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Abstract: In this paper we use retrospective cost optimization to identify linear fractional
transformations (LFTs). This method uses an adaptive controller in feedback with a known
system model. The goal is to identify the feedback portion of the LFT by adapting the controller
with a retrospective cost. We demonstrate this method on numerical examples of increasing
complexity, ranging from linear examples with unknown feedback terms to nonlinear examples.
Finally, we examine methods for improving the retrospective cost optimization performance.

1. INTRODUCTION

Although system identification techniques are widely used
to construct empirical models from available data, it is
often the case that an initial model is available, either
from analytical modeling or prior empirical modeling. The
identification task is then to use available data to refine the
available model, thereby improving its accuracy. This task
is variously known as model correction, model refinement,
or model updating [2, 3, 4, 5, 8, 10].

In the present paper we consider a model updating ap-
proach that is motivated by the similarity of the model
reference adaptive control architecture to the model up-
dating problem. This similarity was observed in [8], where
the ARMARKOV adaptive control algorithm [6] was used
to adaptively refine an initial model.

In contrast to standard system identification methods,
model updating based on adaptive control algorithms pro-
vides a natural model update in terms of a subsystem
interconnected to the primary system through feedback,
that is, a linear fractional transformation. This architec-
ture allows the adaptive algorithm to focus on updating
only the interconnected subsystem, while accepting the
primary system as correct.

The purpose of the present paper is to expand on the
model updating results of [10] in several ways. First,
while the results of [10] use a simple model (first-order
delay) for the primary system, our goal is to consider
more general examples in which the primary system has
more significant dynamics. Next, we explore the modeling
information needed from the primary subsystem as well
as the persistency of the external signal needed to ensure
convergence and accuracy of the identified subsystem.
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Fig. 1. Linear fractional transformation, a known system
G with unknown linear feedback GFB .

Finally, we extend this technique to nonlinear systems.
Since the concept of impulse response parameters, which
are needed by the adaptive algorithm, does not carry over
to nonlinear systems, we consider a technique in which the
role of the Markov parameters in the linear case is now
played by parameters that are optimized on-line based on
the fit accuracy. We demonstrate this technique on several
illustrative nonlinear systems.

2. PROBLEM FORMULATION

We seek to identify the SISO feedback term GFB shown in
Figure 1 using a given initial model G = [Gw Gu], which is

assumed to be accurate. The objective is to identify ĜFB

such that the resulting closed-loop model

Ĝcl =
Gw

1 − GuĜFB

(1)

matches the true closed loop system

Gcl =
Gw

1 − GuGFB
. (2)

As shown in Figure 2, we use an adaptive feedback model
structure in order to identify GFB . To achieve model

Preprints of the
15th IFAC Symposium on System Identification
Saint-Malo, France, July 6-8, 2009

450



Fig. 2. Linear fractional transformation identification
structure

matching, we minimize the performance variable z in the
presence of the identification signal w. In particular, we use
the retrospective correction filter (RCF) adaptive control
algorithm given in [7]. The only signal available to the
controller is the plant output y. This problem setup is a
minor variation of the approach used in [8].

Consider a realization of the linear discrete-time system
given by

x(k + 1) = Ax(k) + Bw(k), (3)

y(k) = Cx(k), (4)

where x(k) ∈ R
n, yk ∈ R

ly , and w(k) ∈ R
lw . Furthermore,

define

z(k)
△
= y(k) − ŷ(k), . (5)

We thus seek an adaptive output feedback controller ĜFB

such that the performance variable z is minimized in the
presence of the identification signal w.

3. CONTROLLER CONSTRUCTION

In this section we give a brief overview of the RCF adaptive
control algorithm for the control problem represented by
[7, 8, 10]. This algorithm is derived from [6] and [7], and
the full details of the algorithm are presented in [7].

This algorithm depends on several parameters that are
selected a priori. Specifically, nc is the estimated feedback
order, p is the data window size, and µ is the number of
Markov parameters. The adaptive update law is based on
a quadratic cost function, which involves a time-varying
weighting parameter α(k) > 0, referred to as the learning
rate since it affects the convergence speed of the adaptive
control algorithm. The methodology for choosing these pa-
rameters is as follows, nc is overestimated, that is, chosen
to be greater than the expected order of the unknown
feedback. µ is chosen to be 1, generally, µ is used to account
for nonminimum phase zeros in Gcl. The data window can
be chosen as p ≥ 1, increasing p will quicken convergence at
the expense of higher computational complexity. Finally,
α is generally chosen as 1, but maybe increased if the
algorithm fails to converge.

We use an exactly proper time-series controller of order nc

such that the control u(k) is given by

u(k) =

nc∑

i=1

Mi(k)u(k − i) +

nc∑

i=0

Ni(k)y(k − i), (6)

where Mi ∈ R
lu×lu , i = 1, . . . , nc, and Ni ∈ R

lu×ly ,
i = 0, . . . , nc, are given by an adaptive update law. The
control can be expressed as

u(k) = θ(k)φ(k), (7)

where

θ(k)
△
= [ N0(k) · · · Nnc

(k) M1(k) · · · Mnc
(k) ]

is the controller parameter block matrix, and the regressor
vector φ(k) is given by

φ(k)
△
=




y(k)
...

y(k − nc)
u(k − 1)

...
u(k − nc)




∈ R
nclu+(nc+1)ly . (8)

For positive integers p and µ, we define the extended
performance vector Z(k), and the extended control vector
U(k) by

Z(k)
△
=




z(k)
...

z(k − p + 1)


 , U(k)

△
=




u(k)
...

u(k − pc + 1)


 ,

(9)

where pc
△
= µ + p.

From (7), it follows that the extended control vector U(k)
can be written as

U(k)
△
=

pc∑

i=1

Liθ(k − i + 1)φ(k − i + 1), (10)

where

Li
△
=




0(i−1)lu×lu

Ilu

0(pc−i)lu×lu


 ∈ R

pclu×lu . (11)

We define the surrogate performance vector Ẑ(θ̂(k), k) by

Ẑ(θ̂(k), k)
△
= Z(k) − B̄zu

(
U(k) − Û(k)

)
, (12)

where

Û(k)
△
=

pc∑

i=1

Liθ̂(k)φ(k − i + 1), (13)

and θ̂(k) ∈ R
lu×[nclu+(nc+1)ly ] is the surrogate controller

parameter block matrix. The block-Toeplitz surrogate con-
trol matrix B̄zu is given by

B̄zu
△
=




0lz×lu · · · 0lz×lu Hd · · ·

0lz×lu

. . .
. . .

. . .
...

. . .
. . .

. . .
0lz×lu · · · 0lz×lu 0lz×lu · · ·

· · · Hµ 0lz×lu · · · 0lz×lu

. . .
. . .

. . .
...

. . .
. . . 0lz×lu

· · · 0lz×lu Hd · · · Hµ


 , (14)
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where the relative degree d is the smallest positive integer

i such that the ith Markov parameter Hi
△
= C0A

i−1
0 B0 is

nonzero. The leading zeros in the first row of B̄zu account
for the nonzero relative degree d. The algorithm places no
constraints on either the value of d or the rank of Hd or
B̄zu.

Furthermore, we define

D(k) =

nc+µ−1∑

i=1

φT(k − i + 1) ⊗ Li, (15)

f(k) = Z(k) − B̄zuU(k). (16)

(17)

We now consider the cost function

J(θ̂, k)
△
= ẐT(θ̂, k)R1(k)Ẑ(θ̂, k) + ÛT(θ̂, k)R2(k)Û(θ̂, k)

(18)

+ tr

[
R3(k)

(
θ̂ − θ(k)

)T

R4(k)
(
θ̂ − θ(k)

)]
, (19)

where R1(k)
△
= Iplz , R2(k)

△
= 0plz , R3(k)

△
= α(k)Inc(lu+ly),

R4(k)
△
= Ilu and α(k) the positive scalar is the learning

rate.

Substituting (12) and (13) into (19), the cost function can
be written as the quadratic form

J(θ̂, k) = c(k) + bTvec θ̂ +
(
vec θ̂

)T

A(k)vec θ̂, (20)

where

A(k) = DT(k)D(k) + α(k)I, (21)

b(k) = 2DT(k)f(k) − 2α(k)vec θ(k), (22)

c(k) = f(k)TR1(k)f(k) + tr
[
R3(k)θT(k)R4(k)θ(k)

]
.

(23)

Since A(k) is positive definite, J(θ̂, k) has the strict global
minimizer

θ̂(k) =
1

2
vec−1(A(k)−1b(k)). (24)

The controller gain update law is

θ(k + 1) = θ̂(k). (25)

The key feature of the adaptive control algorithm (7) is
surrogate performance variable Z(k) based on the dif-
ference between the actual past control inputs U(k) and
the recomputed past control inputs based on the current
control law Û(k).

4. LINEAR NUMERICAL EXAMPLES

In this section we consider numerical examples where the
model G is a linear system. Consider the second-order
continuous-time system

G(s) =
ω2

n

s2 + 2ωnζs + ω2
n

, (26)

where ωn = 100 and ζ = 0.008. For numerical simulations
we discretize G(s) with zero order hold and sampling time
Ts = 0.1.

For the following examples the estimated feedback order nc

is overestimated as the true order of the unknown feedback
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Fig. 3. Performance and feedback variables for Example
1, where z is the difference between the true and
identified system outputs. The signal u is the output
of the controller ĜFB.

−64

−63

−62

−61

−60

M
a
g
n
it
u
d
e
 (
d
B
)

10
−1

10
0

10
1

−180

−135

−90

−45

0

P
h
a
s
e
 (
d
e
g
)

Bode Diagram

Frequency  (rad/sec)

True Feedback

Identified Feedback

Fig. 4. Frequency response plot comparison, identified and
true.

plus 3. We choose µ = 1 and the learning rate α = 1. The
data window size is p = 15.

4.1 Example 1 - No Zeros in GFB

Let GFB be given by

GFB(s) =
1

(s + 20)(s + 50)
, (27)

where GFB is discretized using a zero-order hold. The
identification signal w is gaussian white noise. The perfor-
mance of the RCF algorithm is shown in Figure 3, which
shows that z converges in about 10 seconds. As a second
performance metric, Figure 4 shows the frequency response
of GFB and the converged controller ĜFB.

4.2 Example 2 - Zeros in the Feedback Term

We now consider the feedback term

GFB(s) =
(s + 30)(s + 60)

(s + 20)(s + 50)(s + 10)
. (28)

GFB is discretized using a zero order hold with sampling
time Ts = 0.1. The input signal is white noise. The
performance variable shown in Figure 5 approaches zero in
about 60 seconds, which corresponds to 600 data points.
The frequency response plots shown in Figure 6 indicate
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Fig. 5. Performance and feedback variables for Example
2, where z is the difference between the true and
identified system outputs. The signal u is the output
of the controller ĜFB.
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Fig. 6. Frequency response plot comparison, identified and
true.

the closeness of the frequency response of ĜFB and GFB.

5. NONLINEAR EXTENSIONS

As a nonlinear extension, (29) and (30) are redefined as a
realization of the nonlinear discrete-time system given by

x(k + 1) = f(x(k), x0) + h(w(k)), (29)

y(k) = Cx(k), (30)

where x(k) ∈ R
n, yk ∈ R

ly , w(k) ∈ R
lw . Consider the

forced van der Pol oscillator

ẍ + ζ(x2
− 1)ẋ + x = w, (31)

where w is the input signal. We discretize (31) and obtain
the continuous-time state space equations

ẋ1 = x2, (32)

ẋ2 = −ζx2
1x2 + ζx2 − x1 + w, (33)

y = Cx. (34)

Introducing a linear feedback

GFB = CFB(sI − AFB)−1BFB, (35)

we integrate (35) into (32)–(34) as

ẋ1 = x2, (36)

ẋ2 = −ζx2
1x2 + ζx2 − x1 + u + yFB, (37)

ẋFB = AFBxFB + BFBCx, (38)

yFB = CFBxFB, (39)

y = Cx. (40)

Finally, the discrete system is

x1(k + 1) = x2(k)Ts + x1(k), (41)

x2(k + 1) = (−ζx1(k)2x2(k) + ζx2(k) (42)

− x1(k) + u(k) + yFB(k))Ts + x2(k), (43)

xFB(k + 1) = ÃFBxFB(k) + B̃FBCx(k), (44)

yFB,k = CFBxFB(k), (45)

yk = Cx(k), (46)

where

ÃFB = eAFBTs , (47)

B̃FB = A−1
FB(ÃFB − I)BFB, (48)

where Ts is the sampling time. By choosing ζ = 0.8 for
the following examples, the trajectory of the van der Pol
oscillator enters a limit cycle. In the linear case, B̄zu is
constructed with the Markov parameters from the known
system (14). In the nonlinear case we extract estimates
of the Markov parameters by linearizing the van der Pol
equations (32)–(34), around the unstable equilibrium at
the origin,

ẋ =

[
0 1
−1 ζ

]
x +

[
0
1

]
u,

y = [ 0 1 ]x,

(49)

where

A =

[
0 1
−1 ζ

]
, B =

[
0
1

]
, C = [0 1]. (50)

The first nonzero discrete-time Markov parameter, where
Ts = 0.1 and ζ = 0.8, is

H = CA−1(eATs − I)B = 0.01. (51)

The resulting surrogate control matrix assuming µ = 1
and p = 1 is

B̄zu = [ 0 0.01 0 ] . (52)

5.1 Example 3 - No Zeros in Feedback Term

Assume G is given by (31) and let

GFB(s) =
1

s + 20
. (53)

GFB is discretized with a sampling time of 0.1 and zero
initial conditions are assumed. The input identification
signal is white noise. From Figure 9 the performance
variable tends to zero, indicating that the feedback is
identified. Note that significantly more data is required
to identify the feedback terms for this nonlinear system
than for the linear examples.

5.2 Example 4 - Zeros in Feedback Term

Let G be given by (31) and let

GFB(s) =
s + 10

(s + 20)(s + 50)
. (54)

The surrogate control matrix B̄zu is chosen as in (52).
From Figure 9 the performance variable tends to zero,
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Fig. 7. Performance and feedback variables for Example
3, where z is the difference between the true and
identified system outputs. The signal u is the output
of the estimated subsystem ĜFB.
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Fig. 8. Frequency response plot comparison, identified and
true.
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Fig. 9. Performance and feedback variables for Example
4, where z is the difference between the true and
identified system outputs. The signal u is the output
of the estimated subsystem ĜFB.

indicating that the feedback is identified. The frequency
response plots in Figure 10 confirm that the feedback is
well approximated. As in Example 3, a large amount of
data is required to identify the feedback.
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Fig. 10. Frequency response plot comparison, identified
and true.
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Fig. 11. Performance comparison of the system from Ex-
ample 2. The top plot is the standard RCF algorithm
from Section 3, where the lower plot is the RCF with
the time-varying surrogate control matrix B̄zu from
(55).

6. PERFORMANCE OPTIMIZATION

To improve identification performance by minimizing the
amount of required data, we examine the effect of scaling
the surrogate control matrix B̄zu. We introduce a scaling
coefficient β(k), which is the ratio of σy(k) and σu(k),
where σy(k) is the standard deviation of the signal y on
the interval [0, k], and σu(k) is the standard deviation
of the estimated feedback signal on [0, k]. The time-step-
dependent surrogate control matrix becomes

Bzu(k) = β(k)B̄zu(0), (55)

where B̄zu(0) is the surrogate control matrix at time step
zero. B̄zu(0) is created based on (14) in the linear problem,
whereas for the nonlinear problem, B̄zu(0) is estimated.
The scaling coefficient is

β(k) =
σy(k)

σu(k)
. (56)

To demonstrate this method we reconsider Examples 2
and 4. First consider G as (26) with feedback given by
(28). From Figure 11, we see that the scaling method
reduces the transients in the performance variable. Fur-
thermore, by scaling B̄zu we require less data than the
same example without using a scaling coefficient. The time
history of β(k) for the linear example is shown in Figure 12.
The coefficient converges almost immediately and remains
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Fig. 12. Time history of β(k). For this linear example, β(k)
reaches steady state after about 5 seconds.
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Fig. 14. Time history of β(k). For this nonlinear example,
β(k) fluctuates through a larger range of scaling
factors than the linear case, before convergence

constant throughout the run. Consider again G as (31),
with feedback (54). From Figure 13, the magnitude of the
transient is reduced, the performance also tends to zero at
a higher rate than when B̄zu is a fixed estimated value. The
time history of β(k) for the nonlinear example is shown in
Figure 14. This time history differs from the linear case
in Figure 12, we observe that there is a longer transient
period before reaching steady state. Scaling the surrogate
control matrix based on the ratio of signal standard devia-

tions appears to give significant performance gains without
sacrificing computational efficiency.

7. CONCLUSION

We have demonstrated the use of a retrospective correction
filter to identify linear fractional transformations (LFTs).
The method was demonstrated using a known linear
initial model with feedback of varying complexity. We
also demonstrated LFT identification with a nonlinear
initial model with linear feedback of increasing complexity.
Finally, a method for artificially increasing the adaptive
control authority with the goal of decreasing the time
and amount of data required to identify feedback was
investigated and demonstrated on linear and nonlinear
examples.
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