . . . , n. (21)

Since Axi = 0, i = r + 1, . . . , n, it follows that (21) is
equivalent to











Cx̂0

CAx̂0

...

CAn−1x̂0











=











Cxi

0
...

0











, i = r + 1, . . . , n. (22)

Note that (21) holds with x̂0 = xi for each i = r +
1, . . . , n. It follows from Theorem 2.6.3 of [8] and the fact
that (A,C) is observable, that, for all i = r + 1, . . . , n,

rank [O SOeAt∗xi] = n, and thus, x̂0 = xi is the
unique solution to (21) for each i = r + 1, . . . , n. Thus, it
follows from the above arguments and (19) that each vector
SOeAt∗xi, i = 1, . . . , n, is a linear combination of the
columns of O ∈ Rnl×n.

Note that x1, . . . , xn are linearly independent vectors and,
thus, form a basis in Rn. To see this, note that every
vector x ∈ Rn can be represented as x = y + z, where
y ∈ N (A) and z ∈ Rn\N (A). Since x1, . . . , xr form a
basis in Rn\N (A) and xr+1, . . . , xn form a basis in N (A) it
follows that y and z are linear combinations of xr+1, . . . , xn

and x1, . . . , xr, respectively. Hence, x ∈ Rn is a linear
combination of xi, i = 1, . . . , n, and hence, x1, . . . , xn form
a basis in Rn.

Now, let x0 ∈ R
n and t1 > 0. Since x1, . . . , xn form

a basis in Rn, there exist α1, . . . , αn ∈ R such that
eA(t1−t∗)x0 =

∑n

i=1 αixi. Furthermore,

SOeAt1x0 = SOeAt∗eA(t1−t∗)x0 =

n
∑

i=1

αiSOeAt∗xi.

(23)

Since, for all i = 1, . . . , n, SOeAt∗xi is a linear combination
of the columns of O, it follows from (23) that SOeAt1x0
is also a linear combination of the columns of O. Thus,
rank [O SOeAt1x0] = n for every x0 ∈ Rn and t1 > 0,
which proves the result.

For the following result, define Φ(·) ∈ R
nl×l and φ(·) ∈

Rn given by

Φ(t) ,







φ0(t)Il
...

φn−1(t)Il






, φ(t) ,







φ0(t)
...

φn−1(t)






, (24)
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for all t ≥ 0. Substituting (12) into (6) yields

ΦT(t)Ox̂0 = ΦT(−t)OeAt1x0, t ≥ 0. (25)

Note that (6) and (25) are equivalent.

Proposition 3.4: Let t∗ > 0 and r = rank (A), and as-
sume there exist r linearly independent vectors x1, . . . , xr ∈
Rn such that xi 6∈ N (A), i = 1, . . . , r, and

rank [O SOeAt∗xi] = n, i = 1, . . . , r. (26)

The linear system (4), (5) is output reversible if and only if

φ(−t) = Sφ(t), t ≥ 0, (27)

where S , diag [1,−1, 1, · · · , (−1)n−1].

Proof. First, note that it follows from Lemma 3.1 that
for all x0 ∈ Rn and t1 > 0, rank [O SOeAt1x0] = n.
In addition, note that (27) is equivalent to Φ(−t) = SΦ(t),
t ≥ 0, where S is given by (10). To prove necessity, assume
that (4) and (5) is output reversible so that, by Proposition
3.1, x̂0 satisfies (7). Substituting (7) into (25) implies that,
for all x0 ∈ Rn and t1 > 0, equality ΦT(t)SOeAt1x0 =
ΦT(−t)OeAt1x0, t ≥ 0, holds.

Consequently, it follows that, for all q ∈ R
n, ΦT(t)SOq =

ΦT(−t)Oq, t ≥ 0. Furthermore, since (A,C) is observable
it follows that O ∈ Rnl×n is full rank, and hence, for all
z ∈ R

nl, ΦT(t)Sz = ΦT(−t)z, t ≥ 0, which implies that
ΦT(t)S = ΦT(−t), t ≥ 0, which is equivalent to (27).

Conversely, it follows from (27) that ΦT(−t)OeAt1x0 =
ΦT(t)SOeAt1x0. Since (A,C) is observable and
rank [O SOeAt1x0] = n, there exists a unique solution
x̂0 ∈ Rn satisfying (7) and, hence,

ΦT(−t)OeAt1x0 = ΦT(t)SOeAt1x0

= ΦT(t)Ox̂0, t ≥ 0,

which implies (25). Hence, (4) and (5) is output reversible.

Remark 3.1: In case of a single output, that is C ∈ R1×n,
with (A,C) observable, condition rank [O SOeAt1x0] =
n is satisfied since O ∈ Rn×n is invertible. Thus, in the
single output case the output reversibility of (4) and (5) is
independent of C so long as (A,C) is observable.

The following lemma is needed for the main result of this
section.

Lemma 3.2: The multi-spectrum of A ∈ Rn×n is sym-
metric with respect to the imaginary axis if and only if
p(−s) = (−1)np(s) for all s ∈ C.

Proof. Sufficiency is immediate. To show necessity, as-
sume that the spectrum of A is symmetric with respect to
the imaginary axis. In this case, the multi-spectrum of A is
given by

mspec (A) = {0, . . . , 0, λ1, . . . , λk,−λ1, . . . ,−λk}m,

where λ1, . . . , λk ∈ C are nonzero and the multiplicity of
the zero eigenvalue is r = n− 2k. Thus,

p(s) = sr
k
∏

i=1

(s− λi)
k
∏

i=1

(s+ λi).

Hence,

p(−s) = (−1)r(−1)2ksr
k
∏

i=1

(s− λi)
k
∏

i=1

(s+ λi)

= (−1)r+2kp(s) = (−1)np(s).

The following theorem is the main result of the section.

Theorem 3.1: Let t∗ > 0 and r = rank (A), and assume
there exist r linearly independent vectors x1, . . . , xr ∈ Rn

such that xi 6∈ N (A), i = 1, . . . , r, and

rank [O SOeAt∗xi] = n, i = 1, . . . , r. (28)

Then (4) and (5) is output reversible if and only if the multi-
spectrum of A is symmetric with respect to the imaginary
axis.

Proof. To prove sufficiency, assume that the spectrum of
A is symmetric with respect to the imaginary axis. In this
case, it follows from Lemma 3.2 that p(−s) = (−1)np(s)
for all s ∈ C. Let i ∈ {0, . . . , n − 1} and t ≥ 0. Then it
follows from (13) that

φi(−t) =
1

2π

∮

C

p[i+1](z)

p(z)
e−tz dz

=
(−1)n−1

2π

∮

C

p[i+1](−z)

p(z)
etz dz,

where p(s) and p[i+1](s) are given by (14) and (15), respec-
tively.

Next, equating coefficients of equal powers in p(−s) =
(−1)np(s) yields βn−1 = βn−3 = · · · = β1 = 0 if n is
even, and βn−1 = βn−3 = · · · = β0 = 0 if n is odd. Now,
assume that n− i is even. Then

p[i+1](s) = sn−i−1 + βn−2s
n−i−3 + · · ·+ βi+2s. (29)

Hence,

p[i+1](−s) = −(sn−i−1 + βn−2s
n−i−3 + · · ·+ βi+2s)

= −p[i+1](s).

Alternatively, assume that n− i is odd. Then

p[i+1](s) = sn−i−1 + βn−2s
n−i−3 + · · ·+ βi+3s

2

+βi+1. (30)

Thus,

p[i+1](−s) = p[i+1](s). (31)

Hence, in both cases,

p[i+1](−s) = (−1)n−i−1p[i+1](s). (32)

Thus,

φi(−t) =
(−1)n−1(−1)n−i−1

2π

∮

C

p[i+1](z)

p(z)
etz dz

= (−1)iφi(t), t ≥ 0.

Consequently, φ(−t) = Sφ(t) for all t ≥ 0. Hence, it follows
from Proposition 3.4 that (4) and (5) is output reversible.

To prove necessity, assume that (4) and (5) is output re-
versible. Hence, it follows from Proposition 3.4 that φ(−t) =
Sφ(t), t ≥ 0, or, equivalently, for every i = 0, . . . , n− 1,

φi(−t) =
1

2π

∮

C

p[i+1](z)

p(z)
e−tz dz

=
(−1)i

2π

∮

C

p[i+1](z)

p(z)
etz dz

=
(−1)i+1

2π

∮

C−

p[i+1](−z)

p(−z)
e−tz dz, (33)
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for all t ≥ 0, where C and C− are contours in C enclosing the
roots of p(s) = 0 and p(−s) = 0, respectively. Since p(s) =
det(sI−A) is a characteristic polynomial of A, the roots of
p(s) = 0 are given by mspec (A) = {λ1, . . . , λn}m, while
the roots of p(−s) = 0 are given by {−λ1, . . . ,−λn}m.
Therefore, for i = n− 1, (33) is equivalent to

1

2π

∮

C

1

p(z)
e−tz dz =

(−1)n

2π

∮

C−

1

p(−z)
e−tz dz, (34)

where t ≥ 0, which implies that

n
∑

k=1

Res
z=λk

[

1

p(z)

]

e−tλk = (−1)n
n
∑

k=1

Res
z=−λk

[

1

p(−z)

]

etλk ,

t ≥ 0, (35)

where Res [·] denotes residue. If Reλk = 0, k = 1, . . . , n,
then mspec (A) is symmetric with respect to the imaginary
axis. Alternatively, assume there exist λl ∈ mspec (A) such
that Reλl 6= 0 for all l ∈ N ⊆ {1, . . . , n}. Let λm, m ∈ N ,
be such that |Reλm| = maxl∈N |Reλl|. Thus, in order for
(35) to hold for large t > 0, there must exist λp ∈ mspec (A)
such that −λp = λm and

Res
z=λp

[

1

p(z)

]

= (−1)nRes
z=−λm

[

1

p(−z)

]

, (36)

which implies that

Res
z=λp

[

1

p(z)

]

e−λpt − (−1)n Res
z=−λm

[

1

p(−z)

]

eλmt = 0,

t ≥ 0. (37)

Next, let λq , q ∈ N , be such that the absolute value of its
real part is closest to |Reλm| to establish the existence of
λs ∈ mspec (A) such that −λs = λq . Recursively repeating
this procedure for all λl, l ∈ N , yields that

{λ1, . . . , λn} = {−λ1, . . . ,−λn}, (38)

which implies that the eigenvalues of A are symmetric with
respect to the imaginary axis.

The following corollary specializes Theorem 3.1 to the
case where l = 1 and recovers Theorem 2.8 of [4].

Corollary 3.2: Assume C ∈ R1×n. Then (4) and (5)
is output reversible if and only if the spectrum of A is
symmetric with respect to the imaginary axis.

Proof. Since C ∈ R1×n and (A,C) is observable, then
O ∈ Rn×n is invertible, and hence, rank [O SOeAt1x0] =
n for all x0 ∈ Rn and t1 > 0. The result now follows from
Theorem 3.1.

IV. POINCARÉ RECURRENCE AND OUTPUT

REVERSIBILITY

Reversible dynamical systems [2] tend to exhibit a phe-
nomenon known as Poincaré recurrence [5]. Specifically,
if the flow of a dynamical system preserves volume and
has only bounded orbits, then for each open bounded set
there exist orbits that intersect this set infinitely often [2].
In this section, we connect Poincaré recurrence with output
reversibility.

Consider the nonlinear dynamical system given by (1).
Given t ∈ R, we denote the flow s(t, ·) : D → D of
(1) by st(x0) for x0 ∈ D, and given x ∈ D, we denote
the trajectory s(·, x) : R → D of (1) by sx(t). The

following definition provides several equivalent statements
for Poincaré recurrence. The equivalence of these statements
is established in [2]. For this definition, ω(x0), x0 ∈ D,

denotes the positive limit set of (1) and st(N ) , {y ∈ D :
y = st(x0) for all x0 ∈ N} denotes the image of N ⊆ D
under the flow st(·).

Definition 4.1 ([2]): The nonlinear dynamical system (1)
exhibits Poincaré recurrence in Dc ⊆ D if either of the
following statements hold:

i) For every open bounded set N ⊂ Dc, there exists t >
t0 such that st(N ) ∩N 6= Ø.

ii) For every open bounded set N ⊂ Dc, there exists a
point x0 ∈ N which returns to N under the flow of
(1), that is, s(t, x0) ∈ N for some t > t0.

iii) For every open bounded set N ⊂ Dc, there exists
a point x0 ∈ N which returns to N infinitely often
under the flow of (1), that is, s(tk, x0) ∈ N for some
sequence {tk}∞k=1, with tk → ∞ as k → ∞.

iv) For every open bounded set N ⊂ Dc, there exists a
point x0 ∈ N such that limk→∞ s(tk, x0) = x0 for
some sequence {tk}∞k=1, with tk → ∞ as k → ∞, or,
equivalently, x0 ∈ ω(x0).

v) For every open bounded set N ⊂ Dc, there exists a
dense subset V ⊂ N such that for every point x0 ∈ V ,
limk→∞ s(tk, x0) = x0 for some sequence {tk}∞k=1,
with tk → ∞ as k → ∞, or, equivalently, x0 ∈ ω(x0).

The following theorem proven in [9] provides necessary
and sufficient conditions for Poincaré recurrence in linear
dynamical systems.

Theorem 4.1 ([9]): The linear dynamical system given by
(4) exhibits Poincaré recurrence in Rn if and only if Reλ = 0
and λ is semisimple, where λ ∈ spec (A).

It follows from Theorem 4.1 that if (4) exhibits Poincaré
recurrence, then the multi-spectrum of A is symmetric with
respect to the imaginary axis. The next result shows that
Poincaré recurrence is a sufficient condition for output re-
versibility in linear dynamical systems.

Theorem 4.2: Let t∗ > 0 and r = rank (A), and assume
there exist r linearly independent vectors x1, . . . , xr ∈ Rn

such that xi 6∈ N (A), i = 1, . . . , r, and

rank [O SOeAt∗xi] = n, i = 1, . . . , r. (39)

If (4) exhibits Poincaré recurrence in Rn, then (4) and (5) is
output reversible.

Proof. The proof follows immediately from Theorems 3.1
and 4.1.

The converse to Theorem 4.2 is not true. In particular,
if (4) and (5) is output reversible, then the system matrix
A ∈ Rn×n can have both stable and unstable eigenvalues
which precludes Poincaré recurrence [9].

Example 4.1: For this example we consider two coupled
oscillators with masses m1 and m2, and spring stiffness
coefficients k1 and k2 so that the system inertia and stiffness
matrices are given by

M =

[

m1 0
0 m2

]

, K =

[

k1 + k2 −k2
−k2 k2

]

, (40)

with the system state matrix A ∈ R4×4 given by

A ,

[

0 I2
−M−1K 0

]

, (41)

where mspec (A) = {±jω1, ±jω2}, ω1 > 0, and
ω2 > 0. Figures 1 and 2 show the position and velocity
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Fig. 1. Position phase portrait
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Fig. 2. Velocity phase portrait

phase portraits, respectively, for the initial condition x0 =
[−2, 3, 0, 0]T and system parameters m1 = 2, m2 = 4,
k1 = 9, and k2 = 8. Note that in this case the ratio ω1

ω2

is an irrational number, and hence, the solutions to (4) with
A given by (41) are not periodic. Nevertheless, it follows
from Theorem 4.1 that (4) exhibits Poincaré recurrence and
the state trajectories of (4) return to any neighborhood of
their initial conditions infinitely often.

Next, we consider reversibility of mass positions, that is,
output reversibility with

C =

[

1 0 0 0
0 1 0 0

]

. (42)

Note that for the data chosen rankA = 4. Let t∗ = 1
and xi ∈ R4, i = 1, . . . , 4, be the ith column of I4. It
can be shown that rank [O SOeAt∗xi] = 4, i = 1, . . . , 4.
Thus, it follows from Theorem 4.2 that (4) and (5) with
A and C given by (41) and (42), respectively, is output
reversible. For the initial condition x0 = [−2, 3, 0, 0]T

and t1 = 6, it follows from Proposition 3.1 that x̂0 =
[−1.9796, 2.7365, 2.3757,−1.6953]T will generate the so-
lution to (4) that will retrace the original time history of
mass positions backwards with time going forward. Figure 3
shows the original phase portrait of mass positions with the
initial condition x0 = [−2, 3, 0, 0]T up to t = 6 and Figure
4 shows the phase portrait of mass positions with the initial
condition x̂0 = [−1.9796, 2.7365, 2.3757,−1.6953]T up to
t = 6.
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Fig. 3. Original position phase portrait
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Fig. 4. Reversed position phase portrait
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