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Abstract 

Most microelectromechanical systems are based on electromag- 
netic or electrostatic actuation forces. It is well known that 
linear controllers based on linearized models have a stable ac- 
tuation range of one third of the nominal gap, while at larger 
displacements the electrostatic force dominates resulting in the 
electrodes pulling together. For Hammerstein systems with 
quadratic input nonlinearity we propose a nonlinear controller 
that guarantees stability and bounded disturbance rejection. 
For a singlesided electromagnetic oscillator we use this con- 
troller to achieve tracking. For a double-sided electromagnetic 
oscillator, we propose a control algorithm that achieves the de- 
sired performance while guaranteeing that the electromagnetic 
plates never pull together. These nonlinear controllers are ro- 
bust since their stabilization and disturbance rejection prop 
erties do not require knowledge of the inertia, damping and 
stiness of the plant. 

1 Introduct ion 

With breakthroughs in micro- and nanoengineering 
fabrication technologies, high performance micro- 
electromechanical systems (MEMS) and nano- 
electromechanical systems will be widely used in 
nano-computers, medicine, biotechnology, and other 
fields. Moreover, such systems are of great applicability 
in industrial applications such as optical networking 
devices (1, 121 using micro-opto-electromechanical s y c  
tems (MOEMS), adaptive traction and slip control 
in automobiles using accelerometers and gyrosensors 
[2, 3, 10, 19, 201, micreelectromagnetic actuators, and 
hard-disk head precision control (4, 7, 8, 91. 

Most electromechanical systems are based on electromag- 
netic or electrostatic actuation forces. Electromagnetic ac- 
tuation is widely used in applications involving levitation, 
such as magnetically levitated vehicles and magnetic bear- 
ings (181. Electrostatic actuation has also been studied 
for application to the control of large space antennas con- 
structed of flexible membranes Ill, 141. 
It is well known [13, 171 that a voltage driven parallel plate 
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has a stable actuation range of one third of the nominal 
gap, while at larger displacements the electrostatic force 
dominates the suspension restoring force and the electrodes 
pull together or 'snap'. Therefore, linear controllers based 
on linearized models are unstable at large deflection. 
.Here we consider the control of a spring-mass-damper sys- 
tem actuated by single- or double-sided electromagnetic or 
electrostatic forces. Doubl&ded actuation is commonly 
used in MEMS devices such as accelerometers, whereas 
singlesided actuation arises in the case of electrostatically 
controlled membranes, where double-sided control would 
block the transmission path. Single-sided actuation was 
considered in [6]. 

In Section 2 we present the dynamic model of a single- 
sided electromagnetically controlled oscillator (ECO) [5] 
and illustrate the problem of using linearized models to 
design linear controllers for stabilization at large deflec- 
tions. In Section 3 we consider a Hammerstein plant with 
positive-real linear dynamics and quadratic input nonlin- 
earity with an unknown constant disturbance. For this 
case, we construct a nonlinear controller that guarantees 
(Theorem 3.1) stability and asymptotic rejection of un- 
known disturbances. For the case of the single-sided ECO 
we employ these controllers to achieve asymptotic tracking 
or disturbance rejection. 

In Section 4, we consider the case of doublesided actua- 
tion. Here we propose a control algorithm which achieves 
the desired performance guaranteeing that the electromag- 
netic plates never pull together or 'snap' at  any time. We 
illustrate each controller using numerical examples. These 
nonlinear controllers are robust since their stabilization 
and disturbance rejection properties do not require knowl- 
edge of the inertia, damping and stiffness of the plant. 

2 Single-Sided Electromagnetic Oscillator 

Consider the single-sided electromagnetically con- 
trolled oscillator (ECO) shown in Figure 1. The dynam- 
ics of the oscillator (assumed to operate in the horizontal 
plane) [5] are given by 
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i(t) r =b' 

Figure 1: Schematic of the singlesided ECO. 

where m is the mass, c is the damping constant, k is the 
spring constant, i(t) is the commandable current supplied 
to the electromagnet, r(t) is the position of the mass with 
the origin r = 0 chosen to coincide with the position of 
the mass when i(t) = 0 and the spring is relaxed, and the 
nominal gap i is the location of the electromagnet. Thus 
r(t) = 7 denotes contact between the mass and electre 
magnet. 
Consider the problem of stabilizing the electromagnet at 
a non-zero equilibrium position r = re,, where re, < i. 
The forced equilibrium position r = r, of the equation.of 
motion (1) satisfies 

i:, 
(P - req)2 ' kr., = 

where i, is the current needed to  maintain the mass at the 
location r = re,, To translate the equilibrium point re, to  
the origin of a new coordinate system, let E(t) = r(t) - reS. 
Then the equation of motion (1) can be written in state 
space form as 

A 

where U(t) = i2 ( t ) .  The linearization of (3) about the 
origin and U ( t )  i:, is given by 

\ -1 

where z = [6g(t) ailT and @(t)  and 6U(t) represent incre- 
mental variations in C(t) and U ( t ) .  R o m  (4) it can be seen 
that the forced equilibrium position re, corresponding to 
i., is asymptotically stable if and only if re, < $i. 

The transition of the system from stability to  instability 
can also be understood by examining potential functions. 
The total potential function VPE can be written in non- 
dimensional form as 

(5) 

Note that *lr=Teq = 0 and iz(l - +)wlT=F.q = 
1 - 3%. When re, < t i  the potential function has a 
local minimum at re, in a basin of stability. As re, be- 
comes larger, the basin becomes smaller and eventually 
disappears, rendering the system unstable. 

3 Nonlinear Control w i th  Single-Sided 
Electromagnetic Actua t ion  

In order to develop controllers for the single-sided ECO 
presented in Section 2, we consider the case of a Hammer- 
stein system with quadratic input nonlinearity. Consider 
the SISO plant 

z = Az+B(u2+d),  (6) 

y = cz, (7) 

with scalar control input U E R, scalar measurement y E 
R, and bounded disturbance d E R satisfying d(t) 5 0 for 
t > 0. Assume that (A, B,  C) is minimal and positive real. 
Next, consider the controller 

U =  J e ( 1 -  sign(y))/a + (cc~dz, (10) 

where B E R and K > 0. Assume that (A,,B.,C,) is 
minimal and strictly positive real. 

T h e o r e m  3.1 Consider the closed-loop system (6)-(IO). 
Then s(t),z,(t) + 0 as t + m. Furthermore, i ( t )  is 
bounded for all t 2 0 and inft,o a(t) > 0. 

Proof: 
consider the Lyapunov candidate 

Let a > 0 satisfy Id(t)l < a for all t >_ 0, and 

It can be shown that V 5 0 for all t 2 0. The result foUows 
using the invariant set theorem. For details see (15, 161. 
m 

The controller @-(lo) does not require any knowledge 
of the plant parameters. It is, however, required that 
( A , B , C )  be positive real. In order to apply Theorem 
3.1 to the singlesided ECO.shown in Figure 1, we as- 
sume that the state 2 = [E fIT is available for feedback 
and let y = Cz with C = [l 11. This renders the sys- 
tem ([ !k 2.1 , [i] .c) strictly positive real. Next, with 
i = U(? - re, - t), (3) has the same form as (6)  with 
d = -kreq. 
For simulation purposes we consider m = 1, k = 16.0, 
c = 4.0, and i = 2.0. For controller (+(lo) we choose 
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K = l O a n d  

-12.5 -40.5 -36 

0 1 0  
A . . =  [ 1 0 0 1 ,  &=[!], 
C, = [ l  6.5 91. (11) 

For a constant command input req = 1.0, it can be s e n  
in Figure 3 that the controller stabilizes the plant and fol- 
lows the command input. Furthermore, ii converges (not 
shown) as t + m. Next, we consider a square wave com- 
mand with a period of 12.5 seconds. Figures 3 and 3 show 
that the controller is able to drive the tracking error E to 
zero. Note that both values of the command input are be- 
yond r = ?/3 and hence the forced equilibria of the system 
at these points are unstable as shown in Section 2. 

Figure 2: Mass position of the singlesided ECO 
with a constant position command rm = 1.0. 

. . . .  . . . . .  . . . . . .  
I 2  I 

Figure 4: Time history control input U corresponding 
to the closed-loop response shown in Figure 3. 

4 Double-Sided Electromagnetic Oscillator 

In this section we consider the double-sided electro- 
magnetically controlled oscillator (ECO) shown in Figure 
5. The equation governing the motion for such a system is 
of the form 

where m is the mass of the oscillator, e is the damping con- 
stant, k is the spring constant, il and i~ are the currents in 
the electromagnets and f l , h  are wnstants corresponding 
to each electromagnet. Let a, = ylm, a2 = h m .  Here 
fd(t) is a bounded external force disturbance such that 
there exists 013 > 0 satisfying Ifd(t)l < a3 for all t 2 0. 
When (12) models a MEMS accelerometer, the force fd is 
due to the inertial acceleration sensed by the accelerome- 
ter. 

A A 

Figure 5: Schematic of the doublesided ECO 

~~~ ~~~~~ ~ ~ l ~ ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~  ~~ ~ ~~~ ~~~~ ~~~~~ ~~~ 

in this case (dashed line) is a square wave of amplitude 0.75 and 
period 12.5 seconds, Note that both values of the square input 
correspond to unstable forced equilibria. 

and a3 are unknown. we =Surne 0 1  = f m  
and uZ = hm are Positive and the gap ? is 
known. We further assume that both r and i. are available 
for measurement. For the following theorem, let al E R 
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and a2 E R be positive and define the Humitz matrix 
A g [ :z -:, 1. Let R E Rzxz be a positive definite 

matrix and let P = [ 22 2 ] be the solution of the Lya- 

punov equation ATP + P A  = -R. Let a > 0 and let E, i, 
hl ,  &, and h3 be the estimates of the c/m, k/m, (21, az 
and a 3 ,  respectively. 

Theorem 4.1 Consider the dynamical system (U) ,  as- 
sume r(0) E ( - F , f )  and let a > 0. Next, consider the 
parameter update laws 

A 

and let control inputs il  and iz given by 

where 

" (mj 

(21) 

and 
k l = a , k z = a + l  if w < O ,  
k l = a + l , k z = a  if w > O .  

Then r(t), i(t) + 0 as t + CO. Furthermore, r(t) E (-?,?) 
for t 2 0 and i ( t ) ,  E, i, 61, Bzr and hS are bounded for 
all t 2 0. Furthermore inftto hl > 0, in t to  h2 > 0:and 
inftzo &a > 0. 

Proof: Using (18)-(21), (12) becomes 

f = -al? - azr + &sign(P1zr + Pzi) - fd 
hl - a1 + ( E -  c/m)i + (i - k/m) r + kl- a, 1111 

A Let 1 = [r, r, E, % , & I ,  6 2 ,  &IT and consider the Lyapunov 
candidate function V : ( - f , f )  x R3 x [0, C O ) ~  + [0, CO) 

where z = [r ?IT and Vo(r) is defined by 

Vo(r) = A - fi [ ftanh-' (E) +fF] r + ?  ' (24) 

Figure 6: Lyapunov well Vo(r) defined by (24). 

Note that V(1) is unbounded as r -$ i f  and a; --t 0 
Next, Vo(r) is given by 

rr 
Vo(') = (f + r)3/2(f - .) 

Using (13)-(17), (20), (24) and (25), the derivative of V(5)  
along the closed-loop trajectories is given by 

Using the invariant set theorem, it follows that r , i  + 0 
as t + m. Furthermore, since V(Z) is non-increasing 
along the closed-loop trajectories, it fo!ows that all terms 
in (23) are bounded. Therefore, E, k, 6 1 ,  hz, and &3 
are hounded for all t 2 0. Since V(1) is unbounded as 
r -b f F  and h; --f 0, it follows that (refer to Remark 4.1 
for brief explanation) in f t to& > 0, inft?o&l > 0 and 
inft>oha - > 0. Furthermore, since r(0) E ( - f ,?)  it follows 
that inf t to  r > -? and - r < F .  

Remark 4.1 Consider a state z E R of a dynamical sys- 
tem I = f(1), which is known (or required to be) con- 
fined to  an open interval (a,b) C R and has a nomi- 
nal value of zo. Let V(1) be a positive-definite LF sat- 
isfying V(1) 0 along the trajectories of the dynam- 
ical system. A Lyapunov well 115, 161 is a continuous 
function V,, : (a,b) + ( 0 , ~ )  which is unbounded at 
the boundaries of a confinement set (a,b). Now, suppose 
V(5)  = K(1) + V,.(z) where VI@) > 0. As V ( i )  5 0, 
the invariance principle guarantees boundedness of state 1. 
Since the Lyapunov well is positive definite, boundedness 
of V ( i )  ensures boundedness of V,,(z). This implies that 
z(t )  E (.,a) for all time. In (23), the terms correspond- 
ing to &, &, and 63 are Lyapunov wells 'restricting' the 
corresponding variables to  [O, CO). The term Vo(r) serves 
as a Lyapunov well 'restricting' r in (-f,?) (see Figure 
6) .  Therefore, the controller constrains 81, hz, h3 and r 
such that inf t to&l > 0, inftZo82 > 0, inftZoh3 > 0 and 
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r(1) E (-i,f) for all t > 0. Therefore the mass never 
contacts either electromagnets. 

Remark 4.2 In electrostatic'actuation, we may want to 
ensurethatr( t )  E ( - i + ~ , i - - ~ ) f o r a l l t ~ O w h e r e ~ > O i s  
a safety gap between the electrodes to prevent arcing. The 
controller presented in this section can be easily modified 

the Lyapunov well in (24) hy replacing 5 by i - E. 

. .  

. .  . .  . .  . .  . . . .  . . . .  . . .  . . . .  . .  . .  . .  
L 

. . . .  . ,  . .  . . . .  . . .  
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1.. . . . . ;  ..... < .... : . . . . .  k . . .  < .... : . . .  ..... .: . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . .  . . . .  . . .  

. .  . .  by replace i by ?-E in (20). The proof follows by modifying 

Remark 4.3 The controller (13)-(21) can easily be modi- 

(-i,i). Let the tracking error he given by f = r - reo". % ; ; ; ; ,b :z :. ;, ;. m 

Figure 7: Time history of the mass position of the 

. . .  . . . .  . . .  
. . .  . . .  

. . .  . .  . . .  . .  
. .  

6ed for tracking timevarying commands. To see this, con- 
sider a bounded time varying command rcomm : [0, m) --t 

Then equation (12) becomes 

E+&+kf = -kycOmm+ 

. . . . . . .  . . . . .  

tim. !n .Xm=.d. 

. . .  i; if - 
al (i - r,,,,, - f )2  az(f + rcOmm + f)z doublesided ECO subjected to the timevarying disturbance 

(27) fd(t) = 250square(t). . ,  
The controller essentially remains the same except that U 

is now given by 

~, 
It can be shown that f ( t ) ,  i ( t )  --t 0 as t + m. Further- 
more, r(1) E (-i,i) for 1 > 0 and i ( t ) ,  i, &, &, &, and 
8 3  are bounded for all t 2 0. Furthermore inft>o > 0, 
inftzo hz > 0 and inftzo B3 > 0. 

4.1 Numerical Simulation 
Consider the doublesided ECO shown in Figure 5 with 

the dynamics given by (12). For numerical simulations we 
consider m = 1.0, e = 4.0, k = 16.0, i = 2.0, a, = 45.0, 
az = 100.0, a = 2.5; b = 3.5 and R c [ 
First, we consider disturbance rejectiou of the square-wave 
disturbance j d ( t )  = 250square(t). The results of the sim- 
ulation (Figure 4.1, Figure 4.1) indicate that the control 
algorithm manages to reject the unknown timevarying dis- 
turbance and ensures non-contact of the mass and the elec- 
tromagnet. 

Next, we consider stabilizing the mass close to the right 
electromagnet. The desired set-point is chosen to he 
req = 1.99. However, we also give the mass an initial 
'push' towards the right electromagnet by choosing the ini- 
tial conditions as (r(O),i(O)) = (0.0,50.0). The simulation 
result (Figure 9, Figure 4.1) shows that the control algw 
rithm is able to stabilize the system at r = 1.99. Figure 4.1 
shows that the control input i z  has to sharply 'cut-back' 
to avert the initial 'push' before settling to a constant sta- 
bilizing value. ~ 

Po 1. 

5 Conclusion 

In this paper, we developed robust controllers for 
electromagnetically controlled oscillators with single and 

:... ... :. . . .  

* , I , (0 42 ,a 1. I. m 
,.I 

. .  
... .: .... 

. . .  . . .  . . . . . . . . . . . . . .  i . .  ..: ..,..: ...... . . . . .  . . . .  
Do 2 . * , IO t P  1. ,. 3. B *, 

tjmc ," .""d. 

Figure 8: Time history of (a) the parameter 83 and (b) 
the control cnrrents i l  and i p  corresponding to the closed-loop 
response shown in Figure 4.1. 

rim= j" .*-"d. 

Figure 9: Time history of the mass position of the 
doublesided ECO for a step tracking command r4 = 1.99 
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Figure 10: Time history of (a) the parameter a s  and 
(b) the control currents il and il corresponding to the closed- 
loop response shown in Figure 9. 

doublesided actuation. This problem is of particular im- 
portance in micreelectromechanical systems (MEMS) and 
-eletromagnetically levitated systems. It is well known that 
a voltage driven parallel plate has a stable actuation range 
of one thud of the nominal gap and linear controllers based 
on linearized models are unstable at large deflections. Due 
to the nonlinear dependence of the dynamiw on the PO- 
sition and the control inputs, developing provably stable 
robust controllers for such systems presents a considerable 
challenge. 

For Hammerstein systems with quadratic input nonlinear- 
ity Theorem 3.1 provides a nonlinear controller that guar- 
antees stability and bounded disturbance rejection. For a 
single-sided ECO we use this controller to achieve trackihg. 
For a doublesided ECO (Section 4), Theorem 4.1) provides 
a control algorithm that achieves the desired performance 
while guaranteeing that the electromagnetic plates never 
pull together. The method of proof is based on the con- 
cept of Lyapunov wells [15, 161 which in conjunction with 
the application of invariance principle guarantees the r e  
striction of chosen variables to pre-defined intervals for all 
time. Remark 4.1 summarizes the idea briefly. These non- 
linear controllers are robust since their stabilization and 
disturbance rejection properties do not require knowledge 
of the inertia, damping and s t i5es s  of the plant. 
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