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Abstract: Motivated by passive health monitoring applications, we consider blind identification
where only sensor measurements are available. The goal is to identify a pseudo transfer function
(PTF) between two sensors in the presence of an unknown initial state and unknown exogenous
input. For this problem, we choose one sensor to be the pseudo input to the system and we delay
the second sensor, treating it as the pseudo output. We show that the order of the pseudo-transfer
function is no larger than one higher than the order of the system. We demonstrate this method
on a two-degree-of-freedom mass-spring-damper system and validate the identified PTFs by
comparing them with analytical results.
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1. INTRODUCTION

In many applications of system identification, the system
is driven by external signals that are not measured. In this
situation, blind identification techniques are used to obtain
estimates of the system dynamics [1],[2]. Since the input
signal is unknown, its statistical properties are usually
assumed to be known in order to compensate for lack of
knowledge of its time history.

In the present paper we develop a blind identification
technique that uses multiple sensors but does not require
assumptions about the statistical properties of the external
signal. For the system identification, we designate one
sensor signal as the pseudo input and the other as the
pseudo output. Since causality between sensor signals may
fail (i.e., the transfer function between the pseudo input
and the pseudo output may be noncausal), we delay the
pseudo output signal prior to parameter estimation. The
resulting pseudo transfer function (PTF) thus provides a
causal map between the sensor signals. Identification of
noncausal models is considered in [3, 4, 5].

To illustrate the notion of a PTF, consider a system with
one input u and two outputs y1 and y2, as shown in
Figure 1. Assuming that the system is linear, the time-
series model relating u to yi is given by Gi. To account
for the initial state and resulting transient response, we
cast the dynamics in terms of the forward shift operator
q, which yields

⋆ This work was supported in part by NASA grants NNX08AB92A
and NNX08BA57A, as well as the Machine Health Monitoring
project for the University Strategic Alliance Program at General
Electric, Aviation Division.

yi(k) = Gi(q)u(k) =
ηi(q)

δ(q)
u(k), (1)

and thus the PTF from y1 to y2 is given by

y2(k) =
η1(q)δ(q)

η2(q)δ(q)
y1(k). (2)

A useful aspect of the PTF is that it is independent
of the both the input u and the initial condition x(0),
and therefore facilitates blind identification given lack of
knowledge of u or its statistical properties.

This formulation accounts for both the free and forced
responses since the equations are cast in terms of the
forward shift operator rather than the z-transform. There-
fore, we cannot immediately cancel the common factor
δ(q). However, we show through some surprising identities
that this factor can indeed be canceled, which results in a
PTF whose order does not exceed the order of the plant
by more than 1.

Estimates of a PTF do not provide a full picture of the
dynamics of the system. In fact, since the PTF is the
ratio of transfer functions from the same input to different
outputs, pole information is generally lost, whereas zero
information is retained. The motivation for sensor-only
noncausal blind identification (SONBI) is to use changes
in this zero information for health monitoring and fault
detection [11].

Here we use PTFs for SONBI and focus on obtaining
a PTF using only output data. To determine a PTF, a
possibly unknown input excites the system, and output
data is collected from the sensors. Once the output data
has been collected, one set of output data (here the data
from sensor 2) is delayed. This delay is represented by
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Fig. 1. Sensor-only noncausal blind identification method
for identifying pseudo transfer functions (PTFs).

Fig. 2. Fault-detection architecture.

the q−n block in Figure 1. Then, a system identification
algorithm is used to identify the PTF from the non-delayed
(pseudo input) data of y1 to the delayed (pseudo output)
data of y2.

A fault detection architecture based on SONBI is shown
in Figure 2, where the upper path uses SONBI for the
nominal system, and the bottom half uses SONBI for the
possibly faulty system. Comparing estimates of the PTFs,
possibly as characterized by their Markov parameters,
provides a technique for fault detection. This health mon-
itoring may be either active or passive, where “passive”
refers to the fact that the external driving signal need not
be known and may arise from ambient disturbances.

2. MARKOV PARAMETERS

The Markov parameters provide essential information
about the system dynamics [6]. Numerical results [7] sug-
gest that consistent estimates of the Markov parameters
can be obtained from µ-Markov models. Consequently, to
facilitate on-line implementation, we use recursive least
squares (RLS) with the µ-Markov structure [7]

y(k) = −

n
∑

j=1

a
(µ−1)
j y(k − j − µ + 1) +

µ
∑

j=1

Hj−1u(k − j + 1)

+
n

∑

j=1

b
(µ−1)
j u(k − j − µ + 1), (3)

which has the advantage over a standard IIR model of
explicitly displaying the Markov parameters H0 . . . Hµ−1.
The µ-Markov structure is an IIR model with a µ-step
ahead predictor.

3. DERIVATION OF PSEUDO TRANSFER
FUNCTIONS

3.1 Derivation of Transfer Functions Using the q-Operator

We consider the strictly proper linear time-invariant
discrete-time system

x(k + 1) = Ax(k) + Bu(k), (4)

y(k) = Cx(k) + Du(k), (5)

where x(k) ∈ R
n, u(k) ∈ R, and y(k) ∈ R

2. We re-
formulate (4) using the forward-shift q operator so that

qx(k) = Ax(k) + Bu(k). (6)

Solving for x(k) in terms of u(k), we obtain

x(k) = (qI − A)−1Bu(k), (7)

and thus

y(k) =
[

C(qI − A)−1B + D
]

u(k). (8)

We therefore have the time-series model

δ(q)y(k) = η(q)u(k), (9)

where

δ(q) , det(qI − A), (10)

η(q) , Cadj(qI − A)B + D, (11)

and adj(·) denotes the adjugate operator.

3.2 Extension to Pseudo Transfer Functions

Let C =

[

C1

C2

]

and let the scalar outputs y1(k) and y2(k)

be given by

y1(k) =
[

C1(qI − A)−1B + D1

]

u(k), (12)

y2(k) =
[

C2(qI − A)−1B + D2

]

u(k). (13)

We can express (12) and (13) as

δ(q)y1(k) = η1(q)u(k), (14)

δ(q)y2(k) = η2(q)u(k), (15)

where, for i = 1, 2,

ηi(q) , Ciadj(qI − A)B + Di. (16)

Multiplying (14) by η2(q) and (15) by η1(q) yields

η2(q)δ(q)y1(k) = η2(q)η1(q)u(k), (17)

η1(q)δ(q)y2(k) = η1(q)η2(q)u(k). (18)

Since polynomials in q commute, (17) can be re-written
as

δ(q)η2(q)y1(k) = η1(q)η2(q)u(k). (19)

Furthermore, (18) can be re-written as

δ(q)η1(q)y2(k) = η1(q)η2(q)u(k). (20)

Then, subtracting (20) from (19), we have

δ(q) [η2(q)y1(k) − η1(q)y2(k)] = 0. (21)

We thus have the pseudo transfer function

y1(k) =
δ(q)η1(q)

δ(q)η2(q)
y2(k). (22)

In the following subsections, we show that the common
factor δ(q) can be canceled; that is, we show that the
outputs y1(k) and y2(k) satisfy

y1(k) =
η1(q)

η2(q)
y2(k). (23)

3.3 Matrix Formulation

Since A ∈ R
n×n, we can write
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η1(q) ,

n
∑

i=0

n1(i)q
i, (24)

η2(q) ,

n
∑

i=0

n2(i)q
i, (25)

and

δ(q) =
n

∑

i=0

d(i)qi. (26)

We then express (21) as

∆v = 0, (27)

where, for l > 2n data, ∆ ∈ R
(l−2n)×(l−n) is defined by

∆ ,











d(0) . . . d(n) 0 . . . 0

0 d(0) . . . d(n)
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 d(0) . . . d(n)











. (28)

Furthermore, v ∈ R
l−n is given by

v = NY, (29)

where N ∈ R
(l−n)×2l is given by

N , [ N2 −N1 ] , (30)

and N1, N2 ∈ R
(l−n)×l are defined by

Ni ,











ni(0) . . . ni(n) 0 . . . 0

0 ni(0) . . . ni(n)
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 ni(0) . . . ni(n)











. (31)

Finally, Y ∈ R
2l is given by

Y ,

[

Y1

Y2

]

,



















y1(0)
...

y1(l − 1)
y2(0)

...
y2(l − 1)



















. (32)

Combining (27) and (29) yields

∆NY = 0, (33)

which is an equivalent matrix formulation of (22). The
following result gives a sufficient condition for (33) to
imply NY = 0, which is an equivalent matrix formulation
of (23).

Proposition 3.1. The following statements are equivalent:

i) NY ∈ N(∆)⊥.
ii) NY ∈ R(∆T).

iii) rank
[

∆T NY
]

= rank(∆).

In this case, (33) implies that NY = 0.

Proof 1. Note that N(∆)⊥ = R(∆T); see [9, p. 31]. Now,
assume that ∆NY = 0 and let z ∈ R

l−2n be such that
NY = ∆Tz. Then, ∆∆Tz = 0, which implies zT∆∆Tz =
0, and therefore ∆Tz = 0. Then NY = 0. ¤

3.4 Free and Forced Responses

For i = 1, 2, it follows from (4) and (5) that (see [8, p.
129]),

Yi = Γix0 + HiU, (34)

where

Γi ,









Ci

CiA
...

CiA
l−1









∈ R
l×n, (35)

Hi ,

















Di 0 . . . 0
CiB Di 0 . . . 0

CiAB CiB Di

. . .
...

...
. . .

. . .
. . . 0

CiA
l−2B . . . CiB Di

















∈ R
l×l, (36)

and

U ,







u(0)
...

u(l − 1)






∈ R

l. (37)

Then we define

Yi,free , Γix(0) (38)

and

Yi,forced , HiU, (39)

so that

Yi = Yi,free + Yi,forced. (40)

Furthermore,

Y = Γx0 + HU, (41)

where

Γ ,

[

Γ1

Γ2

]

, H ,

[

H1

H2

]

. (42)

Finally,

Y = Yfree + Yforced, (43)

where

Yfree ,

[

Y1,free

Y2,free

]

, Yforced ,

[

Y1,forced

Y2,forced

]

. (44)

Hence, (43) can be written as

∆N(Yfree + Yforced) = 0. (45)

Lemma 3.2.

N2H1 = N1H2. (46)

Proof 2. FIR case: Assume the system given by (4)-(5)
is FIR with n < k < l−2 and Ak = 0. Then Ni is composed
of Markov Parameters Hi,j such that

Ni =











Hi,n . . . Hi,0 0 . . . 0

0 Hi,n . . . Hi,0 . . .
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 Hi,n . . . Hi,0











. (47)

Noting Hi,j ∈ R,
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N1H2 =



























σ1 σ2 . . . σ3 0 . . . . . . . . . . . . 0

σ4 σ1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

σ5

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0

0 . . . 0 σ5 . . . σ4 σ1 σ2 . . . σ3



























= N2H1,

where

σ1 = H1,nH2,0 + . . . + H1,0H2,n,

σ2 = H1,n−1H2,0 + . . . + H1,0H2,n−1,

σ3 = H1,0H2,0,

σ4 = H1,n+1H2,0 + . . . + H1,1H2,n,

σ5 = H1,nH2,k. ¤

Proposition 3.3.

NYforced = 0. (48)

Proof 3. With x(0) = 0, (34) implies

N2Y1,forced = N2H1U, (49)

N1Y2,forced = N1H2U. (50)

Subtracting (50) from (49) and invoking (46), we have

NYforced = N2Y1,forced − N1Y2,forced

= N2H1U − N1H2U

= 0. ¤

Lemma 3.4.

N2Γ1 = N1Γ2. (51)

Example 3.5. FIR case, n = 2: Let

C1 = [ c11 c12 ] , C2 = [ c21 c22 ] ,

A =

[

0 1
0 0

]

, B =

[

0
1

]

.

Then, noting A2 = 0, we have

N1Γ2 =









C1AB C1B D1 0 . . . 0

0 C1AB C1B D1

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . . 0

0 . . . 0 C1AB C1B D1

















C2

C2A

0

.

.

.

0









=









C1ABC2 + C1BC2A

C1ABC2A

0

.

.

.

0









=









c21c11 c22c11 + c12c21

0 c21c11

0 0

.

.

.
.
.
.

0 0









= N2Γ1.

Proposition 3.6.

NYfree = 0. (52)

Proof 4. With u(k) ≡ 0, (34) implies

N2Y1,free = N2Γ1x(0), (53)

N1Y2,free = N1Γ2x(0). (54)

Subtracting (54) from (53) and invoking (51), we have

NYfree = N2Y1,free − N1Y2,free

= N2Γ1x(0) − N1Γ2x(0)

= 0. ¤

Example 3.7. IIR Case: Consider

y1(k) =
1

q2 − bq − a
u(k), y2(k) =

q

q2 − bq − a
u(k).

Therefore,

A =

[

0 1
a b

]

, B =

[

0
1

]

, C1 = [ 1 0 ] ,

C2 = [ 0 1 ] , D = 0.

Finally, let l = 5 > 2n = 4. Then

N1 =

[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]

, N2 =

[

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

]

,

Γ1 =







1 0

0 1

a b

ab a + b
2

a
2

+ ab
2

2ab + b
3







, Γ2 =







0 1

a b

ab a + b
2

a
2

+ ab
2

2ab + b
3

2a
2
b + ab

3
a
2

+ 3ab
2

+ b
4







,

H1 =







0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

b 1 0 0 0

a + b
2

b 1 0 0







, H2 =







0 0 0 0 0

1 0 0 0 0

b 1 0 0 0

a + b
2

b 1 0 0

2ab + b
3

a + b
2

b 1 0







.

Hence,

N2H1 = N1H2 =

[

0 0 0 0 0
1 0 0 0 0
b 1 0 0 0

]

,

which confirms (46). Furthermore,

N2Γ1 = N1Γ2 =





0 1
a b

ab a + b2



 ,

which confirms (51).

Propositions 3.3 and 3.6 yield the following result, which
confirms the validity of (23).

Theorem 3.8.

NY = 0. (55)

Therefore, (55) implies that cancelation of the δ(q) in the
numerator and denominator of (22) is valid. In this case,
the order of the pseudo transfer function does not exceed
the plant order by more than 1. Furthermore, the order of
the pseudo transfer function is less than or equal to the
plant order if the individual transfer functions are strictly
proper.

3.5 Estimation of a Pseudo Transfer Function

To identify a pseudo transfer function from y2(k) to y1(k),
we divide (23) by q to obtain

y1(k − 1) =
η1(q)

qη2(q)
y2(k). (56)

Therefore, causal identification increases the order of the
PTF by 1. Because ηi(q) has order less than or equal to
δ(q), the order of the causal PTF is at most one greater
than the order of the system.
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Fig. 3. Mass-spring-damper structure.

4. PTF DERIVATION FOR A
MASS-SPRING-DAMPER STRUCTURE

Consider the mass-spring-damper structure shown in Fig-
ure 3. For this example, we derive the PTF from the
position q1 of mass m1 to a delayed measurement of the
velocity v2 of mass m2.

The equations of motion are given by

Mẍ + Cẋ + Kx = F, (57)

where

x =

[

q1

q2

]

, M =

[

m1 0
0 m2

]

, C =

[

c1 + c2 −c2

−c2 c2 + c3

]

,

K =

[

k1 + k2 −k2

−k2 k2 + k3

]

, F =

[

f1

f2

]

=

[

1
1

]

u. (58)

The compliance transfer function from f to q1 is given by

q1(s)

f(s)
=

m2s
2 + (2c2 + c3)s + (2k2 + k3)

D(s)
, (59)

where

D(s) = [m1s
2 + (c1 + c2)s + (k1 + k2)][m2s

2+

(c2 + c3)s + (k2 + k3)] − (c2s + k2)
2. (60)

Similarly,

v2(s)

f(s)
=

m1s
3 + (c1 + 2c2)s

2 + (k1 + 2k2)s

D(s)
. (61)

Dividing (61) by (59) yields the PTF from q1 to v2, given
by

v2(s)

q1(s)
=

m1s
3 + (c1 + 2c2)s

2 + (k1 + 2k2)s

m2s2 + (2c2 + c3)s + (2k2 + k3)
. (62)

We discretize (62) using zero-order hold, and, to reflect a
delay of one time step between the pseudo input data q1

and the pseudo output data v2, we multiply the discretized
version of (62) by q−1.

5. NUMERICAL EXAMPLES

We identify PTFs for the analytical model described by
(62) and Figure 3. We assume that the system is excited
by an unknown exogenous input, and we use measurement
data for x1 and v2. We then identify the PTF from q1

to v2 using a µ-Markov structure RLS algorithm, taking
advantage of zero buffering [10]. To verify the identified
PTFs, we identify the first 4 Markov parameters and
compare these with their corresponding analytical values.

5.1 White Exogenous Input, Zero Initial Conditions

Setting the initial condition of the system to zero, we excite
the system with an unknown exogenous white noise signal.
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Fig. 4. Numerical simulation with zero initial conditions.
The unknown exogenous input is uk ∼ N(0, 1),

and x0 = [0, 0, 0, 0]
T
. The performance of the

identification is evaluated by comparing the frequency
response and Markov parameters of the true PTF and
the identified PTF.

The upper plot of Figure 4 compares the frequency re-
sponse of the identified PTF with the analytical result.
The lower plot compares the L2 error of the identified
Markov parameters with the analytically derived Markov
parameters. From Figure 4, we see that the identified
PTF closely matches the analytical PTF, the apparent
difference between the identified and analytical phase plots
is 360◦.

5.2 White Exogenous Input, Non-Zero Initial Conditions

Choosing a nonzero initial condition, we again excite the
system with an unknown exogenous white noise signal.

The upper plot of Figure 5 compares the frequency re-
sponse of the identified PTF with the analytical result.
The lower plot compares the L2 error of the identified
Markov parameters with the analytically derived Markov
parameters. From Figure 5, we see that the identified PTF
closely approximates the analytical PTF. The difference
between the true PTF phase and the identified PTF phase
is 360◦.

5.3 System Parameter Change Detection for a White
Exogenous Input and Non-Zero Initial Conditions

We investigate whether changes in the PTFs can be used
to detect changes in system parameters. Therefore, we
simulate 10 seconds of the response of (57) to white noise
input. At t = 5 seconds, the stiffness coefficients in K are
reduced by a factor of 3 and the damping coefficients in C
are increased by a factor of 6.
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Fig. 5. Numerical simulation with nonzero initial condi-
tions. The unknown exogenous input is uk ∼ N(0, 1),

and x0 = [1, 2, 3, 4]
T
.The performance of the iden-

tification is evaluated by comparing the frequency
response and Markov parameters of the true PTF and
the identified PTF.
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Fig. 6. In this example the stiffness and damping coeffi-
cients are changed at t = 5 s to simulate damage. The
unknown exogenous input is u ∼ N(0, 1), and the

initial state is x0 = [1, − 2, − 1, 3]
T
. The bottom

plot shows the time history of the identified Markov
parameter error, the increase in error at the time
instance when damage occurs is clearly seen at t = 5s.

From the lower plot of Figure 6, we observe an abrupt
increase in Markov parameter error at the time of damage,
indicating that the system model has changed. Further-
more, the upper plot of Figure 6 shows that we can ac-
curately identify the PTF associated with the pre-damage
model. However, the center plot of Figure 6 shows that
the identified PTF does not match the analytical post-
damage model, this is because the identification contains
data from the pre-damaged and post-damaged systems. To

obtain an accurate model of the post-damaged system the
identification algorithm must be reinitialized.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate an approach to model-based,
data-driven fault detection using only output data to
construct a PTF associated with a system. We show that
the PTF is independent of the input and initial condition,
and has order no greater than one higher than the system.
We validate the accuracy of the identified PTF for a linear
two DOF system and use the identified PTF to detect
changes in the system parameters, which could result from
structural damage.

Future work will focus on proving that the SONBI tech-
nique is valid for IIR models, extending the technique to
multiple-input systems, and investigating potential impli-
cations for nonlinear systems.
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